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Abstract. Based on the theory of spectral estimation we pro-
pose anew algorithm that is capable to produce the whole variety
of possible non deterministic linear time series which exhibit a
(1/ f)P spectrum. The key point of the new algorithm is to ran-
domize both the phase and the amplitude of the Fourier trans-
form of the data according to its stochastic nature. One possible
application is the simulation of AGN lightcurves as well to an-
alyze measured data as to test proposed models.
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1. Introduction

A common phenomenon of Active Galactic Nuclei, which pre-
sumably harbor supermassive black holes with masses of 106 —
109M® (Rees 1984), is the strong variability that can be seen
in the observed X-ray lightcurves. This variability is often de-
scribed as flickering or 1/ f fluctuation (Lawrence et al. 1987).
The 1/ f term describes the distribution of power as a function
of frequency in the power spectrum (power density function). A
white noise process would generate a curve with constant power
in the spectrum, random walk noise would show a (1/f)? dis-
tribution. The presence of 1/f fluctuation has also been noted
in stellar mass black-hole candidates (Mineshige et al. 1994).
Due to spectral leakage in the Fourier transform — caused by
gaps in the observed lightcurve — it is often not possible to de-
rive the characteristics of the present fluctuation from the power
spectrum. Therefore, it is necessary to simulate X-ray time se-
ries of AGN either to judge the data in a correct manner or to
apply other methods to quantify the time variability. A com-
mon approach to explain the observed variability is the random
superposition of elementary luminosity bursts generated in the
accretion processes. If superposed bursts are varied in amplitude
and shape a lightcurve similar to 1/ f fluctuations can be created
(Lehto 1989). Such a simulation can only yield an estimate of

an actually observed variability. Thus the flickering may not be
produced by a superposition of bursts, but by a self organised
critical system oscillating at the balance of the accretion rate
with radiation pressure (Mineshige et al. 1994). Nevertheless it
is very difficult to single out physical features which motivate
any particular scenario (Begelman et al. 1991).

One way to generate data that exhibit a power law spectrum
S(f) ~ 1/ )8 is given in equation (1). In the following the
frequency term w = 27 f will be used.

z(t) ~ ) V/5W) cost — () M

where ¢(w) € [0,2n] is a random phase (Done et al. 1992).
Note that this procedure chooses a deterministic amplitude for
each frequency and only randomizes the phases. All simulated
lightcurves will exhibit a trend caused by the dominating lowest
frequency.

In this article we show that the time series produced by this
algorithm is only a subset in the set of all possible time series
showing the desired spectrum. To do this, we will briefly review
some results of the theory of linear stochastic time series in the
following section and introduce a new algorithm to generate
data with a power law noise in Sect. 3.

2. Mathematical background

There is a fundamental difference between the spectra of peri-
odic, i.e. z(t +T') = z(t), and nonperiodic processes. “Nonperi-
odic” denotes chalotic as well as (linear and nonlinear) stochastic
processes. The spectra of periodic processes show a finite num-
ber of peaks, one in the linear case, several higher harmonics
in the nonlinear case. The spectra of nonperiodic processes are
smooth functions of w. The behaviour of the spectra of linear
stochastic processes is completely understood and some of the
results are also applicable to nonlinear stochastic and even to
chaotic processes.

In this section we will summarize a main result of the theory
of linear stochastic processes. This result is the basis for the new
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algorithm to generate power law noise which we will present in
the next section.
We will start with some definitions:

— The autocovariance function (ACF) is defined as:

ACF(1) =<z()z({t+71) >=
N-—71
]}Enw% ; o(t) z(t +7) , )

— The spectrum is defined as the Fourier transform of the ACF:
i
N .
Sw) =Y ACF(t)e ™" 3
t=1
— The periodogram is the squared modulus of the Fourier
transform of the data:

1 .

Per(w) = N' ;x(t)e wwt|2 4

The notions “spectrum”, “periodogram” and “Fourier trans-
form” are often mixed up in the literature. Here, we follow the
conventions of Priestley (1989). It should be stressed that the
spectrum and the ACF as defined above are quantities that are
related to the underlying process and are not related to a realiza-
tion of the process. On the other hand, the periodogram is related
to each new realization and the relation between the spectrum
and the periodogram is the important point to be discussed now.

We will start this discussion with the white noise process
and outline the straightforward generalizations to non trivial
processes afterwards.

A normal distributed white noise process

z(t) = €(?),

with mean zero and variance o? is characterized by the ACF:

e(t) ~ A0, 02) (%)

ACE(7) = 6% §(7) ©)]

Thus, the spectrum as the Fourier transform of the ¢ function
is a constant:

S(w) =o? )

The Fourier transform f(w) of a realization of this process
written as real and imaginary part is given by

flw) = \/LN Xt: z(t) cos(wt) + i 71_1\7 Xt: z(t) sin(wt)  (8)

A main result of the theory of spectral estimation (Priestley
1989) is that f(w) is a complex gaussian random variable

F@) = A0, 35N +i.4 0, 35@) ©

whose variance does not depend on the number of data
points. These random variables are uncorrelated for different
frequencies:

< fwy) f(LUj) > = const 5¢j (10)
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The periodogram is given by:

Per(w) = |f(W)|?

2
= —]1V (E x(t) cos (wt)) +

t

2
% (Z 2(t) sin (wt)>

t

an

and as the sum of two squared gaussian distributions follows
a x2 distribution with two degrees of freedom x3:
1
Per(w) ~ ES(w)xg (12)
again independent of N.
Since the mean and the variance of x3 are two and four

respectively, the standard deviation of the periodogram is equal
to the mean, i.e.

Per(w) = S(w) + S(w) (13)

Thus the periodogram is fluctuating wildly and its variance
is independent of N, the number of data points, Per(w) is not a
consistent estimator of the spectrum since its variance does not
decrease with N. These results not only hold for linear stochastic
processes but also for nonlinear stochastic and even for most
chaotic processes.

For linear stochastic processes the spectrum and the peri-
odogram are obtained by multiplying the results for the white
noise process by the filter function — here: a power law — that
describes the process. For these processes the variance of the
complex random variable f(w) in Eq.(9) becomes frequency
dependent and is determined by the spectrum. Equation (13)
remains valid. This is also true for nonlinear stochastic pro-
cesses and even for most chaotic processes. For these processes
Eq. (10), i.e. the orthogonality of different Fourier components,
does not hold in general.

To summarize the results with respect to the simulation prob-
lem of power law noise:

The standard method of generating these time series accord-
ing to Eq. (1) reflects only one part of the stochasticity of the
Fourier transform of nonperiododic processes, namely the ran-
domness of the phases. Choosing the amplitudes equal to the
square root of the spectrum, it does not take into account the
randomness of the periodogram according to the x3 distribu-
tion. In order to create power law time series it is necessary to
allow randomness both in phases and in amplitudes.

3. A new algorithm to simulate power law noise

The new algorithm is based on Eq. (9), which connects the de-
sired spectrum with the variance of the complex random variable
fw).

The algorithm is defined by the following steps:

— Choose a power law spectrum S(w) ~ (1 /w)ﬂ .
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Fig. 1. a Simulated flicker noise lightcurve (6=1.0, N=1024). b Cor-
responding spectrum and periodogram. The time and counts units are
arbitrary

— For each Fourier frequency w;, draw two gaussian dis-

tributed random numbers, multiply them by 4/1S(w;) ~

a /w)ﬁ/ 2 and use the result as the real and imaginary part
of the Fourier transform of the desired data.

— In the case of an even number of data points, for reason of
symmetry f(wnyquist) is always real. Thus only one gaus-
sian distributed random number has to be drawn.

— To obtain a real valued time series, choose the Fourier com-
ponents for the negative frequencies according to f(—w;) =
f*(w;) where the asterisk denotes complex conjugation.

— Obtain the time series by backward Fourier transformation
of f(w) from the frequency domain to the time domain.

Due to the fact that Fast Fourier Techniques can be used to
evaluate the lightcurve, this new algorithm is even faster than
the deterministic method described in Eq. (1).
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Fig. 2. a Simulated random walk noise lightcurve (8=2.0, N=1024). b
Corresponding spectrum and periodogram. The time and counts units
are arbitrary

4. Discussion

Using this algorithm the full variety of possible time series
showing the same spectrum can be explored. Especially, in case
of flicker noise (Fig. 1) where the first frequency bin contributes
the largest part of the variance, this algorithm ensures that the
first frequency bin does not dominate the time series in a deter-
ministic manner, but according to its natural fluctuations.
Choosing (3=2.0 for the simulation, a random walk
lightcurve is genérated (Fig.2). Compared to the flicker noise
lightcurve such a random walk curve is dominated by longer
timescales. Figure 3 presents a real X-ray lightcurve of the
Seyfert Galaxy NGC 5506 as observed by EXOSAT in
1986. The corresponding spectrum shows a slope of 1.8+0.3
(Lawrence & Papadakis 1993) indicating the numerical relation
to random walk noise. In contrast to this the naked eye would
classify the observed variability more likely as flicker noise
(McHardy & Czerny 1987). This reveals the main problem of
estimating the slope of the spectrum: Its evaluation depends on
the chosen frequency regime in which the fit of the slope fit is
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Fig. 3. a X-ray lightcure (detail) of NGC 5506 (EXOSAT-ME
Jan./1986). b Corresponding periodogram. The flattening at low fre-
quencies is here due to the finite observation length

done. According to this, the algorithm is a good tool to judge
the method used to compute the slope of the spectrum.

Another application of the presented algorithm is the proper
estimation of 1o—errors by Monte Carlo simulations in period
searches using epoch folding techniques. Using Eq. (1) to gen-
erate the non deterministic part of a periodic lightcurve the 10—
error of the related distribution of the estimated periods is under-
estimated significantly. In the case of the cataclysmic variable
RXJ1940.1-1025 the period search employing simulated data
with Eq. (1) yields an error of £3 sec (Done et al. 1992). If the
new algorithm is applied, the resulting 1o—error is about 5 to 10
times larger.
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