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Outline

• Systems Biology

• JAK-STAT pathway of the Epo receptor

• A dynamical model for JAK-STAT pathway

• Observing the unobservable

• In silico biology: Predicting a new experiment

• Infering systems’ properties
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Enlarging Physics, Math, Engineering

• Since Newton:

Mathematization of inanimate nature

• 21st century:

Additionally: Mathematization of animate nature
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Man : A Dynamical System

Diseases caused or expressed by malfunction of dynamical processes
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Two Directions in Systems Biology

• Putting all the omics together

So far: large scale, qualitative, static

• Understanding biomedical networks by data-based

mathematical modelling of their dynamical behavior

So far: small scale, quantitative, dynamic

Both approaches will converge to: large scale, quantitative, dynamic

Common ground: Investigating networks
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Direction II in Systems Biology

Understanding biomedical systems by data-based

mathematical modelling of their dynamical behavior

From components and structure to behavior of networks

Systems Biology is based on but more than ...

• ... Mathematical Biology: Data-based

• ... Bioinformatics: Dynamics

• ... o.p./g. – o.p.: System

• ... another omics: Mathematics
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Why Mathematical Modelling in BioMed?

• Make assumptions explicit

• Understand essential properties, failing models

• Condense information, handle complexity

• Understand role of dynamical processes, e.g. feed-back

• Impossible experiments become possible

• Prediction and control

• Understand what is known

• Discover general principles

• ”You don’t understand it until you can model it”
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Why Modelling in Cell Biology?

• Basic Research

– Genomes are sequenced, but ...

– ... function determined by regulation

– Regulation = Interaction & Dynamics

– Function: Property of dynamic network

– ”Systems Biology”

• Application

– Drug development takes 10 years and 1 bn $/e

– Reduce effort by understanding systems
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The (Old) Central Dogma

DNA
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RNA

⇓

Protein
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The (New) Central Dogma

DNA

⇓

RNAs

⇓

Proteins

⇓

Networks

↙ ↓ ↘

Signalling ↔ Gene Regulatory ↔ Metabolic
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Examples of Networks I: Apoptosis

Pathway cartoon System’s behavior

Death Alive

Threshold behavior, one-way bistable
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Examples of Networks II: MAP Kinase

Pathway cartoon System’s behavior

Time scales/parameters important
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The Steps of Systems Biology

• Define the biological question

• Modelling

– Experimental design
– Quantitative data
– Parameter estimation

• Systems’ analysis

– Design priniciples
– Robustness

• Applications

– Synthetic biology
– Personalized medicine
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The Systems Biology Cycle: A Process

Modelling

Hypotheses

Data�

�
�
�
�
�
�
�
�
�
�
�
�
�� @

@
@
@
@
@
@
@
@
@
@
@
@R

Make the cycle happen: Wet/dry couple projects
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In collaboration with Dr. Ursula Klingmüller

German Cancer Research Centre, Heidelberg
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Epo

Epo = Erythropoietin

• Hormone produced by kidneys

• Turns erythroid progenitor cells into red blood cells

• Well known to Tour de France cyclists
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JAK – STAT Pathway
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The Program

• Translate the cartoon in (differential) equations

• Measure protein dynamics

• Estimate parameters in equations

• Test and refine the mathematical model

• Predict the outcome of new experiments

• Use the model: E.g. identify potential drug targets
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JAK – STAT Pathway
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From Chemical Reactions ...

STAT5 + EpoRA → STAT5−P

STAT5−P + STAT−P → STAT5−P = STAT5−P

STAT5−P = STAT5−P → STAT5−P = STAT5−Pnuc.
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... to Mathematical Equations

ẋ1 = −p1x1EpoRA

ẋ2 = p1x1EpoRA − p2x2
2

ẋ3 =
1
2
p2x2

2 − p3x3

ẋ4 = p3x3
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Measurements

• y1(t) : Phosphorylated STAT-5 in the cytoplasm

y1(t) = p5(x2(t) + 2x3(t))

• y2(t) : All STAT-5 in the cytoplasm

y2(t) = p6(x1(t) + x2(t) + 2x3(t))

• y3(t) : Activation of the epo receptor

y3(t) = p7 EpoRA(t)
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Simulation vs. Data-Based Modeling I

Model comprises:

• Structure of the equations (the cartoon)

• Values of the parameters

Simulation:

• Structure from pathway cartoon

• Parameters from

– Independent measurements
– Literature
– Educated guesses
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Simulations
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Simulation vs. Data-Based Modeling II

Simulation dilemma:

If discrepancies between experiment and model

• Wrong structure or wrong parameters ?

Data-based modeling:

• Structure from pathway cartoon

• Parameters estimated from data

If discrepancies:
Think about the cartoon ! Learn biology !
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Parameter Estimation in Nonlinear
Partially Observed Noisy Dynamical Systems

Dynamics:
~̇x = ~f(~x, ~p)

Observation:

~y(ti) = ~g(~x(ti), ~p) + ~ε(ti), ~ε(ti) ∼ N(0,Σi)

Log-Likelihood:

E = χ2(~p, ~x(t0)) =
N∑
i=1

M∑
j=1

(
(yDj (ti)− gj(~x(ti; ~p, ~x(t0))

σi j

)2
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Really Good Data

”What makes you feel good ?”

”Good data.”

”What makes you feel really good ?”

”Really good data !”
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Quantitative Immunoblotting

M. Schilling et al.: Quantitative data generation for Systems Biology. IEE

Proc. Sys. Bio. 152, 193, 2005

M. Schilling et al.: Computational processing and error reduction strategies for

standardized quantitative data in biological networks. FEBS J. 272, 6400, 2005
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Really Good Data

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  10  20  30  40  50  60

B
.L

.U

m g

g(x) is linear

29



The data

Activation of the epo receptor :

Maximum at 8 min
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The data

Phosphorylated STAT-5 in cytoplasm :
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The data

All STAT-5 in cytoplasm :
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First results

Phosphorylated STAT-5 in cytoplasm :
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First results

All STAT-5 in cytoplasm :
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JAK – STAT Pathway
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Model Extension
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Second try

ẋ1 = 2p4xτ3 − p1x1EpoRA

ẋ2 = p1x1EpoRA − p2x2
2

ẋ3 =
1
2
p2x2

2 − p3x3

ẋ4 = p3x3−p4xτ3
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Results

Phosphorylated STAT-5 in cytoplasm :
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Results

All STAT-5 in cytoplasm :
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Observing the unobservable

Simulating the fitted model :
Access to dynamic variables xi

• Unphophorylated STAT-5 is limiting factor

• Experimental fact:
Phosphorylated monomeric STAT-5 is hard to measure

Explanation by the model:
It is rapidly processed into dimeric STAT-5
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Observing the unobservable: The Individual
Players
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In silico Biology: Impossible Experiments

”What happens if ... ?” Investigations

Sensitivity analysis:

• Change parameters in the model

• Calculate the transcriptional yield

Perspective:

Identification of potential targets for medical intervention
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Sensitivity Analysis
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Prediction of New Experiment

• Result of sensitivity analysis:

Transcriptional yield is most sensitive to nuclear shuttling
parameters.

• Setting nuclear export to zero

=⇒ Only one cycle : Only 50 % efficiency

• Blocking nuclear export by leptomycin B confirms
prediction.
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Experimental Confirmation of Prediction
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Experimental Confirmation of Prediction
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Why Cycling ?

• Optimal use of limited pool of STAT-5

• Continuous monitoring of receptor activity :

Systems’ property: ”Remote Sensor”

Swameye et al. Proc. Natl. Acad. Sci. 100, 2003, 1028-1033
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”All models are wrong ...”

• No scaffolding for receptor–STAT-5 interaction, 200 eqs.

• Spatial effects, ODE vs. PDE

• Stochastic effects

• Data averaged over 106 cells

”... but some are useful”

• Captures the main effects

• Makes testable prediction
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In silico biology
Test the prior knowledge

Understanding systems’ properties
Identification of potential drug targets
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