# Systems Biology of the Epo-Receptor Jens Timmer

Center for Systems Biology Center for Data Analysis and Modeling Freiburg Institute for Advanced Studies Department of Mathematics and Physics University of Freiburg

Department of Clinical and Experimental Medicine Linköping University, Sweden

# Outline

- Systems Biology
- A dynamical model for the Epo receptor
- Validating the model
- Infering systems' properties
- Understand what is known

# Outline

- Systems Biology
- A dynamical model for the Epo receptor
- Validating the model
- Infering systems' properties
- Understand what is known
- Latest results

#### **Erythropoiesis - A Closed-Loop Control System**



• Epo: key regulator of erythropoiesis

#### **Erythropoiesis - A Closed-Loop Control System**



- Epo: key regulator of erythropoiesis
- feedback via red blood cell mass: establishing a closed-loop control circuit
- normal conditions: low levels of plasma Epo 15 mU/ml
- hypoxic conditions: increased Epo levels

up to 10000 mU/ml

#### **Erythropoiesis - Coping with Different Ligand Concentrations**



#### **Erythropoiesis - Coping with Different Ligand Concentrations**



- → How is ligand-encoded information processed by the EpoR?
- Which dynamic properties of the EpoR facilitate information processing over a broad ligand range?

#### **Strategies for Processing Ligand-Encoded Information**









#### Low EpoR Abundance on the Plasma Membrane

lymphoid murine BaF3-EpoR cell line





#### **Strategies for Processing Ligand-Encoded Information**









#### Mathematical Model for Epo-EpoR Interaction and Trafficking Kinetics



#### Mathematical Model for Epo-EpoR Interaction and Trafficking Kinetics



- all parameters identifiable with small confidence intervals
- → allowing for accurate predictions
- extended model: EpoR mobilization excluded as a major strategy

60

120

time [min]

180

240

300

Epo in cells

#### **Strategies for Processing Ligand-Encoded Information**



### **Analysis of Model Including EpoR Mobilization**



### Model Topology – Core Model / Core Model + k<sub>mob</sub>

#### 'Core model' / 'Core model + $k_{mob}$ '

#### Ordinary differential equations ('core model')

| EpoR                  | $\dot{\mathbf{x}}_1 = \mathbf{k}_t \cdot \mathbf{B}_{\text{max}} - \mathbf{k}_t \cdot \mathbf{x}_1 - \mathbf{k}_{\text{on}} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2 + \mathbf{k}_{\text{off}} \cdot \mathbf{x}_3 + \mathbf{k}_{\text{ex}} \cdot \mathbf{x}_4$ |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Еро                   | $\dot{\mathbf{x}}_2 = -\mathbf{k}_{on} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2 + \mathbf{k}_{off} \cdot \mathbf{x}_3 + \mathbf{k}_{ex} \cdot \mathbf{x}_4$                                                                                                    |
| Epo-EpoR              | $\dot{\mathbf{x}}_3 = \mathbf{k}_{on} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2 - \mathbf{k}_{off} \cdot \mathbf{x}_3 - \mathbf{k}_e \cdot \mathbf{x}_3$                                                                                                        |
| Epo-EpoR <sub>i</sub> | $\dot{\mathbf{x}}_4 = \mathbf{k}_e \cdot \mathbf{x}_3 - \mathbf{k}_{ex} \cdot \mathbf{x}_4 - \mathbf{k}_{di} \cdot \mathbf{x}_4 - \mathbf{k}_{de} \cdot \mathbf{x}_4$                                                                                       |
| dEpo <sub>i</sub>     | $\dot{\mathbf{x}}_5 = \mathbf{k}_{di} \cdot \mathbf{x}_4$                                                                                                                                                                                                   |
| dEpo <sub>e</sub>     | $\dot{\mathbf{x}}_6 = \mathbf{k}_{de} \cdot \mathbf{x}_4$                                                                                                                                                                                                   |

#### Ordinary differential equations ('core model + $k_{mob}$ ')

| EpoR                  | $\dot{\mathbf{x}}_1 = \mathbf{k}_t \cdot \mathbf{B}_{\text{max}} + \mathbf{k}_{\text{mob}} \cdot \mathbf{x}_3 - \mathbf{k}_t \cdot \mathbf{x}_1 - \mathbf{k}_{\text{on}} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2 + \mathbf{k}_{\text{off}} \cdot \mathbf{x}_3 + \mathbf{k}_{\text{ex}} \cdot \mathbf{x}_4$ |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Еро                   | $\dot{\mathbf{x}}_2 = -\mathbf{k}_{on} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2 + \mathbf{k}_{off} \cdot \mathbf{x}_3 + \mathbf{k}_{ex} \cdot \mathbf{x}_4$                                                                                                                                                 |
| Epo-EpoR              | $\dot{\mathbf{x}}_3 = \mathbf{k}_{on} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2 - \mathbf{k}_{off} \cdot \mathbf{x}_3 - \mathbf{k}_e \cdot \mathbf{x}_3$                                                                                                                                                     |
| Epo-EpoR <sub>i</sub> | $\dot{\mathbf{x}}_4 = \mathbf{k}_e \cdot \mathbf{x}_3 - \mathbf{k}_{ex} \cdot \mathbf{x}_4 - \mathbf{k}_{di} \cdot \mathbf{x}_4 - \mathbf{k}_{de} \cdot \mathbf{x}_4$                                                                                                                                    |
| dEpo <sub>i</sub>     | $\dot{\mathbf{x}}_5 = \mathbf{k}_{di} \cdot \mathbf{x}_4$                                                                                                                                                                                                                                                |
| dEpo <sub>e</sub>     | $\dot{\mathbf{x}}_{6} = \mathbf{k}_{de} \cdot \mathbf{x}_{4}$                                                                                                                                                                                                                                            |

| Assign           | nent rules                                 | Nonzero     | initial values                                                  | Observables                     |                               |                                          |
|------------------|--------------------------------------------|-------------|-----------------------------------------------------------------|---------------------------------|-------------------------------|------------------------------------------|
| k <sub>off</sub> | $k_{\rm off} = k_{\rm on} \cdot K_{\rm D}$ | EpoR<br>Epo | x <sub>1</sub> = B <sub>max</sub> (t=0)<br>x <sub>2</sub> (t=0) | Epo in medium<br>Epo on surface | $y_1 = x_2 + x_6$ $y_2 = x_3$ | (Epo + dEpo <sub>e</sub> )<br>(Epo-EpoR) |

#### **Parameters**

| k, | ligand-independent EpoR | endocytosis |
|----|-------------------------|-------------|
|----|-------------------------|-------------|

ligand-induced EpoR mobilization **k**<sub>mob</sub>

association of Epo and EpoR **k**on

- dissociation of Epo and EpoR k<sub>off</sub>
- dissociation constant for Epo-EpoR K<sub>D</sub>
- ligand-induced EpoR endocytosis k\_
- recycling of Epo and EpoR k<sub>ex</sub>
- degradation of ligand-EpoR complexes, remaining intracellular k<sub>di</sub>
- degradation of ligand-EpoR complexes, secreted extracellular k<sub>de</sub>

| Epo in medium  | y <sub>1</sub> = x <sub>2</sub> + x <sub>6</sub> (Epo + dEpo <sub>e</sub> ) |
|----------------|-----------------------------------------------------------------------------|
| Epo on surface | $y_2 = x_3$ (Epo-EpoR)                                                      |
| Epo in cells   | $y_3 = x_4 + x_5 (Epo-EpoR_i + dEpo_i)$                                     |

#### **Analysis of Model Including EpoR Mobilization**



→ EpoR mobilization excluded as a major strategy to cope with large ligand concentrations

#### **Strategies for Processing Ligand-Encoded Information**



#### **Key Properties of the EpoR System**



#### **EpoR Recovery at the Cell Surface - Model Validation**



#### **EpoR Recovery at the Cell Surface - Model Validation**



→ recovery of EpoR, cells remain ligand-responsive

#### **Epo Depletion - Model Validation**



#### **Epo Depletion - Model Validation by Direct Measurements**



#### **Epo Depletion - Model Validation by Direct Measurements**



- → ligand depletion in both murine and human system
- → regulation of signal initiation by EpoR endocytosis through ligand depletion

#### **Strategies for Processing Ligand-Encoded Information**



#### Linear EpoR Signaling for a Broad Range of Epo Levels



### Linear EpoR Signaling for a Broad Range of Epo Levels



#### **Dependency of Linear Relation**



#### **Dependency of Linear Relation on EpoR Turnover**



→ constitutive EpoR turnover: linear signal integrator

#### **Contribution of Intracellular EpoR Pools**



#### **Contribution of Intracellular EpoR Pools**



→ EpoR transport as a prerequisite for sampling and integrating ligand

→ critical role of large pools of newly synthesized EpoR in ER and Golgi

#### **Differential Ligand Binding Properties of Epo Derivatives**

 $\rightarrow$  sensitivity analysis:  $k_{on}$  essential ligand binding property for Epo depletion



#### Simulation of Bioactivity and Bioavailability of Epo Derivatives



- $\rightarrow$  simulate system dynamics for different  $k_{on}/k_{off}$  rate couples
- → calibrated model employed to estimate k<sub>on</sub> and k<sub>off</sub> parameter values by using immunoblot data for Epo and NESP

#### Simulation of Bioactivity and Bioavailability of Epo Derivatives



→ estimation of bioactivity and bioavailability of Epo derivatives via ligand binding kinetics

→ rapid application, circumvents radioactivity or animal experiments

## Generalisation of the Model

- Different cell types: CFU-E, m/hBaF3, H838
- Different ligands: Epo $\alpha$ , Epo $\beta$ , NESP, CERA

$$\dot{x} = f(x, p), \quad x(0) = x_o$$

Different cell types, three possibilities:

- different  $x_o$ : different expression levels
- different *p*: different reaction rates
- different f(.): different topology

## **Generalisation of the Model**

Ansatz: Fit all data by one model, individual parameters for

- number of receptors
- ligand-receptor affinities

Amount of data: 600 from 22 experimental conditions

Result: It works !

## Generalisation of the Model

Number of receptors

- CFU-E:  $1463 \pm 156$ BaF3:  $10293 \pm 485$ H838:  $458 \pm 46$
- # receptors CFU-E & BaF3 agree with experiments
- # receptors for H838 not determinable by experiments

## **Looking Downstream**

**Combine receptor model with STAT5 signaling model** 



## **Epo and Cancer**

- Epo often applied during chemotherapy to fight anemia
- But, Epo-receptors also expressed on tumor cells

**Question:** Is there a difference in dosing effects ?

Integral nuclear pSTAT5 determines cell survival



## **Dosing Effects**



Suggests: There is a range of differential effects

#### **Summary**

Information processing through EpoR:

- → rapid Epo depletion
- → fast recovery of cell surface EpoR
- → linear relation of Epo levels and integral EpoR activation over a broad range of ligand concentrations
- → accurate translation of ligand input into erythrocyte production

![](_page_39_Figure_6.jpeg)

V. Becker, M. Schilling, J. Bachmann, U. Baumann, A. Raue, T. Maiwald, J. Timmer, and U. Klingmüller (2010). *Science* 328(5984):1404-1408.

#### **Summary**

Information processing through EpoR:

- → rapid Epo depletion
- → fast recovery of cell surface EpoR
- → linear relation of Epo levels and integral EpoR activation over a broad range of ligand concentrations
- → accurate translation of ligand input into erythrocyte production

![](_page_40_Figure_6.jpeg)

turnover

-Epo

#### **Rational design of therapeuticals and cancer treatment strategies:**

- $\rightarrow$  estimation of  $k_{on}$  and  $k_{off}$  rates
- → identification of risks in Epo treatment of lung cancer patients

![](_page_40_Figure_10.jpeg)

U. Klingmüller (2010). Science 328(5984):1404-1408.

![](_page_40_Figure_12.jpeg)

![](_page_41_Figure_0.jpeg)

Signal transduction through the Erythropoietin receptor (EpoR)

## Acknowledgements

Theoretical side Freiburg University

Andreas Raue Thomas Maiwald Max Schelker Experimental side DKFZ, Heidelberg

Verena Becker Marcel Schilling Julie Bachmann Ute Baumann Ursula Klingmüller

#### **Flux Analysis Core Model**

![](_page_43_Figure_1.jpeg)

### Identifiability Analysis by Profile Likelihood Exploit

 $\chi^{2}_{PL}(\theta_{i}) = \min_{\theta_{j\neq i}} \left[ \chi^{2}(\theta) \right]$   $\left\{ \theta \middle| \chi^{2}(\theta) - \chi^{2}(\hat{\theta}) < \Delta_{\alpha} \right\} \quad with \quad \Delta_{\alpha} = \chi^{2}(\alpha, df) \qquad \text{Raue et al. (2009), Bioinformatics}$   $\left\{ \theta \middle| \chi^{2}(\theta) - \chi^{2}(\hat{\theta}) < \Delta_{\alpha} \right\} \quad \psi_{\alpha} = \chi^{2}(\alpha, df) \qquad (1)$ 

![](_page_44_Figure_2.jpeg)

| parameter                                  | bestin                                                                                               |
|--------------------------------------------|------------------------------------------------------------------------------------------------------|
| <i>k</i> <sub>t</sub> [min <sup>-1</sup> ] | 0.03294 (+ 0.00356 / - 0.00293)<br>(+ 10.81% / - 8.89%)                                              |
| k <sub>on</sub> [pM⁻¹ × min⁻¹]             | 0.10496×10 <sup>-3</sup> (+ 4.72×10 <sup>-6</sup> / - 4.68×10 <sup>-6</sup> )<br>(+ 4.50% / - 4.46%) |
| k <sub>off</sub> [min⁻¹]                   | 0.01721 (+ 0.00077 / - 0.00077)<br>(+ 4.47% / - 4.47%)                                               |
| <i>k</i> <sub>e</sub> [min <sup>-1</sup> ] | 0.07483 (+ 0.00277 / - 0.00248)<br>(+ 3.70% / - 3.31%)                                               |
| k <sub>ex</sub> [min <sup>-1</sup> ]       | 0.00994 (+ 0.00195 / - 0.00169)<br>(+ 19.62% / - 17.00%)                                             |
| k <sub>di</sub> [min⁻¹]                    | 0.003179 (+ 0.000475 / - 0.000461)<br>(+ 14.94% / - 14.50%)                                          |
| k <sub>de</sub> [min <sup>-1</sup> ]       | 0.01640 (+ 0.00086 / - 0.00083)<br>(+ 5.24% / - 5.06%)                                               |
| <i>Еро</i> [рМ]                            | 2030.19 (+ 5.22 / - 5.21)<br>(+ 0.26% / - 0.26%)                                                     |
| k <sub>on_SAv</sub> [pM⁻¹ × min⁻¹]         | 2.294×10 <sup>-6</sup> (+ 1.36×10 <sup>-7</sup> / - 1.32×10 <sup>-7</sup> )<br>(+ 5.93% / - 5.75%)   |
| k <sub>off_SAv</sub> [min <sup>-1</sup> ]  | 0.006799 (+ 0.000403 / - 0.000391)<br>(+ 5.93% / - 5.75%)                                            |
| k <sub>ex_SAv</sub> [min <sup>-1</sup> ]   | 0.0110 (+ 0.0076 / - 0.0069)<br>(+ 69.09% / - 62.73%)                                                |
| <i>SAv</i> [pM]                            | 999.293 (+ 0.120 / - 0.120)<br>(+ 0.01% / - 0.01%)                                                   |
|                                            |                                                                                                      |

→ good model accuracy:

all parameters identifiable with small confidence intervals

→ allowing for accurate predictions