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Pathological tremors exhibit a nonlinear oscillation that is not strictly periodic. We investigate
whether the deviation from periodicity is due to nonlinear deterministic chaotic dynamics or due to
nonlinear stochastic dynamics. To do so, we apply various methods from linear and nonlinear time
series analysis to tremor time series. The results of the different methods suggest that the considered
types of pathological tremors represent nonlinear stochastic second order processes. Finally, we
evaluate whether two earlier proposed features capturing nonlinear effects in the time series allow
for a discrimination between two pathological forms of tremor for a much larger sample of time
series than previously investigated. © 2000 American Institute of Physics.
@S1054-1500~00!01801-2#

The field of nonlinear dynamics introduced the fascinat-
ing idea that an apparently random behavior of a time
series might have been generated by a low-dimensional
chaotic deterministic dynamical system. For time series
of two types of pathological tremor, we investigate if the
underlying dynamics should be regarded as chaotic or
nonlinear stochastic oscillatory processes. The key ques-
tion for a distinction is the order of the process. Chaotic
processes are of at least third order, while nonlinear sto-
chastic oscillatory processes can be of second order. We
apply five time series analysis methods from nonlinear
dynamics to determine the order of the processes and
decide if the dynamics is deterministic or stochastic.

I. INTRODUCTION

Tremor denotes an involuntary oscillation of parts of the
body. It is the most frequent movement disorder, see Refs. 1
and 2 for recent reviews on tremor. Tremor time series span
a large range of different dynamical behaviors. The physi-
ological tremor of healthy subjects represents a linear second
order stochastic process driven by white noise originating
from uncorrelated firing motoneurons.3,4 The enhanced
physiological tremor can either be described by a stochastic
linear second order process driven by colored noise or a non-

linear stochastic delay differential equation depending on the
degree of the contribution of a central pacemaker or of
reflexes.5,6

Pathological tremors like essential and Parkinsonian
tremor exhibit a nonlinear oscillation. The oscillation is not
strictly periodic. There are at least three possible reasons for
the deviation from a strictly periodic, limit cycle type of
dynamics. First, deterministic chaos can be a source of ap-
parently random behavior. Therefore, the processes have to
be at least of third order. Second, the processes might be
nonlinear stochastic oscillators, described by a second order
differential equation with dynamical noise which is assumed
to be additive. Third, the variability may result from nonsta-
tionarity in terms of time dependent parameters of the pro-
cess. Formally, such processes could be described by high-
dimensional dynamical systems.7,8

To investigate whether a second order stochastic, a third
order deterministic or a high-dimensional process underlies
the measured time series, we apply various methods from
linear and nonlinear dynamics to time series recorded from
patients suffering from essential and Parkinsonian tremor.
Spectral analysis confirms the visual impression from the
data that the processes represent a nonlinear oscillation that
is not strictly periodic. The analysis of the local slopes of the
correlation integrals,9 Poincaré sections and return maps give
no evidence for a low dimensional deterministic dynamics.
The analysis of the local divergence of nearby trajectories10

suggests a stochastic dynamics. ‘Deterministic versusa!Corresponding author: electronic mail: jeti@fdm.uni-freiburg.de
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stochastic’—plots11 and the d2e method12 support the hy-
pothesis that the processes are of second order and obey a
nonlinear stochastic dynamics. Over all, the results suggest
that the considered pathological tremors represent a nonlin-
ear stochastic process of second order with additive dynami-
cal noise. Here, we only present the results for one essential
and one Parkinsonian tremor time series. Qualitatively iden-
tical and quantitatively similar results were obtained for a
larger set of time series. The complete set of 10 time series is
available at the WWW-address given in Sec. VII.

For medical data, it is a challenge to support the clinical
differential diagnosis by time series analysis. To this aim
features have to be extracted from the time series that capture
different dynamical properties of different diseases. Promis-
ing results of such an attempt for pathological tremor data
have been reported in Refs. 13 and 14 based on 15 time
series of essential tremor and 25 time series of Parkinsonian
tremor. We apply the features to a set of 75 essential tremor
and 112 Parkinsonian tremor time series to evaluate whether
the former result is reproducible for a larger sample. The
results are disappointing. We discuss the reason for this.

The paper is organized as follows. In the following sec-
tion, we introduce the tremor data used in the further inves-
tigations and give the results of their spectral analysis. In
Sec. III we discuss the stochastic van der Pol oscillator. We
will use this process in the following sections to investigate
the behavior of the considered algorithms in the presence of
a nonlinear, stochastic second order oscillatory process. In
Sec. IV we discuss and apply various methods from nonlin-
ear dynamics to the data. In Sec. V we give the results of a
classification of essential tremor and Parkinsonian tremor
based on earlier proposed features using a larger set of time
series.

II. THE DATA AND THEIR SPECTRA

The time series are recordings of the acceleration of the
hand measured by piezoresistive accelerometers attached to
the dorsum of the out-stretched hand. The sampling rate is
1000 Hz. The data are recorded for 30 s yielding time series
of length 30.000. For the analysis the time series were nor-
malized to zero mean and unit variance. The time series were
selected from a large sample with respect to two criteria.
Since the performance of most time series analysis methods
decreases with decreasing signal to noise ratio, we chose
time series with a large signal to noise ratio. Since our goal is
to decide between second order stochastic, third order deter-
ministic or a high-dimensional nonstationary process, sec-
ond, we chose time series that do not exhibit obvious non-
stationarities like drifts and abrupt changes in amplitude or
frequency. Such behaviors are usually caused by the record-
ing technique or by disturbances and interruptions by the
patient. All the remaining variability of the time series is
regarded as part of the dynamics. The variability of the cho-
sen time series is typical for the two forms of pathological
tremors.

Figure 1 shows two segments of the data for the essential
and Parkinsonian tremor time series. The smooth behavior of
the time series indicates that the amount of observational

noise is rather small for these type of data in contrast to data
recorded from physiological tremor, see Ref. 4 for an ex-
ample. Figure 2 shows the time series embedded in a three
dimensional phase space following Taken’s theorem.15 As
delay time t we choose the first zero-crossing of the autocor-
relation function. This results in t552 sampling units for the
essential tremor and t554 for the Parkinsonian tremor time
series. This delay time is identical to the delay time given by
the first minimum of the mutual information.16 This is not
unexpected for oscillatory time series of the type considered
here.17

FIG. 1. Representative segments of the normalized time series. ~a! Essential
tremor, ~b! Parkinsonian tremor.

FIG. 2. Embedding of the time series in the reconstructed phase space. ~a!
Essential tremor, embedding delay t552 sampling units. ~b! Parkinsonian
tremor, embedding delay t554 sampling units.
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Figure 3 shows the estimated spectra based on the time
series shown in Fig. 1. The estimation was based on smooth-
ing the periodogram of the data, see Ref. 18 for details. The
higher harmonics in the spectra indicate that the processes
underlying the time series are not linear processes, but some
kind of nonlinear oscillators.19,20 The broadness of the peaks
in Fig. 3 together with the time domain behavior displayed in
Figs. 1 and 2 show that the processes are not ~nonlinear!
deterministic limit cycles, i.e., deterministic processes of or-
der two. The deviation from a limit cycle type of behavior is
the starting point for the following investigations. Apart from
the trivial explanation that the tremors represent some non-
stationary, effectively high-dimensional process, there are
two possible alternatives that would be more distinctive: the
variability can be caused by a deterministic chaotic process
or by a nonlinear stochastic oscillator. The first alternative
requires a third order dynamics; the second one a second
order stochastic dynamics. Of course, more complicated dy-
namics might govern the time series, but we aim to identify
the most economical description consistent with the data.

III. SIMULATED PROCESSES

Even linear stochastic processes of second order can pro-
duce a significant amount of variability in amplitude and
frequency of the time series, see Fig. 1 in Ref. 8 for an
example. Since we are dealing with nonlinear processes here,
we use the stochastic van der Pol oscillator as an example of
a nonlinear stochastic oscillator to evaluate the behavior of
the below applied algorithms.

The van der Pol oscillator:21

ẍ5m ~12x2! ẋ2x , m.0, ~1!

exhibits a stable limit cycle due to the amplitude dependent
change of the sign of the damping term. We expose it to a
random force of unit variance, leading to

ẋ15x2 , ~2!

ẋ25m ~12x1
2! x22x11e , ~3!

where x1 denotes the location and x2 the velocity. Charac-
teristic properties of the stochastic van der Pol oscillator and
related perturbed limit cycles have been investigated in Refs.
22 and 23.

The integration of a stochastic differential equation like
Eqs. ~2! and ~3! is not straightforward. This is due to the
mathematical problems of evaluating integrals which involve
the dynamical noise e, see Ref. 24 for a brief introduction
and Ref. 25 for a detailed discussion. Applying the same
ideas underlying higher order integration schemes for deter-
ministic differential equations like Runge–Kutta26 to sto-
chastic differential equations leads to hardly treatable sto-
chastic integrals given in Ref. 27. Thus, only low order
integration schemes can be used. The lowest order so-called
Euler-scheme for Eqs. ~2! and ~3! is given by

x1~ t1dt !5x1~ t !1dt x2~ t !, ~4!

x2~ t1dt !5x2~ t !1dt ~m ~12x1
2~ t !! x2~ t !2x1~ t !!

1Adt e~ t !. ~5!

In practice the necessity of using a low order scheme means
that the integration step size dt is usually much smaller than
the sampling interval Dt by which the time series is re-
corded. Here, we use dt50.001 and Dt50.05. The chosen
sampling time Dt leads to a number of data points per mean
period that is comparable to the respective number in the
tremor data. The total number of simulated data points
equals the number of data points in the measured data.

For examining the algorithms in presence of a chaotic
process we use the Lorenz system28 with parameters s510,
b58/3, and r528, integrated by the fourth order Runge–
Kutta method and sampled with Dt50.01. Neither the van
der Pol oscillator nor the Lorenz system are considered as
possible models for pathological tremors. They serve as ex-
amples for the two possible types of dynamics, nonlinear
second order stochastic dynamics and chaotic deterministic
dynamics of third order. The simulated data are used to in-
vestigate the finite sample size properties of the algorithms to
support an interpretation of the results for the measured data.

IV. NONLINEAR ANALYSIS

In this section we discuss the application of five methods
from nonlinear dynamics to the pathological tremor time se-
ries. First, we apply quantities derived from the classical fea-
tures of nonlinear dynamics, the correlation dimension, Poin-
caré and return maps and the largest Lyapunov exponent.
Then, we apply more recently developed features, the deter-
ministic versus stochastic ~DVS! plots and the d2e method.

FIG. 3. Estimated spectra of the two tremors. ~a! Essential tremor, ~b! Par-
kinsonian tremor.
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A. Local slopes of correlation integrals

A fractal dimension of the attractor is one of the fasci-
nating features of chaotic processes. One measure for this
dimension is the correlation dimension D2 .29,30 It is defined
by

D25 lim
r→0

d log C~r !

d log r
. ~6!

C(r), the correlation integral, is given by

C~r !5const(
i51

N

(
j5i1m

N

Q~r2uxW~ i !2xW~ j !u!, ~7!

where xW (i) denotes the states embedded in the reconstructed
phase space,15 Q~.! the Heavyside function applied to count
the number of pairs of points within a radius r and m the
Theiler correction employed to exclude temporally corre-
lated points.31

This method has frequently been applied to measured
data, but some of the results were a matter of debate, see,
e.g., Refs. 32–35. A serious problem is that the existence of
a scaling region for small radii r where Eq. ~6! holds may not
be assumed but has to be established. Therefore, plots of
local slopes of the logarithm of the correlation integrals in
dependence on the logarithm of r can be investigated. Evi-
dence for a fractal attractor is given if the local slopes are
constant for a large enough range of small radii and do not
change for higher embedding dimensions. Problems in esti-
mating correlation dimensions caused by the finite length of
data are discussed in Refs. 31 and 36. Effects of dynamical
and observational noise are investigated in Ref. 37. A recent
discussion of the various aspects of estimating correlation
dimensions from data is given in Ref. 9.

To determine the time delay t for the embedding, we
evaluated the first zero crossing of the autocorrelation func-
tion and the first minimum of the mutual information. For the
stochastic van der Pol oscillator and the measured time series
this led to identical results. For the Lorenz system we chose
the first minimum of the mutual information ~t510!. We
applied the Theiler correction31 by excluding m5500 tempo-
rally correlated points of the time series in the calculation of
the correlation integrals.

Figures 4~a! and 4~b! show the correlation integrals for
embedding dimensions one to eight for the Lorenz system
and the stochastic van der Pol oscillator with m55. The re-
sults for the Lorenz system are in accordance with the ex-
pectation. A scaling region for small radii r is identifiable.
Furthermore, the functional behavior of the local slopes of
the correlation integrals for small r does not change for em-
bedding dimensions d>3. No such behavior can be ob-
served for the stochastic van der Pol oscillator. The struc-
tured behavior in the neighborhood of r50.8 is due to large
scale behavior of the invariant set.

Figures 4~c! and 4~d! show the corresponding plots for
the measured data. There is no indication for a low dimen-
sional fractal attractor.

B. Poincaré and return maps

Poincaré and return maps can be applied to reduce the
dimension of the phase space and allow for an easier deter-
mination of a chaotic dynamics. A horseshoe behavior of the
resulting map is a sufficient criterion to infer a chaotic be-
havior of the system.19,38 For a Poincaré map, we chose the
values of successive maxima of the time series. Return maps
were formed by consecutive periods Dt i of the time series.
The periods were determined as time intervals between suc-
cessive maxima measured in sampling units. Figure 5 shows
the results for the measured time series. No indication of a
horseshoe-behavior is present.

FIG. 4. Local slopes of the correlation integrals for simulated time series ~a!
Lorenz system, ~b! stochastic van der Pol oscillator, and for the measured
time series, ~c! essential tremor, ~d! Parkinsonian tremor.
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C. Lyapunov exponents

A positive Lyapunov exponent is one of the hallmarks of
chaos. The local exponential divergence of nearby trajecto-
ries in chaotic systems lead to the sensitivity of the trajecto-
ries against small changes in the initial values. Different al-
gorithms have been proposed to estimate the largest
Lyapunov exponent or even their complete spectrum from
measured data. The first type of algorithm investigates ex-
plicitly whether the time evolution of nearby trajectories
over a certain fixed interval is a diverging or decaying expo-

nential or a constant.39 The second type of algorithms exam-
ines the tangent space of the dynamics.40,41 Both types of
algorithms assume that there is an exponentially separating
behavior of nearby trajectories. However, also in stochastic
dynamical systems nearby trajectories diverge.42 Since these
systems locally behave like Brownian motion, the separation
follows a square root law. For a discussion of the notion of a
positive Lyapunov exponent for stochastic systems, see Refs.
43 and 44 and references cited therein.

It has been shown that the above-mentioned algorithms
can signal a spurious positive Lyapunov exponent when ap-
plied to stochastic systems.45–49 The reason is that they as-
sume an exponential behavior and effectively determine the
parameter of the exponential from two points. The situation
is similar to that for estimating correlation dimensions from
correlation integrals discussed in the previous section: The
exponential divergence may not be assumed but this func-
tional form has to be established.

Generalizing ideas presented in Ref. 50, algorithms have
been proposed to trace the behavior of nearby trajectories
over time.10,51 If this behavior is exponentially divergent it
indicates a positive Lyapunov exponent. Another character-
istic behavior can be found for Brownian motion. Here the
divergence follows a square-root power law. These different
types of separation behavior can be decided on by regarding
it with a logarithmic, respectively linear scale of the time
axis, where the different scaling behaviors can be identified.
For time continuous nonlinear stochastic processes the
square-root divergence behavior can only be expected for
time scales where the Brownian motion like diffusion domi-
nates the deterministic drift. This only holds for times in the
order of the integration time step dt ~see Sec. III! and
smaller. Thus, in general, it can not be expected to be ob-
served on the time scale of sampling. In fact, we neither
observed it for the stochastic van der Pol oscillator nor for
the measured time series.

In the following we use the algorithm suggested in Ref.
10. For initial neighborhoods Ui ,i51, . . . ,N of size e in a m
dimensional reconstructed phase space the quantity

S~e ,m ,t !5K lnS 1

uUiu
(

xW ( j)PUi

uxW~ i1t !2xW~ j1t !u D L
i

~8!

is evaluated in dependence on t. Similar to the local slopes
for the correlation integrals, discussed above, we use local
slopes of S(e ,m ,t) to investigate if an exponential diver-
gence is present. Since S(e ,m ,t) behaves rather smoothly in
dependence on t, the local slopes can be calculated reliably
from three points. The information gained from the resulting
plots is twofold. First, if the local slopes are positive and
constant a chaotic dynamics is indicated. Second, the embed-
ding dimension starting from which the course of the result-
ing curves does not change significantly indicates the order
of the process.

Figures 6~a! and 6~b! show the resulting plots for the
Lorenz system and Figs. 6~c! and 6~d! for the stochastic van
der Pol oscillator with m55 for embedding dimensions one
to four and different sizes e of the initial neighborhoods Ui

3~e50.02,0.026,0.034,0.044!. For the Lorenz system, the re-

FIG. 5. Poincaré maps of the maxima ~a! essential tremor, ~b! Parkinsonian
tremor and return maps of consecutive periods Dt i measured in sampling
units ~c! essential tremor, ~d! Parkinsonian tremor.
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sults exhibit the expected constant positive slope of S(e ,m ,t)
for embedding dimension three and larger @Fig. 6~b!#. For the
stochastic van der Pol oscillator initially nearby trajectories
also diverge, but not exponentially. The second order of this
process is reflected by the invariance of the resulting curve
for embedding dimension m>2.

Figure 7 displays the results for the time series of the
pathological tremors. The invariance of the resulting curve
for embedding dimension m>2 indicates a second order

process. The nonexponential divergence of initially nearby
trajectories indicate a stochastic dynamics.

D. Deterministic versus stochastic plots

Deterministic versus stochastic ~DVS! plots were intro-
duced in Ref. 11 and further discussed in Ref. 52. For dif-
ferent embedding dimensions, this method applies local lin-
ear predictions of the time series using different large
neighborhoods for the local linear modeling and evaluates
the mean prediction error. The information provided by this
method is twofold. First, for sufficiently high embedding di-

FIG. 6. Local divergence of initially nearby trajectories for the Lorenz sys-
tem and the stochastic van der Pol oscillator for different sizes e of the
neighborhoods and embedding dimension m51, . . . ,4. 1: m51, s: m
52, ,: m53, L: m54. Lorenz system: ~a! S(e ,m ,t), see Eq. ~8!, ~b!

Local slopes of S(e ,m ,t). Stochastic van der Pol oscillator: ~c! S(e ,m ,t),
~d! Local slopes of S(e ,m ,t).

FIG. 7. Local divergence of initially nearby trajectories for the tremor time
series. Essential tremor: ~a! S(e ,m ,t), ~b! Local slopes of S(e ,m ,t). Parkin-
sonian tremor: ~c! S(e ,m ,t), ~d! Local slopes of S(e ,m ,t).

283Chaos, Vol. 10, No. 1, 2000 Pathological tremors



mensions, nonlinear deterministic, nonlinear stochastic and
linear stochastic processes result in different appearances of
the DVS plots. For nonlinear deterministic processes the pre-
diction error approaches zero for small neighborhoods and
increases monotonically. For linear stochastic processes, the
prediction errors should be largest for the smallest neighbor-
hoods and decrease monotonically. Depending on the
amount of dynamical noise and the degree of nonlinearity,
nonlinear stochastic processes show either a minimum error
in an intermediate size of neighborhoods or a monotonically
increasing prediction error that does not reach zero for small
neighborhoods.

Second, the order of the process can be inferred. For
embedding dimensions larger than the true order, the predic-
tion errors should not decrease any further and the functional
form of the prediction errors in dependence on the size of the
neighborhoods should not change anymore.

Figure 8 shows the DVS plots for the Lorenz system and
the stochastic van der Pol oscillator. The results for the Lo-
renz system @Fig. 8~a!# exhibit the expected behavior. For
embedding dimensions of three and larger the prediction er-
rors reaches zero for small neighborhoods. For the stochastic
van der Pol oscillator, the results for weak @m51, Fig. 8~b!#
and intermediate @m55, Fig. 8~c!# degree of nonlinearity are
given reproducing the two possible behaviors for nonlinear
stochastic dynamics discussed above. The invariance of the
functional dependence of the prediction errors on the size of
the neighborhoods for embedding dimensions of two and
larger excludes the possibility of an underlying chaotic pro-
cess since this would require at least a dimension of three for
continuous time dynamical systems considered here.

Additive observational noise poses severe problems on
modeling and predicting time series.4 It leads to an underes-
timation of the functional relationship between past and
present values of the time series if not taken into account by
the fitted model. For the DVS plots a decreased prediction
performance is expected. Figure 8~d! displays the resulting
DVS plots for the Lorenz system with additive white noise.
The standard deviation of the noise is 1% of the standard
deviation of the time series. This signal to noise ratio is
larger than that of the measured time series. Compared to
noise free case, Fig. 8~a!, the curves do not reach zero pre-
diction error for small e for embedding dimension m<3 any-
more. But, the difference between the curve for m52 and
curves for m>3 persists.

Figure 9 displays the results for the tremor data. Consis-
tently, a second order process is suggested by the invariance
of the functional form of the prediction error curves for
higher embedding dimensions. The nonlinearity of the pro-
cesses is reflected by the increase of the prediction error for
larger e. For small e the prediction error shows a tendency to
increase. Thus, the DVS-plots give evidence for a stochastic
nonlinear second order dynamics.

E. dÀe method

The d2e method was introduced in Ref. 12, where a
detailed discussion of the method is given. The basic idea is
that a deterministic dynamics embedded in a sufficiently

high-dimensional state space should induce a continuous
mapping from past to present states. Similarly to the DVS
plots the size of the neighborhoods is increased to investigate
the continuity. The size of the neighborhood of past states ~d!
and the size of the resulting neighborhood of present states
~e! are plotted. For deterministic processes e is expected to
decrease to zero for decreasing d for sufficiently high em-

FIG. 8. DVS-plots for the simulated time series for embedding dimension
one to five. 1: m51, s: m52, ,: m53, L: m54 h: m55. ~a! Lorenz
system, ~b! stochastic van der Pol oscillator ~m51!, ~c! stochastic van der
Pol oscillator ~m55!, ~d! Lorenz system with additive white noise. The
standard deviation of the noise is 1% of the standard deviation of the time
series.
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bedding dimensions. For stochastic processes and processes
which are covered by a significant amount of additive obser-
vational noise a non-zero intercept for e is expected.

Figures 10~a! and 10~b! show the results for the Lorenz
system and the stochastic van der Pol oscillator for m55, see
Eqs. ~2! and ~3!. Extrapolating the resulting curves for the
Lorenz system for embedding dimensions m53,4 to zero
yield the expected continuity. The results for the stochastic
van der Pol oscillator indicate that in the case of stochastic
processes for larger embedding dimensions the estimated e
for small d show a large variance due to the curse of dimen-
sionality. Figures 10~c! and 10~d! display the results for the
two pathological tremors. Taking into account the variability
of the estimated e for small d for the stochastic van der Pol
oscillator in Fig. 10~b!, the results for the pathological trem-
ors confirm the results of the DVS plots in the previous
section that a second order stochastic dynamics underlies the
measured time series.

V. CLASSIFICATION OF PATHOLOGICAL TREMOR
TIME SERIES REVISITED

The investigations in the preceding sections showed that
the considered forms of pathological tremors are governed
by nonlinear processes. It is a challenging task to investigate
whether characteristics of the nonlinearities extracted from
measured data are able to support the differential diagnosis
between healthy and different types of pathological states
usually performed by clinical observations, see Ref. 53 for a
collection of examples from different biomedical domains.

For tremor time series the discrimination between essen-
tial and Parkinsonian tremor is of largest clinical importance.
Visual inspection of clinically classified time series moti-

vated us to investigate asymmetric behavior of the time se-
ries with respect to the direction of time and to a change of
sign.13,14 Algorithmically, the first was captured by a mea-
sure for time reversibility based on the difference of condi-
tional expectations forward and backward in time:

D̃~y ,t !5E$x~ t1t !ux~ t !5y%2E$x~ t2t !ux~ t !5y%.
~9!

D̃(y ,t) is estimated by a kernel estimator, see Ref. 13 for
details. The dependence on y and t was eliminated by form-
ing:

D̂~t !5E dy D̃2~y ,t ! ~10!

FIG. 9. DVS-plots for tremor time series for embedding dimension one to
five. ~a! Essential tremor, ~b! Parkinsonian tremor.

FIG. 10. Results for the d2e method. ~a! Lorenz system for embedding
dimension two to four, ~b! stochastic van der Pol oscillator ~m55! for em-
bedding dimension one to four, ~c! essential tremor, ~d! Parkinsonian
tremor.
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and finally

D̂m5max
t

D̂~t !. ~11!

The asymmetry with respect to a change of sign was best
captured by a measure for the asymmetric decay of the au-
tocorrelation function. We calculated this by the difference
gd of the absolute values of the first and the second maxi-
mum of the autocorrelation function.

In Refs. 13 and 14, we reported the classification results
for a set of 15 essential and 25 Parkinsonian tremor time
series. The classification rate was 75% for the measure of
time reversibility and 90% for the asymmetric decay of the
autocorrelation function. The classification rate based on the
linear measures of amplitude and frequency is 30%, evalu-
ated for a sample of 62 Parkinsonian and 52 essential tremor
time series.2 We repeated the nonlinear analysis for a larger
set of 75 essential and 112 Parkinsonian clinically classified
tremor time series. Figure 11 compares the former results
based on the small sample with the new results based on the
larger sample. Assuming the larger sample to be representa-
tive, it can be seen that the high classification rates of the
former analysis were caused by a nonrepresentative sample
of essential tremor time series. For both features the variance
of their distributions is much smaller for the small sample.
Thus, the variability of the processes is underestimated.

For the larger sample investigated here, the classification
rate decreases to 30%, the same rate as found by the linear
measures of amplitude and frequency.

VI. DISCUSSION

A decision on the order of a process and the type of
dynamics—stochastic or deterministic—is difficult if the true
order is large. Conclusive results can hardly be expected for
an order of 5 or larger. In the case of the tremor time series
considered here, the best treatable nontrivial case is given. In
searching for the reason for variability of an nonlinear oscil-
lator, the two simplest possibilities are chaotic determinism,
calling for a third order process, or a stochastic oscillator of
order two. The third possibility that some type of nonstation-
ary, formally described as high-dimensional, process under-
lies the measured time series should be concluded if there is
no conclusive decision between the former alternatives.

We first evaluated the correlation integrals, Poincaré and
return maps and the largest Lyapunov exponent. Earlier in-
vestigations of the local slopes of the correlation integral and
the Lyapunov exponents of Parkinsonian tremor time series
performed in our group gave evidence for a chaotic
dynamics.54 To calculate the correlation integrals in these
former investigations, we had chosen the time delay in the
embedding equal to two sampling units. This is much
smaller than values determined by recommended methods
like mutual information or the autocorrelation function used
here. Furthermore the Theiler correction31 has not been ap-
plied. For the calculation of the Lyapunov spectrum we had
applied an algorithm that is nowadays known to be able to
yield positive Lyapunov exponents even for white noise.
Therefore, we now doubt the validity of these former results.
The results presented in this paper indicate that there is no
finite correlation dimension and the analysis of the diver-
gence behavior of nearby trajectories supports the hypothesis
that a stochastic dynamics underlies the time series. Espe-
cially, the independence of the results for embedding dimen-
sions m>2 points to a second order dynamics. The Poincaré
and return maps gave no evidence for a low dimensional
chaotic dynamics.

The deterministic versus stochastic ~DVS! plots gave
strong evidence for a nonlinear stochastic process of second
order underlying the time series of the considered types of
pathological tremors. The d2e method confirmed the results
of the DVS plots. For the DVS plots and the d2e method the
characteristic behavior of the resulting curves gave informa-
tion about the nature of the dynamics underlying the mea-
sured time series. For both these methods as for the diver-
gence analysis, the embedding dimension starting form
which the resulting curve does not change any more gives
valuable information indicating a second order dynamics.

A final hint for nonchaotic second order oscillators gov-
erning the time series stems from the mutual information. In
order to determine the time delay for the embedding we cal-
culated both the mutual information and the autocorrelation
function. For systems other than second order oscillators, it
has been shown that the time lag of first minimum of the

FIG. 11. Comparison of the distribution of classification features between
the results based on small and on large samples of essential ~ET! and Par-
kinsonian disease ~PD! tremor time series. ~a! Time reversibility, ~b! As-
symmetric decay of the autocorrelation function. 1: essential tremor, small
sample, 3: essential tremor, large sample s: Parkinsonian tremor, small
sample, n: Parkinsonian tremor, large sample.

286 Chaos, Vol. 10, No. 1, 2000 Timmer et al.



mutual information differs from that of the first crossing of
the autocorrelation function.17 For all time series investigated
here, they coincide.

We also applied the method of false nearest
neighbors.55,56 In simulation studies based on the stochastic
van der Pol oscillator and the Lorenz system with additive
observational noise we did not succeed to recover the correct
order of the processes. The order was overestimated in both
cases. For the measured time series the results were not con-
clusive.

In summary, a consistent interpretation of the different
methods indicate that the variability of the oscillation of the
pathological tremors is best described by a nonlinear sto-
chastic second order process. The DVS plots appeared to be
most informative for a discrimination between the two alter-
natives of a third order chaotic and a second order nonlinear
stochastic process. Our findings contradict the suggestion57

that the variability observed in the considered pathological
tremors should be interpreted as caused by frequency and/or
amplitude modulated harmonic oscillators.

Finally, we tried to reproduce the classification results
for the two types of pathological tremor based on features
that capture properties of the nonlinear dynamics reported in
Refs. 13 and 14. Using a much larger sample of time series,
we were not able to achieve the reported classification rates.
The high classification rates reported in Refs. 13 and 14 were
revealed to be caused by a nonrepresentative sample of the
essential tremor time series. The attempt to classify medical
time series based on extracted features assumes that the dif-
ferent diseases are actually different processes. For the two
types of pathological tremors considered here there is evi-
dence that there might by more similarities than substantial
differences between the processes although the underlying
pathologies are likely to be different.58

The decrease of the classification rates demonstrates the
importance of evaluating classification features on a large
representative sample preferably collected in prospective
studies.

VII. DATA AVAILABILITY

The time series used in the above investigations and fur-
ther essential and Parkinsonian tremor time are available at:
http://phym1.physik.uni-freiburg.de/;jeti/path_tremor
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