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Abstract. The statistical properties of least-squares frequency analysis of unequally spaced data are 
examined. It is shown that, in the least-squares spectrum of gaussian noise, the reduction in the sum of 
squares at a particular frequency is a Z2 2 variable. The reductions at different frequencies are not 
independent, as there is a correlation between the height of the spectrum at any two frequencies, fl 
and f2, which is equal to the mean height of the spectrum due to a sinusoidal signal of frequency fl,  
at the frequency f2. These correlations reduce the distortion in the spectrum of a signal affected by 
noise. Some numerical illustrations of the properties of least-squares frequency spectra are also 
given. 

1. Introduction 

In astronomy - especially in the field of  variable stars - it is often necessary to analyse 
data for unknown periodicities. For data obtained at uniformly spaced intervals, 
standard methods of analysis are available, such as Fourier methods based on the Fast 
Fourier Transform and the recently developed Method of  Maximum Entropy. Un- 
fortunately, in most ground based astronomical work uniform spacing is impossible 

to achieve. Observations are necessarily limited to night time and are further restricted 
by the weather, availability of  telescope time and the position of the object under 
observation. Even within each night of observation the data are rarely equally spaced. 

The spectrum of a set of  non-uniform data is far more complex than~the spectrum 
of  a set of  uniform data, for there is no frequency region, as there is in the analysis 
of  equally spaced data, in which a period is unambiguously defined. Each true peak 
in the spectrum gives rise to a number of other peaks (aliases) of various heights, 
distributed throughout the spectrum. As a consequence no more than one period can 
be determined for any one calculation of the spectrum because of  possible confusion 
with the alias structure of the major peak. Subsequent periods have to be found by 
successively subtracting the previously found periodicities from the data and calcu- 
lating the 'prewhitened' spectrum. 

The most commonly used method of calculating the spectrum of non-uniformly 

spaced data is periodogram analysis. It  ignores the non-equal spacing and involves 
calculating the normal Fourier power spectrum, as if the data were equally spaced, 
though, of  course, without recourse to the Fast Fourier Transform algorithm. It has 
been used, for example, by Wehlau and Leung (1964). A slightly modified form of  
periodogram analysis has been devised by Gray and Desikachary (1973), in which 
prewhitening is carried out in the frequency domain instead of the time domain. 
However, with unequally spaced data the Fourier power spectrum has no well-defined 
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properties. Even in the simplest possible case of noise-free data containing one 
sinusoidal periodicity the highest peak does not necessarily occur at the correct period. 
The sole justification for the use of  periodogram analysis is that, as will be shown 
later, it provides a reasonably good approximation to the spectrum obtained by fitting 
sine waves b y  least-squares to the data and plotting the reduction in the sum of the 
residuals against frequency. This least squares (or LS) spectrum (Barning, 1963) pro- 
vides the best measure of the power contributed by the different frequencies to the 
overall variance of the data and can be regarded as the natural extension of Fourier 
methods to non-uniform data. It reduces to the Fourier power spectrum in the limit 
of  equal spacing. 

The statistics and behaviour of the LS spectrum will be investigated in this paper. 
An elaborate scheme of least-squares frequency analysis has been put forward by 
Vanirek (1971), in which for each trial frequency a least-sqt~ares solution is made 
simultaneously for the amplitudes of all known constituents of  the data and the 
amplitude and phase of  the sine wave with the trial frequency. This scheme will not 
be considered here as, under most circumstances, it provides only a marginal im- 
provement to the accuracy of the simple LS spectrum and also, it would greatly 
increase the complexity of the discussion. However, it is felt that at least some of the 
results obtained for the LS spectrum could be applied to Vanirek's method. Some of 
the questions that will be asked about the LS spectrum are: What is the probability 
distribution of the height of the spectrum at a given frequency if the data consists of 
noise with a gaussian distribution ? Considering that a sinusoidal periodicity in the data 
gives rise to a number of alias peaks, are there any correlations between the heights of 
noise peaks at different frequencies ? How much does the presence of  noise distort the 
spectrum due to a sinusoidal signal ? 

2. Formulae for the LS Spectrum 

Given a set of n observations y~, i=  1, 2 . . . .  , n, with zero mean and obtained at times 
h,  we can set up the model 

Yl + e~ = a cos 2nfh + b sin 27rfh, 

where the errors E~ are independent, have zero mean and a common variance 0 "2, a and 
b are unknown and the frequency f is given. 

Adopting the notation 

c c  = cos2 2 st,, s s  = sin2 2 St,, 
1=1 i = 1  

CS = ~ cos 2nfh sin 2•fh, 
| = 1  

YC = ~ y, cos 2rcf,,, YS : ~ y, sin 2rft,, 
1=1 l = l  
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we are led to the normal equations 

CS .d[;]: 
and a reduction in the sum of squares of 

CC CS] -1 
A R ( f )  = [ r c  YS] CS  SSJ YS  = 

.o,r SSID-CSlD][rc],  
= [ Y C  �9 ~ j [ _  CSID CCIDJ [ YSJ 

where 

449 

(1) 

= C2(f)  + S2(_f). (2) 

When A R ( f )  is expressed in this compact form the similarity with the usual periodo- 
gram formula becomes evident; in fact the periodogram formula is an approximation 
to this exact formula. By making two assumptions: CS=O for all values of  v and 
CC= S S = n / 2 ,  which are both approximately satisfied, Equation (2) can be converted 
to 

Hence, 

D =  C C . S S -  CS 2. 

Although for numerical work it is simplest to use an expansion of  Equation (t), it 
would facilitate the statistical description of the LS spectrum if A R ( f )  could be ex- 
pressed in the form AZ+B z. This can be done by fitting 

Yl = a cos 2ztf( h - r) + b sin 2ztf(fi - v) 

to the data, instead of 

Yl = a cos 2z~fti + b sin 2ztfh; 

and choosing v such that CS=O. We then have from Equation (1) 

where now, e.g., 

CC = ~ cos ~ 2rtf(fi - T). 
t = l  
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which is the formula used in periodogram analysis. 

I f  we let 

R =  ~ . y ~ ,  l=l 
a normalized spectral function can be defined by 

C2(f) + SZ(f) 
P( f )=  R 

The values of  p( f )  lie obviously in the range 0 to 1. 

(3) 

3. Spectrum due to a Sinusoidai Signal 

A sinusoidal signal of  frequency f~ can be represented by 

g~ = a cos 2~f1(6 - zl) + b sin 2~zfl(ti - zO. 

I f  the gi are our observations, that is yi =g~, we can write for any frequency f2 

1 
C(f2) = ~/C-----2"~2 (aCxC2 + bSxC2), 

where, e.g., 

Also 

CIC2 = ~ cos 2rcfa(h - zl) cos 2rf2(t, - r2). 
f = l  

1 
S(f2) = ~/~2Sz (aC~S2 + bS, S2), 

and the reduction in the sum of squares, for a frequency f2, is, using Equation (2) 

AR~(f2) = a2(CIC2\czcz + ~2S~] C1S2] + b2 (~2C271_SxC22 ~2s~]SiS2~ .~_ 

r CIS2.S~$2] +2 b[ + : 

I f  we now define 

CiC~ 
er v'GG.c~c~' 

similarly define Qc, s2, Os, s2, etc. (the reason for this notation will become clear when 
we discuss the response of the LS spectrum to random noise); and also define 

A = a~/C1C1 and B = bV~S-~,  



LEAST-SQUARES FREQUENCY ANALYSIS OF UNEQUALLY SPACED DATA 451 

we have 

ARG(f2) = A2(02.c2 + e2.s2) + B2(021, C2 "~ 0S21,S2 ) -[- 

+ 2AB(Qcl, c2 Qs.c2 + Qcl,sz Qs.s2). 

Now the total sum of squares is given by 

R = a2C1Cx + b2S1S1 + 2abC1S1 = A 2 + B 2 

if rl  was chosen such that CaSa =0. 
The normalized spectrum then becomes, by use of Equation (3), 

A 2 B 2 
PG(f2)  = A2 -Jr B 2 (~21'C2 "31- ~21'$2) ~ A 2 -~- B 2 (~21'C2 "~ 021'S2) "q- 

2AB 
-]- A2 q_ B2 (Ocl,c 2 Osl,c 2 + Ocl,s 2 Osl,s2 ).  (4) 

This value for P~(f2) will vary slightly as the ratio of .4 to B changes, that is as the 
phase of the signal is varied. To find the mean value let us put 

.42 B 2 
sin2 ~t = .42 + B-------2 and c~ = .42 + B-------5" 

Then Equation (4) becomes 

PG(f2) = sin2 ~(Q2 c2 + 02~, s2) + cos2 a(02~, c2 + 021. sz) + 

+ sin 2oC(Qc. c2" Os~, c2 + Oct. s2" Os~, s~); 

and the mean value as the phase of the signal is varied is given by 

f iG(A) 1 2 2 2  (oc ,c2 + + + 021.s ). (5) = OC1, Sz Q$1, C2 

Equations (4) and (5) completely describe the spectrum due to a sine wave. They 
are, however, rather complex, so to get a qualitative picture of the shape of the spec- 
trum of a sine wave it is necessary to simplify them by making some approximations. 
By making the approximations that C S =  0 for all values of z and that CC= S S = n / 2  

we reach the stage of approximation represented by periodogram analysis (Section 2). 
It can then be shown that Equations (4) and (5) reduce to 

Po(f2) = fiG(f2) OC I w (A  - A )  + W(f2 + f~)l 2, 

where W ( f )  is the Fourier transform of the observing window, which is a function 
that equals 1 whenever t ~ (h ,  t2 . . . . .  t.}. 

4. Spectrum of Random Noise 

If  the series u~, i=  1, 2 . . . . .  n, constitute a random sample from a normally distributed 
population with mean zero and variance a 2 and we take Yt = ut then 
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1 
c ( f )  = ~ YC  = 

V 'CC 

n 

,~7, ui cos 2zcf(h - r) 
v T 6  

is also normally distributed and its mean or expected value is given by 

/1 

1 ~=1 E(u~) cos 2r~f(ti - z) = 0; E[C( f ) ]  = ~ ,= 

and its variance, by 

E [ C 2 ( f ) ]  = E@) cos  2 2 ~ f ( 6  - ~). 
i = l  

In these equations we have ignored terms involving E(u~), since these are equal to zero 

and so 

E [ c 2 ( f ) ]  - -  E @ )  --  ~2.  

The function S ( f )  is normally distributed with zero mean and variance of  e 2. The 

covariance of  C ( f )  and S ( f )  is given by 

1 1 
~. E(u~) cos 2nf(  6 - 0 sin 2zrf(h - 0 = E [ C ( f ) . S ( f ) ]  = ~ V'S-S ,=, 

O.2 
- ~ / - - v : ~  = o, 

since 1: was chosen so that CS=O. Thus C( f )  and S ( f )  are independent and A R N ( f ) =  
= C 2 ( f ) + S 2 ( f )  is a 2 times a Z 2 variate with 2 degrees of freedom. 

From the above result it would seem that the spectrum of random noise is a set of 
peaks, the heights of  which are governed by the z~-distribution. However, we found 
when discussing the spectrum of a sine curve that each true peak gives rise to a number 
of  other peaks (aliases). Consequently, it would be reasonable to suppose that each 
noise peak would be related to some other peaks in the spectrum. 

Consider the correlation between C( f l )  and C(f2) in a noise spectrum 

E [ C ( f O  C(f2)] 
0[C(f0,  C(f2)] = (E[C2(f0  ] E[C2(f2)])~/2 = 

n 

= 1 1~=1 E(u~) cos 2z~fl(h - ~'l) • 
a ~ / G G "  C~C2 = 

x cos  2 ~ A ( 6  - r2) = 

C~C2 

~/ CiC1" C2C2 

but this has already been defined as Qc~. c2. So 

o[c(A), c ( A ) ]  = O c . ~ ;  
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and similarly for the correlation between C ( f l )  and S( f2) ,  etc. I f  we call the correlation 
between the level of the spectrum at f l  and f2, Q12 then 

ex2 = O[PN(A),P~(f2)] = 

= e[aR• (A) ,  ARN(A)]. 

Now, using the fact that 

E[ARN(f~)]  = E[ARN(f2)]  = a2E(x~) = 2a z 

and that 

E [ A R N ( f l )  - 2a2] 2 = E[ARN( f2 )  - 2o'2] z = 4a ' ,  (6) 

since the variance of a Z22-variable is equal to 4, we have 

012 = E [ ( A R N ( f l )  - 2a2) (ARN(~)  - 2a2)]/4a 4 = 

= 4 ~  E [ A R N ( f i ) ' A R N ( f 2 ) ]  - 1. 

It is shown in the Appendix that 

E[ARN( f l ) .ARN( f2 ) ]  = 40" + 2a'(Qc2 c2 + Oc.s22 + Os,2 .c~ + es,.s~),2 . 

andso  we obtain, finally, 

1 2 2 2 ~1~ = d e q , ~  + oq,  s~ + as,, r + e ~ . ~ ]  = ~ ( A )  (7) 

from Equation (5). Thus the correlation between the heights of a noise spectrum at 
frequencies f l  and f2 is equal to the mean height of the spectrum of a sine curve of 
frequencyf~ at frequency f2. Note that from Equation (6), Q~z is also the regression 
coefficient of PN(fl) on PN(f2) and PN(f:)  on PN(fl). 

5. Effect of Noise on the Spectrum of a Sine Wave 

Let 

Y t  -~ g i  "Jr" U i ,  

where again 

gi = a cos 2zrfl(tl - vl) + b sin 2nfl( t t  - ~1) 

and u~ is normally distributed with E(u~)=0 and E ( u ~ ) = a  2. The reduction in the sum 
of squares at a particular frequency f2 is given, with the help of Equation (2), by 

1 1 (ac~ + uc~y + ~ (as~ + us~) ~, AR( f2 )  = C2--~2 

where we have used the notation 

GC2 = ~ g, cos 2zrf2(t, - ~2), UC2 = ~ u, cos 2~rf2(t, - va), etc. 
i = 1  t = 1  
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On expanding we find that 

AR(f2) = Ago(f2) + AR;v(f2) + Ia(f2), 

where AR~(f2) is the reduction in the sum of squares due to the signal in the absence of  
noise, ARN(f2) is the reduction due to the noise in the absence of a signal and Ia(f2) 
is an interaction term between the signal and the noise. Ia(f2) is given by 

2 2 
Ia(f2) = ~2C2 GC2. UC2 + ~2S2 GS2. USz. (8) 

Since R, the total sum of squares is equal to RG + RN where 5:" R~ = ~ =  1 g2 and RN = 
_ _  / I  -Y~ = 1 u 2, the normalized spectrum can be written as 

R~RNp~(f2) Rs Ia(f2) 
P(f2) = Ra + Ro + R~ PN(f2) + Ro + RN' (9) 

where 

po(f2) = AR6(f2)/R6 and PN(f2) = ARN(f2)IRN. 

In Equation (9) the first term is constant, while the statistical behaviour of the 
second term was discussed in the previous section. Let us now discuss the third term 
in the equation. As UC2 and US2 are normally distributed and independent (as was 
shown in the previous section), Ia(f2) is a normal variable with zero mean and 
variance given, using Equation (8), by 

( C ~ 2  4 GS 2 S2S2)= 4AR~(f2)tr 2. E[ia(f2)]2 = tr 2 4 GC 2 C2C2 + 

Ia(fl) can be written in a slightly simpler form than Equation (8) as GCI =aC~C1 and 
GSI = bSxS1 and some of  the factors cancel. Thus 

Ia(fx) = 2(aUC1 + bUS~); (10) 

and similarly to Ia(f2) it is a normal variable with zero mean and variance given by 

E[Ia(fx)] z = 4Rotr z. 

To find the correlation between Ia(fx) and Ia(fz) we need their covariance which by use 
of Equations (8) and (10) becomes 

4[ 1 E[Ia(fx) Ia(f2)] = ~zCz GC2(aCIC2 q- bSIC2) "1" 

, ] + ~ GS~(aClS~ + bS~S~) ,7~ = 

4 1 ~2S21 GS2)r 2 _  + 

= 4 ~ R ~ ( A ) ~  2. 
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We can now find the correlation between Ia(fO and Ia(f2). It is given by 

Q[la(fl), Ia(f2)] = E[la(f~) Ia(f2)] = 
(E[Ia(f~)] 2 E [Ia(f2)]2) x/2 

= 

= 4o.2~v/R ~ AR~(f2 ) 

Also the regression Coefficient of  Ia(f2) on Ia(fO is 

fl[ Ia( f 2), Ia(A)] = E [ Ia( f 2) [a( f l) ] = 
E[Ia(A)y 

_ 4ARo(f2) g2 
4RGtr2 = P~(f2). (11) 

As we now know the statistical behaviour of all three terms of Equation (9), we can 
consider the statistical behaviour ofp(J2) itself. Specifically, we want the expectation 

value ofp(f2)  given that p(fl) is affected by noise. 
Let 

Re Rt~ Y = Z,  (12) 
P(fl) = g~ + RN + "R~ + R-~N X + g~ + RN 

obtaining if in Equation (9) we have taken p~(f~)=x and Ia(fO=y.  Then 

E[p(f2) given P(fO = Z] = 

R~ Rs 
= R~ + RN pG(f2) + Re + R------~s E[pN(f2)given Px(fl) = x] + 

1 
+ Re + RN E[Ia(f2) given Ia(fa) = y] = 

R~ Rs YP~(f2.____~) 
- R6 RNPG(f2) + Ro + RN [Q12(X -- YO + X] + Re + RN' 

where we have used Equation (11) and the fact proved in the previous section that 012 
is the regression coefficient of  pN(f2) on PN(fl). The contents of the square brackets 
can be rewritten as 012x+(1-012)x. It is clear that the second term can only assume 
values that are small compared to the possible values of the first term, consequently we 
will make the approximation that the second term equals zero. The accuracy of this 
approximation will obviously increase as 012 approaches 1. From Equation (7) we 

know that 012 =ff~(f2), which is approximately equal to P~(f2). Thus the term in square 
brackets reduces to ,'~p6(f2)x, and so 

E[p(f2) given P(fx) = Z]  ~ - -  
RG 

R6 + RNP6W2 r + 

ypdA) + 
R~ + RN 

RN 
R~ + RN xpG(f2) + 

(13) 
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The variance of the first term is zero, the variance of the second term can easily be 
shown to be approximately a function of 1 -P~(f2), and the variance of the third term 
is a function of (1-P~(f2))Pa(f2). Using Equation (12), Equation (13) becomes 

E[p(f2) given P(fl)  = Z] ___ PG(f2) Z; 

and finally we find that 

Ip( )l 
E/p--~0J = p~(f2). 

The variance ofp(A)/p(f~) is a function of 1 -P~(A) and (1 -P~(A))PG(f2) and, con- 
sequently, approaches zero as P~(f2) approaches 1. 

Thus the spectrum of a signal which has been affected by noise, after normalization 
by the height "of the highest peak, should closely resemble the noise-free spectrum, 
especially for the higher aliases. 

6. Numerical Examples 

A number of examples has been calculated in order to illustrate some of the proper- 
ties of the LS spectrum that have been found analytically. The examples have been 
made realistic by basing them on actual observations: radial velocity measurements of 
the two Beta Canis Majoris stars, fl Centauri and ~ Virginis. The data on fl Cen are 
from Lomb (1975) and consist of 38 measurements obtained over only 1.~ while the 

Virginis data, which are taken from Struve and Ebbighausen (1934), are made up of 
72 measurements distributed at the two ends of an interval of nearly 5 years. 

Example No. 1 - Figure 1 shows the LS spectrum of a sinusoidal periodicity of 8.6 
cycles/day frequency (top) and the LS spectrum of a sinusoidal periodicity of 6.4 
cycles/day frequency (bottom), both sinusoids sampled at the same times as the fl Cen 
velocities. Points of interest about the figure are that there is no symmetry about the 
highest peak in either spectrum and that the difference between the two spectra is much 
more than a simple translation in frequency. 

It was shown in Section 2 that the formula used in periodogram analysis gives an 
approximate value of the reduction in the sum of squares. For Figure 2 the same spec- 
tra as in Figure 1 have been plotted, but this time calculated using the approximations 
of periodogram analysis. On comparison of the two figures it is seen that they are 
close to being identical; the only differences between them are the heights of the largest 
peaks. The highest peaks in the top and bottom curves in Figure 2 have heights 93~  
and 107% respectively, instead of the 100% they must have, by definition, in an LS 
spectrum. Although such small inaccuracies do not seem important in this case where 
the correct peaks are well defined, in other cases, where the differences between the 
heights of peaks are small and the spectra are affected by noise, they could be very 
disturbing. 
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Top: the LS spectrum of a sinusoidal periodicity of 8.6 cycles/day frequency; Bottom: the LS 
spectrum of a sinusoidal periodicity of 6.4 cycles/day frequency. Both sinusoids are sampled at the 

same time as the fl Cen radial velocities. 
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Top: the periodogram of a sinusoidal periodicity of 8.6 cycles/day frequency; Bottom: the 
periodogram of a sinusoidal periodicity of 6.4 cycles/day frequency. Both sinusoids are sampled at the 

same times as the fl Cen radial velocities. 
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Example No. 2 - To test the response of an LS spectrum to noise the fl Cen data were 
again used. The observed velocities were replaced by gaussian noise and the spectrum 
calculated in the same frequency region as for Figures 1 and 2, that is f rom 2.0 to 

16.66 cycles/day. This was repeated eleven times, each time with a different sequence 
of random (strictly, quasi-random) noise. Table I indicates the average level and the 

height of  the highest peak in each spectrum. 
Using the theory given in Section 4, we can calculate the theoretically predicted 

mean level. The reduction in the sum of squares at a particular frequency, ARN(f), 
was shown to be 0.2 times a Z 2 variable with 2 degrees of  freedom, where 0.2 is the 

population variance. The population variance cannot, of  course, be found directly, 
and so 0 .2 will be taken to be equal to the observed variance. This is an acceptable 

approximation,  provided the observed variance is based on a reasonable number of  

points (say, greater than 30). Under these conditions PN(f) is also a Z22 variable, multi- 

plied by 

0.2 0.2 1 

- - - -  - - 1 '  RN (n 1)0. 2 n -  

where n is the number of  observations. For  the mean level in the spectrum we then have 

1 2 

E[p,,(f)] n - 1 E(Z22) = ~ n - l "  

In the present case 2/(n- 1) is equal to 0.054 or 5.4%. This predicted value compares 

favourab!y with the observed values for the average level listed in Table I. 

To be able to perform significance tests on an LS spectrum it is necessary to know 

the probability distribution of the height of  the highest peak in the spectrum. This is 
impossible to obtain analytically with any degree of accuracy, due chiefly to the correla- 

TABLE I 

Response to random noise of an LS 
spectrum (using fl Cen R,V. data) 

Run Av. level Highest peak 
(%) (%) 

1 4.8 15 
2 6.1 25 
3 4.3 16 
4 4.7 24 
5 3.3 17 
6 7.1 20 
7 4.5 14 
8 4.9 15 
9 3.6 13 

10 2.7 13 
11 2.8 12 
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tion between the levels of  an LS noise spectrum at different frequencies. In some cases 

it may be worthwhile to establish the probability distribution numerically by calcu- 

l a t ing  the spectra of  different sequences of quasi-random noise as in this example. 
However, instead of eleven calculations of  the spectrum, at least a hundred would be 

necessary. 

Example No. 3 - A model of  the observed short period variation in the ~ Vir 1934 

velocities (Shobbrook et al., 1972) was set up. This model consisted of  a sine wave 

with a period of 0.d173 790 and an amplitude of  9.1 km s -1 plus gaussian noise of  
7.1 km s -x standard deviation. The spectl-a of  ten such sets of  data were calculated; 

each set of  data contained a different sequence of quasi-random noise. Table I I  gives 

the percentage heights of  the four nearest aliases to the main period for each of the 
ten spectra. The heights have been standardized by taking the height of  the main peak 

as 100~. In two of the spectra the highest peak is not at the frequency of the true 

period. In those cases the heights of  the peaks normalized by the height of  the highest 

peak are also given (in brackets). For  comparison Table I I  also gives the heights of  

the aliases for noise-free spectra of sine waves with periods of  P~, P2 and Pa. 

There is a good match between spectra ! to 5 and the noise-free spectrum of  the 

correct period, P3. For spectra 6, 7 and 8 the highest peak is still a t / 3 ,  but there is 
little resemblance to the noise-free spectrum of  Pa. The highest peaks for spectra 9 

TABLE II 

Effect of random noise on the spectrum of a sine wffve 
(using u Vir R.V. data) 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

%heights of peaks 

P1 P2 P3 P4 P5 

61 87 100 90 72 
63 88 100 88 65 
58 84 I00 93 75 
58 85 100 91 72 
59 86 100 92 78 
69 92 100 86 67 
55 81 100 98 83 
58 83 100 96 78 
81(80) 101(100) 100(99) 82(81)  63(62) 
40(38) 73(70)  100(96) 104(100) 90(87) 

Noise-free spectra 

Period P1 

Pa 60 
P2 90 
P1 31 

P2 P3 P4 P5 

87 100 90 71 
100 87 61 39 
60 90 100 93 
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and 10 are at P2 and P , ,  respectively. Neither of these spectra has any resemblance 
to its appropriate noise-free spectrum and in both cases the height of the peak at P3 
is only a few percent less than the height of the highest peak. 

From these results the following conclusions can be drawn: 
(i) Even with a low signal to noise ratio (in this case 1.3), there is a reasonable 

probability of a satisfactory match between an observed spectrum and a noise-free 
spectrum. This is in agreement with the predictions of Section 5, which shows that 
due to correlation between noise at different frequencies, noise has less effect on a 
spectrum than could otherwise be expected. 

(ii) I f  there is a satisfactory match between an observed spectrum and a noise-free 

spectrum of period P, then P is the true period. 
(iii) There is a fairly large probability that the highest peak in a spectrum is the 

correct peak, even with a low signal to noise ratio. 

Appendix: Expectation Value of the Product of the Reductions in the 
Sum of Squares due to Noise at Two Frequencies 

Using Equation (2) 

E[ARN(fl) ARN(f2)] = E[(C2(fx) + S2(f~))(CZ(f2) + $2(f2))] = 

= E[C2(f,) C2(f2)] + E[C2(fl) S2(fz)] + 

+ E[S2(fO C2(fz)] + E[S2(fO SZ(f=)]. (A1) 

As shown in Section 4, when dealing with noise from a normally distributed popula- 
tion, with mean zero and variance a 2, each of the C(fO, C(f2), S(fO and S(fz) are 
normal variables with mean zero and variance a 2. The correlation coefficients between 

C(fO and S(fO, and C(f2) and S(fz) are both zero, while the correlation coefficients 

between C(fO and C(f2), C(fO and S(fz), S(fO and C(f2) and S(fO and S(f2) have 

been defined as ecl, c2, ecl, s2, es~, c2 and Osl, s2 respectively. 
Consider the first term on the right-hand side of Equation (A1). For simplicity let 

us put 

x = C(fO/tr, y = C(f2)/a and O = Qcl,c2. 

Then 

g[c2(fl) C2(f2)]~4;fx2y2~(x~y,~)dxdy ~ (A2) 

where g(x, y, ~) is the bivariate normal probability function for variables x and y, 
with zero mean, unit variance and correlation e. Equation 26.3.2 of the Handbook of 
Mathematical Functions (Abramowitz and Stegun, 1964) gives 
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where Z(x) is the normal probability function for a variable with zero mean and unit 
variance. 

Change variables to 

X = x, (A4) 

Then 

y =  y - Q x  
~r - Qz 

x = X, y = (1 - e2)l/2y + OX; 

and, accordingly, 

x2y 2 = ( 1  - -  Q 2 ) X 2 Y  2 + e 2 X  4 "~ 20(1 - O2)t/2X3y. 

The Jacobian of the transformation is given by 

8x 8x 1 0 f 
8 X  ~Y  

J = = = (1 - 0 2 )  ~/2.  

e y  ~y (i e2) 1]2 
8X 8Y Q - 

Using relations (A3), (A4), (A5) and (A6), Equation (A2) becomes 

E[C2(A).C2(A)I=.4ff{(I-e2)X2y~+e~X*+ 
- o o  ~ o o  

+ 2e(1 - O 2 ) ~ / 2 X a Y } Z ( X ) Z ( Y ) d X d Y  = 

= 0"4(1  - -  e 2 + 302), 

since for a normal distribution with zero mean and unit variance 

E(x  2 )=  i ,  E(x 3 ) = E ( x ) = 0  and E(x 4 ) = 3 .  

Thus 

E(C2(f l)  �9 C2(f2)] = a4(1 + 2Q 2) _- 

= a'(1 + 20c21.c), 

as we had put 

Q = ~ca,c2. 

Similarly, 

E[c2(A) s2(f2)] = o~0 + 2o~,,s), 

E[S2(fO C2(A)] = a4(1 + 2es2,,c), 

and 

2 2 E[S2(ft)  $2(f2)] = a4( 1 + esa,s).  

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

(Al0) 
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On substituting Equations (A7) to (A10) in Equat ion (A1), we obtain 

E[ARN( f , )  ARN(f2)] = 4a" + 2a'(a~,,c2 + ~1,s2 + e~l,c= + a},,s2) �9 
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