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bstract

Frequency analyses of EEG data yield large data sets, which are high-dimensional and have to be evaluated statistically without a large number
f false positive statements. There exist several methods to deal with this problem in multiple comparisons. Knowing the number of true hypotheses
ncreases the power of some multiple test procedures, however the number of true hypotheses is unknown, in general, and must be estimated.
n this paper, we derive two new multiple test procedures by using an upper bound for the number of true hypotheses. Our first procedure
ontrols the generalized family-wise error rate, and thus is an improvement of the step-down procedure of Hommel and Hoffmann [Hommel G.,
offmann T. Controlled uncertainty. In: Bauer P. Hommel G. Sonnemann E., editors. Multiple Hypotheses Testing, Heidelberg: Springer 1987;ISBN
540505598:p. 154–61]. The second new procedure controls the false discovery proportion and improves upon the approach of Lehmann and

omano [Lehmann E.L., Romano J.P. Generalizations of the familywise error rate. Ann. Stat. 2005;33:1138–54]. By Monte-Carlo simulations,
e show how the gain in power depends upon the accuracy of the estimate of the number of true hypotheses. The gain in power of our procedures

s demonstrated in an example using EEG data on the processing of memorized lexical items.
 2008 Elsevier B.V. All rights reserved.
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. Introduction

EEG analysis procedures yield large sets of high-dimensional
arameters, which have to be evaluated statistically. Thus there
re m components of the observational vector, which have to be
ested simultaneously. If �-level tests for each single component
r endpoint of the observational vector were used then a large
umber of false positive statements results. However, there exist
everal techniques to cope with this general drawback in mul-

iple comparisons (see, e.g., Hemmelmann et al., 2004, 2005).
raditionally, multiple test procedures are designed to control

he family-wise error rate (FWE). The FWE is the probability of

∗ Corresponding author at: Institute of Medical Statistics, Computer Sciences
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ommitting at least one type I error, i.e., FWE = P(V > 0). Here,
denotes the random number of rejected true hypotheses, i.e.,

f type I errors. In problems with high-dimensional data, the
ontrol of FWE appears to be too strict. The control of gener-
lized family-wise error rate P(V > u), abbreviated as gFWE(u),
.e., the requirement P(V > u) ≤ α for some pre-specified integer

(0 ≤ u < m), is one of the recently proposed criteria for mul-
iple test problems when the number m of hypotheses is large
see, e.g., van der Laan et al., 2004). A further important error
ate is the so-called false discovery proportion, abbreviated as
DP(γ), for some pre-specified γ (0 ≤ γ < 1) which was intro-
uced by Korn et al. (2004) as well as others. The FDP(γ) is given
s P(Q > γ), where Q = V/R if R > 0, and Q = 0, if R = 0, and R

s the random number of rejected hypotheses. The false discov-
ry rate FDR = E(Q), introduced by Benjamini and Hochberg
1995), is also a commonly used error rate. However its control,
.e., E(Q) ≤ α, does not prevent Q from attaining values much

mailto:claudia.hemmelmann@mti.uni-jena.de
dx.doi.org/10.1016/j.jneumeth.2007.12.013
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reater than α in single cases. This is a disadvantage of the FDR
riterion as problems in interpretation may result. Therefore,
e prefer the gFWE and the FDP criterion and we consider only

hese two error rates in this paper. For an overview and a discus-
ion of the different error rates in multiple comparison problems,
ee, e.g., Hemmelmann et al. (2005).

In this paper we propose improvements of two multiple test
rocedures, the gFWE procedure of Hommel and Hoffmann
1987) and the FDP procedure of Lehmann and Romano (2005),
sing an upper bound of the number of true hypotheses. Of
ourse, the number m0 of true hypotheses is unknown in practice,
nd it needs to be estimated. But many approaches have been
roposed for estimating the proportion of true hypotheses, and
ood overviews have been given, e.g., by Broberg (2005), Hsueh
t al. (2003) and Langaas et al. (2005). For our new procedures,
e only rely on an upper bound m∗

0 for the number m0 of true
ypotheses, i.e., ensuring 1 ≤ m0 ≤ m∗

0 ≤ m, and thus does not
iscuss approaches for estimating m0 in detail. It should be noted
hat our procedures require an overestimate of the number of true
ypotheses.

Our paper has the following aims: (a) to introduce the pro-
edures of Hommel and Hoffmann (1987) and Lehmann and
omano (2005), (b) to improve these two methods by using an
pper bound of the number of true hypotheses, (c) to demonstrate
he resulting gain in power by Monte-Carlo simulations, and (d)
o present the use of our new procedures in problems of multi-
le comparisons of coherence values obtained from EEG data
ecorded during the memory encoding of recalled or not-recalled
bstract nouns (Weiss et al., 2000).

The procedures we discuss are not only specific to EEG
ata; they are equally applicable to the large data in MEG and
MRI.

. Methods

.1. Multiple tests

Holm’s (1979) step-down procedure for control of FWE is
ne of the most popular approaches to adjust for multiplic-
ty. The elegance, simplicity, and robustness of this procedure
ave motivated several authors to develop further improvements.
pecifically, Hommel and Hoffmann (1987) and later Lehmann
nd Romano (2005) have derived modified constants for the
tepwise comparison with the p-values which guarantee that the
FWE(u) does not exceed the significance level α for some pre-
pecified integer u (0 ≤ u < m). Lehmann and Romano (2005)
lso modify Holm’s method for controlling the FDP(γ), i.e.
(Q > γ) ≤ α (0 ≤ γ < 1), under special conditions.

It is generally known that the power of FWE methods like
hose of the Bonferroni and Holm type can be improved if the
umber of true hypotheses is known (see, e.g., Hsueh et al.,
003). In a similar way, the power of the gFWE procedure of
ommel and Hoffmann (1987) and of the FDP procedure of

ehmann and Romano (2005) can be increased by utilizing

nformation on the number m0 (m0 ≤ m) of true hypotheses.
hroughout this work, we only consider step-down proce-
ures.
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i
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.1.1. The Hommel and Hoffmann method and its
mprovement

Let H1, . . ., Hm denote the hypotheses to be tested, and let
1, . . ., pm be the corresponding unadjusted p-values obtained
ith some appropriate tests. The ordered p-values and the cor-

esponding hypotheses are denoted by p(1) ≤ p(2) ≤ . . . ≤ p(m)
nd by H(1), . . ., H(m). A step-down procedure compares the
mallest p-value p(1) with α1, p(2) with α2, etc., and continues
ejecting hypotheses as long as their corresponding p-values p(i)
re smaller than or equal to αi. The step-down procedure of
olm (1979) compares the ordered p-values p(1), p(2), . . ., p(m)
ith α1 = α/m, α2 = α/(m − 1), . . ., αm = α. Holm’s procedure

hus controls the FWE, i.e., P(V > 0) ≤ α.
An augmentation of Holm’s method which controls the

FWE(u) for all integers u (0 ≤ u < m) instead of the FWE was
ntroduced by Hommel and Hoffmann (1987). Here, one com-
ares p(i) with:

HH
i =

⎧⎪⎨
⎪⎩

(u + 1)α

m
if 1 ≤ i ≤ u + 1

(u + 1)α

m + u + 1 − i
if u + 1 < i ≤ m

(1)

ow, an upper bound m∗
0 for the number of true hypotheses

uch that 1 ≤ m0 ≤ m∗
0 ≤ m is given. We also assume m∗

0 > u,
therwise one can reject any hypotheses irrespective of its p-
alues, becauseV ≤ m0 ≤ m∗

0 ≤ u, thus P(V > u) = 0. In the case
f m∗

0 ≤ u we recommend a comparison of all p(i) with α. We
an now improve Hommel and Hoffmann’s gFWE procedure as
ollows:

tatement 1. For fixed u ≥ 0 let m∗
0 > u denote a known upper

ound for the number m0 of true hypotheses (1 ≤ m0 ≤ m∗
0 ≤

). Then, the step-down procedure where p(i) is compared with

HHu
i =

⎧⎪⎪⎨
⎪⎪⎩

(u + 1)α

m∗
0

if 1 ≤ i ≤ m − m∗
0 + u + 1

(u + 1)α

m + u + 1 − i
if m − m∗

0 + u + 1 < i ≤ m

(2)

ontrols the gFWE(u). It thus guarantees P(V > u) ≤ α for each
nteger u (0 ≤ u < m).

It is obvious that αHHu
i ≥ αHH

i for all i = 1,. . ., m. The equal-
ty holds for i > m − m∗

0 + u + 1 and for all i if m∗
0 = m. The

ifference will be pronounced if m∗
0 � m.

The proof of Statement 1 is similar to the proof of Theorem
.2 in Lehmann and Romano (2005) and is given in Appendix
.

.1.2. The Lehmann and Romano method and its
mprovement

Lehmann and Romano (2005) proposed a further modi-
cation of Holm’s method which controls the FDP(γ), i.e.,
(Q > γ) ≤ α for any γ (0 ≤ γ < 1) under special conditions.
ne condition is that the p-values of the m0 (m0 ≥ 1) true

ypotheses qk (k = 1, . . ., m0) satisfy the Simes (1986) inequal-
ty, i.e., P(

⋃m0
k=1{q(k) ≤ kα/m0}) ≤ α. We point out that the

imes inequality holds true, e.g., for independent test statis-
ics or for many positively dependent test statistics. Particularly,
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t is fulfilled for multivariate normal distributions and central
ultivariate t distributions with common and nonnegative cor-

elations (Sarkar, 1998).
In the step-down procedure of Lehmann and Romano (2005)

ne compares p(i) with

LR
i = (�γi� + 1)α

m + �γi� + 1 − i
(i = 1, . . . , m), (3)

here �x� is the largest integer ≤x, and the other notation is as
efore. In the special case of γ = 0, these levels are identical to
HH
i given by Eq. (1) with u = 0 and consequently identical to
olm’s.
If an upper bound m∗

0 for the number m0 of true hypotheses is
nown, the procedure of Lehmann and Romano (2005) for the
DP(γ) can be improved as follows:

tatement 2. For fixed γ ∈ [0, 1) let m∗
0 denote a known upper

ound for the number m0 of true hypotheses (1 ≤ m0 ≤ m∗
0 ≤

). Furthermore, suppose that the Simes (1986) inequality holds
or the p-values of the true hypotheses. Then the step-down
rocedure where p(i) is compared with

LRu
i =

⎧⎪⎪⎨
⎪⎪⎩

(�γi� + 1)α

m∗
0

if 1 ≤ m∗
0 ≤ m + �γi� + 1 − i

(�γi� + 1)α

m + �γi� + 1 − i
if m + �γi� + 1 − i < m∗

0

(4)

ontrols the FDP(γ). It thus guarantees P(Q > γ) ≤ α for
≤ γ < 1.

Thus, αLRu
i ≥ αLR

i for all i = 1, . . ., m. The equality holds for
+ �γi� + 1 − i < m∗

0 and for all i if m∗
0 = m. The difference

ill be pronounced if m∗
0 � m.

Furthermore, if one compares αHH
i (Eq. (1)) with αLR

i (Eq.
3)) and αHHu

i (Eq. (2)) with αLRu
i (Eq. (4)) it is clear that these

evels are stepwise identical depending on γ (γ ∈ [0,1)) for suc-
essive u = 0, 1, 2, . . .. For example, for γ = 0.1 the αLR

i and αLRu
i

i = 1, . . ., 9) are identical to αHH
i and αHHu

i (i = 1, . . ., 9) with
= 0, αLR

i and αLRu
i (i = 10, . . ., 19) are identical to αHH

i and
HHu
i (i = 10, . . ., 19) with u = 1, etc. In particular, αLR

1 = α/m

nd αLRu
1 = α/m∗

0 for any γ ∈ [0,1) and these are identical to
HH
1 and αHHu

1 with u = 0 (i.e., equal to Holm’ method), respec-
ively. This is a disadvantage compared to the gFWE methods
or u > 0 where αHH

1 = (u + 1)α/m and αHHu
1 = (u + 1)α/m∗

0.
Lehmann and Romano (2005) also suggest a FDP method

ithout any dependence assumption, and they replace αLR
i by

LR∗
i = αLR

i /(
∑�γm�+1

k=1 k−1). We can thus deduce the following
orollary:

orollary. A step-down procedure with levels αLRu∗
i =

LRu
i /(

∑c
k=1k

−1), where αLRu
i as defined in Eq. (4) and c =

in{�γm� + 1, m∗
0}, controls the FDP(γ) for any γ (0 ≤ γ < 1)

nd for any dependence of the p-values.
Similarly to the proposed gFWE method, one can reject all
hypotheses irrespective of their p-values if m∗

0 ≤ γm, because
/R = m0/m ≤ m∗

0/m ≤ γ , thus P(Q > γ) = 0. However, we
ant to accept null hypotheses with large p-values and thus our

T
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a
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roposed procedures do not utilize this. The proofs of Statement
and its corollary are given in Appendix A.

.2. Simulated data and real data (EEG data)

.2.1. Simulated data
Data were simulated using the following model: Let m1 be the

umber of false hypotheses and thus m = m0 + m1. We generated
-dimensional normal distributed random vectors xj ∼ N(μ, �)

j = 1, . . ., n) with means μ = (μ1, . . ., μm)’, where μi = 1.5 for
= 1, . . ., m1 and μi = 0 for i = m1 + 1, . . ., m and � = (ρik) for
, k = 1, . . ., m. The number m1 of false hypotheses was varied
etween 1 and m − 1. p-Values were calculated from two-sided
ne-sample t-tests, i.e., test the null hypotheses: μi = 0, for each
omponent. We chose n = 8 and m = 100, and we considered
he following cases of constant correlation coefficients: ρik = 0,
ik = 0.2, ρik = 0.5, ρik = 0.8 and ρik = 0.9 for i, k = 1, . . ., m and

= k. The number of replicates was 60,000, and the significance
evel was set to α = 0.05.

.2.2. EEG data
The experimental setup and the methods of EEG analysis

ave been described in detail elsewhere (Weiss et al., 2000;
eiss and Rappelsberger, 2000). In brief, the EEG data are
= 171 coherence values from n = 23 female German native

peakers, see, e.g., Hemmelmann et al. (2005). They auditorily
erceived two wordlists each containing 25 disyllabic abstract
ouns. Participants had to memorize the nouns and they were
sked to recall the words previously encoded immediately after
he presentation of each list. The pairs of electrodes showed dif-
erences in their means of coherence values for the subsequently
ecalled versus non-recalled nouns for the delta1 (1–2 Hz) fre-
uency band.

The goal of our analysis was to identify the electrode pairs
ith significant coherence differences. p-Values were calculated

rom two-sided paired t-tests for each component. For applying
ur new procedures to the EEG data we estimated the upper
ound m∗

0 of the number of true hypotheses by using the per-
utation method of Meinshausen and Bühlmann (2005) with

he quantile bounding function, because this approach ensures
(m∗

0 ≥ m0) ≥ 1 − β for a specified confidence level 1 − β

nder general dependence structures. Applied to our EEG data,
e obtained m∗

0 = 95 for 1 − β = 0.95 with this method.

. Results

.1. Power comparisons

Simulations were performed to demonstrate the increase in
ower gained by our methods, which utilize information on the
umber m0 of true hypotheses. For the FDP method we used
tatement 2. The standard criterion for evaluating test proce-
ures is the average power (Korn et al., 2004; Kwong et al., 2002;

roendle, 2000) which is the expected proportion of rejected
ypotheses among the false hypotheses.

We estimated the average power of the original procedures
nd of our improved procedures for u = 5 and γ = 0.1 with
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Fig. 1. Estimated average power of the original procedure (lower solid line) and our improved procedure with m∗
0 = m0 + m1/2 (. . .), m∗

0 = m0 + m1/4 (–·–·),
m f Mein
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∗
0 = m0 + m1/8 (– – –), m∗

0 = m0 (upper solid line) and m∗
0 of the method o

nd FDP(0.1) (right side) and ρik = 0.5.

ik = 0.5 (Fig. 1). For m∗
0 in formulae (2) and (4), we used the fol-

owing values: m∗
0 = m0, m∗

0 = m0 + m1/8, m∗
0 = m0 + m1/4

nd m∗
0 = m0 + m1/2. In addition, we used the method of

einshausen and Bühlmann (2005) to obtain a further m∗
0. As

xpected, our improvements resulted in a gain in power, and we
btained the maximum gain in power with m∗

0 = m0 assuming
hat m0 ≤ m∗

0 ≤ m (see Fig. 1). This gain increased with increas-
ng m1 and with a decrease of the overestimation of m0. As it
an be seen in Fig. 1, the method of Meinshausen and Bühlmann
2005) also resulted in a gain in power.

.2. Certainty by underestimation of the number of true
ypotheses

Thus far we have considered the gain of power of our pro-
osed procedures if the assumption m0 ≤ m∗

0 ≤ m holds true.
e also explored the case that the assumption m0 ≤ m∗ ≤ m is
0

ncorrect, i.e., the number of true hypotheses is underestimated.
pecifically, we investigated by how much the number of true
ypotheses may be underestimated, where the significance level
eld, i.e., gFWE(u) ≤ α and FDP(γ) ≤ α, respectively. Fig. 2

n

m

b

ig. 2. Estimated gFWE(5) (left side) and FDP(0.1) (right side) for our improved pro
nd incorrectly assumed upper bounds of the number of true hypotheses.
shausen and Bühlmann (2005) (circle) for controlling of gFWE(5) (left side)

hows the error rates for u = 5 and γ = 0.1 with n = 8, m = 100,
0 = 50, and m∗

0 was varied between 5 and m for different
onstant correlation coefficients. The resulting values exceeded
= 0.05 approximately for m∗

0 < 15. Thus, the maximum num-
er of underestimations of m0, abbreviated by MNU, is about
5. The MNU can be defined as formal MNU = max{j = 1, . . .,
0 − 1: m∗

0 = m0 − j whereas gFWE(u) ≤ α and FDP(γ) ≤ α

or the proposed procedures of Statements 1 and 2, respectively}.
Table 1 shows the MNU for other values of m0, u and γ for

he “worst case” of the constant correlation coefficients, i.e., for
he other correlation coefficients the MNU can be larger.

For controlling the gFWE(u), the proportion of the MNU
mong m0 is approximately at least 60% and appears to be inde-
endent of u if u > 0. If u = 0 (identical to Holm’s method) then
o underestimation was allowed (not shown here). Furthermore,
he proportion of the MNU among m0 is not independent of γ

or controlling of the FDP(γ), e.g., in analogy to Holm’s method

o underestimation was allowed for γ = 0.01.

To summarize, we have demonstrated that the assumption
0 ≤ m∗

0 ≤ m may be violated in some cases, and that m0 may
e underestimated by up to 2/3 without violating the significance

cedures for m0 = 50 and different constant correlation coefficients for correctly
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Table 1
List of MNU for the “worst case” of the correlation. The percentages (%) are in parenthesis

m0 = 20 m0 = 50 m0 = 80

gFWE(u) u = 1 12 (60) for ρ = 0.5 31 (62) for ρ = 0.5 51 (63.7) for ρ = 0.5
u = 3 13 (65) for ρ = 0.8 34 (68) for ρ = 0.8 58 (72.5) for ρ = 0.8
u = 5 13 (65) for ρ = 0.9 35 (70) for ρ = 0.8 58 (72.5) for ρ = 0.8
u = 10 12 (60) for ρ = 0.9 33 (66) for ρ = 0.9 56 (70.0) for ρ = 0.8
u = 15 12 (60) for ρ = 0.9 32 (64) for ρ = 0.9 55 (68.7) for ρ = 0.9

FDP(γ) γ = 0.01 0 (0) for ρ = 0 0 (0) for ρ = 0 0 (0) for ρ = 0
γ = 0.03 12 (60) for ρ = 0.5 0 (0) for ρ = 0.2 0 (0) for ρ = 0
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γ = 0.05 13 (65) for ρ = 0.8
γ = 0.1 12 (60) for ρ = 0.9
γ = 0.15 12 (60) for ρ = 0.9

evel. These results were also confirmed by further simulations
ncluding other dimensions of m, or mixed positive and nega-
ive correlation coefficients ρik. Details are available from the
orresponding author. However, we point out that nevertheless
n estimation method which overestimates the number of true
ypotheses with a strong certainty should be used, because mul-
iple test procedures have to be valid for a multitude of parameter
onfigurations. In order to ensure this, test procedures are often
onservative for specific situations. This does not exclude that
hey hold up well in other situations. In these cases, an underes-
imation of the bound might be misleading.

.3. Applications of multiple tests to EEG coherence data

The data we now evaluate are from the experiment described
n Section 2.2.2. For the significance level α = 0.05 Table 2 dis-
lays the number of significant coherence differences for the
riginal gFWE and FDP methods and for the proposed improved
rocedures. For controlling the FDP(γ) we used the method of
tatement 2 again. The FDP method of the corollary is very
onservative and results only in a gain in power compared to the
olm method if the number of false hypotheses is very large.

Of course, the number of rejected hypotheses is small

ith both methods, given that there are at least m − m∗
0 =

6 false hypotheses. Possibly, many coherence differences
etween recalled and non-recalled nouns are too small and

able 2
umber of significant coherence differences when applying the original proce-
ures and the proposed improved procedures with m∗

0 = 95 (α = 0.05)

Original approach New approach

FWE(u) ≤ 0.05
0 6 8
1 9 13
2 12 15
5 15 23
10 25 37

DP(γ) ≤ 0.05
0.01 6 8
0.05 6 8
0.10 6 8
0.15 9 15
0.20 12 18

e
i
S
t
(
t
c
F

4

s
L
i
a
a
e
e
P
u

30 (60) for ρ = 0.5 0 (0) for ρ = 0
36 (72) for ρ = 0.8 25 (31.2) for ρ = 0.2
36 (72) for ρ = 0.8 51 (63.7) for ρ = 0.5

he corresponding variances are too large. But our improved
rocedure yields at least 25% more rejections when control-
ing the gFWE(u) and at least 33% more when controlling the
DP(γ).

As noted in Section 2.1.2 the first levels of the FDP meth-
ds are identical to the first levels of Holm’s method. Therefore,
he FDP methods do not reject more hypotheses than the gFWE

ethods with u = 0 if they do not reject enough hypotheses to
ompare the p-values with the levels in analogy to u = 1. For
xample, the FDP methods with γ = 0.1 cannot reject more
ypotheses than the gFWE methods with u = 0, if the corre-
ponding gFWE method with u = 0 reject less than 9 hypotheses
ecause the first 9 levels are identical. But the 10th levels of
he FDP methods are identical to the 10th levels of the gFWE

ethods with u = 1.
The improved procedure both supports and extends signifi-

ant findings of the original approach. While processing of both
ubsequently recalled and non-recalled nouns elicited higher
oherence at anterior sites, only the recalled nouns were asso-
iated with enhanced coherence between the distant frontal and
osterior (temporal, parietal and occipital) electrodes of both
emispheres. The improved statistical procedure (with u = 1)
mphasizes these findings by showing an additional coherence
ncrease between frontal and temporal/occipital electrode pairs.
pecifically, frontal electrodes are activated, which supports

he well-known role of the frontal cortex in memory processes
Tulving et al., 1994). The improved procedure also stresses
he interhemispheric fronto-temporal coherence increase, which
ould not be found with the original statistical approach (see
ig. 3).

. Discussion

In this article we have described the improvements of the
tep-down procedures of Hommel and Hoffmann (1987) and
ehmann and Romano (2005) for testing multiple hypotheses

f an upper bound m∗
0 for the number m0 of true hypotheses is

vailable. Alternative methods that also control the gFWE(u)
nd the FDP(γ) can be found in Korn et al. (2004), van der Laan

t al. (2004) as well as others. However, the method of Korn
t al. (2004) is based on permutation tests and is very complex.
ossibly, these procedures can be improved in a similar way if an
pper bound m∗

0 for the number m0 of true hypotheses is known.
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ig. 3. View on the top of the unfolded hemispheres with electrodes used (ci
offmann method. Right side: our improved procedure (u = 1, α = 0.05).

owever, more work is needed to address the question of how
hese procedures can be improved.

In this work we assume that m∗
0 ≥ m0 is available. In recent

ears many different estimation methods of m0 have been intro-
uced, e.g., by Benjamini and Hochberg (2000), Nettleton et al.
2006), Schweder and Spjotvoll (1982), Storey (2002), Storey
t al. (2004) and Turkheimer et al. (2001). But these methods
o not ensure that the number of true hypotheses is overesti-
ated. In contrast, the methods of Meinshausen and Bühlmann

2005) and Meinshausen and Rice (2006) are constructed to hold
(m∗

0 ≥ m0) ≥ 1 − β for a specified confidence level 1 − β, i.e.,
hey overestimated the number of true hypotheses. Therefore,
e used the method of Meinshausen and Bühlmann (2005) to

valuate the EEG data. When using this method to compute m∗
0

hen the corresponding error rate was always controlled in our
imulation analysis.

Other methods exist to control the false discovery rate
hich estimate m0 in the first step, for example the method of
enjamini et al. (2006) and the method “significance analysis
f microarrays” of Tusher et al. (2001). In contrast to our proce-
ures, the estimation of m0 is an inherent part in these methods.

We have shown theoretically and by Monte-Carlo simulations
hat our new procedures are more powerful than the original pro-
edures by Hommel and Hoffmann (1987) and Lehmann and
omano (2005) if m∗

0 � m. Furthermore, we have illustrated
y an example using EEG data that our proposed procedures
eject more hypotheses than the original procedures. It could be
hown that the coherence difference between recalled and non-
ecalled nouns is emphasized by additional significant coherence
hanges. In particular, an increased relationship between sig-
als at right frontal and left temporal electrodes is indicated
y our method. Frontal and temporal regions have frequently

een shown to be involved with memory formation of words
Wagner et al., 1998). Thus, the improved statistical procedure
llows us to detect additional coherence changes important for
he interpretation of cognitive findings.

(
r
w
(

and lines denoting significant coherence differences. Left side: Hommel and
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ppendix A

Let q(1) ≤ . . . ≤ q(m0) denote the ordered p-values of the m0
rue hypotheses.

roof of Statement 1. No proof is required for m0 < u + 1.
herefore, we consider m0 ≥ u + 1. Let j be the smallest random

ndex satisfying p(j) = q(u+1), so u + 1 ≤ j ≤ m − m0 + u + 1. With
HHu
i of Eq. (2), we have gFWE(u) = P(V > u) = P(p(1) ≤
HHu
1 , . . ., p(j) ≤ αHHu

j ) ≤ P(P(j) ≤ αHHu
j ) for the step-down

rocedure. Thus, we only need to consider p(j) ≤ αHHu
j . The

ollowing case differentiation for j is the only modifica-
ion of the proof of Theorem 2.2 in Lehmann and Romano
2005).

Case 1: let u + 1 ≤ j ≤ m − m∗
0 + u + 1.

It follows q(u+1) = p(j) ≤ αHHu
j = (u + 1)α/m∗

0 ≤ (u +
1)α/m0.

Case 2: let m − m∗
0 + u + 1 < j ≤ m − m0 + u + 1.

It follows q(u+1) = p(j) ≤ αHHu
j = (u + 1)α/(m + u +

1 − j) ≤ (u + 1)α/m0.

n both cases p(j) ≤ αHHu
j implies q(u+1) ≤ (u + 1)α/m0, so that

FWE(u) ≤ P(q(u+1) ≤ (u + 1)α/m0). Hommel and Hoffmann

1987) and Lehmann and Romano (2005) (proof of Theo-
em 2.1(i)) have shown gFWE(u) ≤ m0α/m when m hypotheses
ere tested using a single-step method with constant levels

u + 1)α/m. Thus, gFWE(u) ≤ α when replacing α by αm/m0,
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.e., using constant levels (u + 1)α/m0. We therefore finally have
(q(u+1) ≤ (u + 1)α/m0) ≤ α. �
roof of Statement 2 and of Corollary. The proof
f Statement 2 is a direct consequence of Lehmann
nd Romano (2005) (proof of Theorem 3.2). The
ange of γi (0 ≤ γ < 1; 1 ≤ i ≤ m) is divided into γi < 1,
≤ γi < 2, . . ., �γm� ≤ γi < �γm� + 1. Let j ≤ m be

he smallest random index where the proportion of
alse rejections Q exceeds γ for the first time. Then:
(j) ≤ αLRu

j , H(j) is true and �γj� + 1 ≤ m0. We thus have
DP(γ) = P(Q > γ) ≤ P({γj < 1}∪{1 ≤ γj < 2}∪. . .∪{b − 1 ≤ γj
b}) with b = min{�γm� + 1, m0}.
Let k − 1 ≤ γj < k for any k ∈ {1, . . ., b}. Then p(j) = q(k) ≤

LRu
j because (k − 1)/j ≤ γ and k/j > γ . This implies that H(j)

s the kth rejected true hypothesis, and k ≤ j ≤ m − m0 + k. We
onsider the case differentiation for j in analogy to the proof of
tatement 1.

Case 1: let k ≤ j ≤ m − m∗
0 + k, thus m∗

0 ≤ m + k − j =
m + �γj� + 1 − j and, according to Eq. (4), q(k) = p(j) ≤
αLRu

j = (�γj� + 1)α/m∗
0 ≤ kα/m0.

Case 2: let m − m∗
0 + k < j ≤ m − m0 + k, thus m0 ≤ m +

�γj� + 1 − j < m∗
0 and, according to Eq. (4), q(k) = p(j) ≤

αLRu
j = (�γj� + 1)α/(m + �γj� + 1 − j) ≤ kα

m0
.

ext, k − 1 ≤ γj < k implies q(k) ≤ kα/m0 for any k ∈ {1,
. ., b}, so that FDP(γ) = P(Q > γ) ≤ P({γj < 1} ∪ {1 ≤ γj <

} ∪ . . . ∪ {b − 1 ≤ γj < b}) ≤ P(
⋃b

k=1{q(k) ≤ kα/m0}).
The step-down procedure with αLRu

i from Eq. (4) thus con-
rols the FDP(γ) by α if the Simes inequality is true for the
-values q1, . . . , qm0 of the m0 true hypotheses.

Furthermore, the inequality of Hommel (1983)
(
⋃m0

k=1{q(k) ≤ kα/m0}) ≤ α
∑m0

k=1k
−1 and its general-

zation by Lehmann and Romano (2005) P(
⋃s

k=1{q(k) ≤
k}) ≤ m0

∑s
k=1(βk − βk−1)k−1 with any s ≤ m0, and

= β0 ≤ β1 ≤ . . . ≤ βs ≤ 1 hold for any dependency of qk
or k = 1, . . ., m0. From b = min{��m� + 1, m0} it fol-
ows P(

⋃b
k=1{q(k) ≤ kα/m0}) ≤ m0

∑b
k=1(kα/m0 − (k −

)α/m0)k−1 = α
∑b

k=1k
−1 ≤ α

∑c
k=1k

−1 which completes the
roof of the corollary. �
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