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1 Brief Review
In the previous lecture we discussed sequence alignment algorithms. Specifically we used the divide and conquer
method to come up with a space efficient approach to sequence alignment. Finally we explained how our algorithm
can be modified to enable local alignments.

2 Motivation
In our discussion of sequence alignment algorithms we assumed we have a given set of scoring rules for generating
the alignment. Today we will discuss a way for generating these scoring rules. More specifically, cosidering weight
functions σ : Σ+ × Σ+ → <

The choice of σ will influence greatly the results. If we were to take evolution into account, what can we learn
from it ?

Example 2.1 Malaria The malaria genome is 80% AT, does this influence our decision ? Will an A-A match get the
same score as G-G ? 40% of the genome is A or T and only 1-% is G or C, thus we must take the proir into account.

3 Decision making problem

3.1 Example
Let’s say I own an orchard (”Pardes”) and I would like to tell my orange sorting machine which oranges it should ship
to Europe and which to Israel. I will try to rely on the color of the peel and decide if it’s a good orange. I have the
following data:
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If I want to find the threshold I need a decision rule: h : x→ −1,+1

Where x is the color, -1 is a bad orange and +1 is a good one.

Definition 3.1 α(h) = P−(x : h(x) = +1)
In words: the probability of objects I classified as good (+1) to be bad (-1).

And we will define β(h) = P+(x : h(x) = −1)
which is the probability of objects I classified as bad (-1) to be good (+1).

Definition 3.2 We say that h1 dominates h2 if h1 is always better that h2, that is either:

• α(h1) < α(h2) ∧ β(h1) ≤ β(h2) Or:

• α(h1) ≤ α(h2) ∧ β(h1) < β(h2)

If the inequalities differ between α and β, it’s harder to answer. We will therefore try to come up with a rule that tells
us which is better h1 or h2.

3.2 Pareto Optimality

The boxed points represent feasible choices (decision rules), and smaller values of α and β are preferred to larger
ones. Point h3 is dominated by both point h1 and point h2. Points h1 and h2 are not strictly dominated by any other,

and hence lie on the curve. (This is called a Pareto Frontier, From Wikipedia:
http : //en.wikipedia.org/wiki/Pareto efficiency).

The following statistics lemma gives us an interesting result:

Lemma 3.3 (Neyman-Pearson) - h is undominated iff
∃t s.t. h(x) = sign(log P+(x)

P−(x) − t) where t is an offset.

The lemma states that the optimality line is defined by rules that follow this condition, meaning that you don’t need to
look at other rules. We should use rules of the format of log ratio of P+ and P−.

4 Back to sequence alignment
We will now suggest a P+, P− model for the sequence alignment algoritm, in order to simplify our discussion we will
assume the alignment is gap-less.
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4.1 Building the model
Lets assume we can divide our analysis of the problem into two disjoint complimentary occurrences:

1. M - The sequences are evolutionarly related P(~x, ~y|M)

2. R - The sequences are unrelated P(~x, ~y|R)

Lets consider the latter case first.
We will assume that the value of a given position is independent of adjacent positions in the sequence.
In addition, when the sequences are unrelated (R), we can assume that ~x, ~y at any position are independent of each
other (i.e.:∀i, P (xi, yi|R) = P (xi|R)P (yi|R)).1

In other words, for any position i, both xi yi are sampled independently from some background distribution P0.
So that the likelihood of the given ~x, ~y to be unrelated is:

P (~x, ~y|R) = P (~x|R)P (~y|R) =
n∏
i=1

P0(xi)P0(yi) (1)

In the first case above, we assume the two sequences are related, so they evolve from a common ancestor. For
simplicity we will continue assuming that each position i in (xi, yi) is independent of the others. So we assume xi,yi
are sampled from some distribution P1 of letter pairs. The probability that any two letters (”a”, ”b”) evolved from the
same ancestral letter is p(a, b). So the likelihood of the given ~x ~y, under this model is:

P (~x, ~y|M) =
n∏
i=1

P1(xi, yi) (2)

4.2 A decision problem
So once again we have stumbled across a decision problem. Given the two sequences ~x, ~y we have to decide whether
they are sampled from M (Model=related) or from R (Random=not related). We want to construct a decision procedure
D(~x, ~y) that returns M or R. Basically we want to compare the likelihood of our data in both models.
First, lets notice that our decision procedure can make either one of two error types (same as before):

• Type I - ~x, ~y are sampled from R but D(~x, ~y = M)

• Type II - ~x, ~y are sampled from M but D(~x, ~y = R)

The probabilities of such errors are also defined (also the same):

• α(D) = P(D(~x, ~y) = M |R)

• β(D) = P(D(~x, ~y) = R|M)

We would of course favor a procedure which minimizes both error types. Using the Neyman-Pearson lemma, let us
look at the following equation:

P(~x, ~y|M)
P(~x, ~y|R)

=
∏
i P1(xi, yi)∏

i P0(xi)P0(yi)
=

∏
i

P1(xi, yi)
P0(xi)P0(yi)

(3)

Or for convenience, by taking a logarithm from both equation sides, of the form:

log
P(~x, ~y|M)
P(~x, ~y|R)

= log
∏
i P1(xi, yi)∏

i P0(xi)P0(yi)
=

∑
i

log
P1(xi, yi)

P0(xi)P0(yi)
(4)

This expression tells us that we need to take the prior probabilities (P0) into account. Now we can define our
scoring rule matrix as follows:

σ(a, b) = log
P1(a, b)

P0(a)P0(b)
1Why can we make this assumption? Every thing in biology tells us otherwise.
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4.3 Parameter Estimation
If we could estimate the probabilities P1 and P0 from our data we would have our scoring matrix σ.
We will discuss parameter estimation through an example:
Let’s take the following i.i.d. samples x1, x2, ..., xn ∼ Pθ we would like to learn about Pθ(X = x) = θx where θ is a
probability vector (θx ≥ 0,

∑
x θx = 1).

Likelihood = `(~θ) = P (D|θ) = log(
∏
i

Pθ(xi)) =
∑
i

log(Pθ(xi)) =(∗)
∑
x

Nxlogθx

* = Nx =
∑
i 1{Xi = x}. That is, Nx is the number of times I saw x in the sample.

Definition 4.1 Sufficient Statistic : S(D) is a sufficient statistic if

S(D) = S(D′)⇒ ∀θPθ(D) = Pθ(D′).

In words, S keeps all the necessary information on the data to compute the likelihood. We’ll usually be interested in
the minimal set of sufficient statistics.

We would like to generalize a process of finding an estimator. one method is the MLE - Maximum Likelihood Esti-
mator.

4.4 MLE - Maximum Likelihood Estimator
We mark the estimator θ that will maximize L(θ), as θ̂ = arg maxθ `(θ). To find θ̂ we need to:

1. Calculate the likelihood function L.

2. Find a maximum for the likelihood function.

So how do we find the maximum of our likelihood function? By finding where ∂`
∂θ = 0.

In our example we’ll get:
∂`

∂θ
=

∂

∂θx

∑
x

Nxlogθx =
Nx
θx

=! 0⇒???

We have reched a dead end, we can’t conclude θ̂ from this equation. This brings us to the development of a Lagrangian.

4.5 Langrange Multipliers (aka Coefficients)
When we have a problem of optimization of f(x) but we have some constraint C(x) = 0, we will define a new
Lagrangian function

J(x, λ) = f(x)− λc(x)

and we will want to show that when the partial derivative of x and λ is zero - the constraint is satisfied and we are in
stationary point. This means we solved the original problem.

When we take a partial derivative of λ,
∂J

∂λ
= C(x) =! 0

and compare to zero, our constraint is satisfied and when we take a partial derivative of x

∂J

∂x
=
∂f(x)
∂x

− λ∂c(x)
∂x

=! 0⇒ ∂f(x)
∂x

= λ
∂c(x)
∂x

we find the optimum.
We showed that the derivation according to x of f(x) is a linear combination of the gradients of the constraints -

we are in a point on the line of the constraint, where you can go no further, in the direction of f(x) (if we are going
on the line of the constraint as long as we go transversally to the contour line of f(x) we are going ’uphill’, but when
we touch it tangentially we can go no further - ’top of the hill’. We know we got to this point when the two derivatives
are the same).
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Figure 1: Drawn in green is the locus of points satisfying the constraint g(x, y) = c. Drawn in blue are con-
tours of f . Arrows represent the gradient, which points in a direction normal to the contour.(from Wikipedia
http : //en.wikipedia.org/wiki/Lagrange multipliers)

4.6 back to MLE

θ̂ = arg max
θ
`(θ)

where C (the constraint) is ∑
x

θx − 1 = 0

so we get
J(~θ, λ) =

∑
x

Nxlogθx − λ(
∑
x

θx − 1)

taking the partial derivative using θx we get

∂J

∂θx
=
Nx
θx
− λ =! 0

so we get

λ =
Nx
θx
⇒ θx =

Nx
λ

(5)

taking the partial derivative using λ we get

∂J

∂λ
= 1−

∑
x

θx =! 0⇒
∑
x

θx = 1 (6)

now, using results (5) and (6) we get ∑
x

Nx
λ

= 1⇒ λ =
∑
x

Nx

using (5) again we now conclude that

θx =
Nx∑
xNx

this result corresponds to our intuition about the likelihood of the data.
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