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Abstract

In neurophysiology, time delays between concurrently measured time series are usually estimated from the slope of a straight

line fitted to the phase spectrum. We point out that this estimate is valid only in the case in which, one signal is a mere

time-delayed copy of the other one. We present a procedure for delay estimation that applies to a much wider class of systems

with nontrivial phase spectrum like for example lowpass filters. The procedure is based on the Hilbert transform relation between

the phase of a linear system and its log gain. The Hilbert transform relation is nonlocal in frequency space, a fact that limits its

applicability to experimental data. We explore these limits, and demonstrate that the method is applicable to neurophysiological

time series. We present the successful application of the Hilbert transform behavior method to concurrently recorded epicortical

brain activity and peripheral tremor. We point out and explain physiologically unreasonable delay estimates given by the

traditional method. Finally, we discuss the assumptions underlying the applicability of the Hilbert transform method in the

neuroscience context. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, there has been a growing interest in

the study of functional coupling between different parts

of the nervous system. Stimulated by new techniques

for measuring signals of high quality both by MEG and

EEG there have been numerous studies into the cou-

pling within the brain itself and with peripheral muscle

activity; for a recent review see Mima and Hallett

(1999a).

Cross-spectral analysis provides very powerful tools

for the analysis of neurophysiological systems in the

frequency domain (Timmer et al., 2000). In particular,

the existence of a linear association can be reliably

tested for by the coherency function. Once a correlation

has been found, the nature of the relation can be

examined, and specifically one might ask whether there

is a time delay between the processes. This question is

of great neurophysiological importance as it might shed

light on the pathways by which the processes interact.

Methods for the identification of time delays in bio-

logical systems have received a lot of attention. Delay

estimation between cortical signals and peripheral mus-

cle activity allows to differentiate a transmission via

oligosynaptic corticospinal pathways, the conduction

times of which are well known from cortical stimulation

studies in humans (Rothwell et al., 1991), from a medi-

ation via polysynaptic extrapyramidal systems conduct-

ing much slower than the corticospinal tract. This delay

estimation is to date usually accomplished by estimat-

ing the slope of the phase spectrum by a straight line fit

which has led to heterogeneous results (Mima and

Hallett, 1999b; Mima et al., 1999; Brown et al.,

1998Brown et al., 1999Halliday et al., 1998). We point

out that this method can only be applied in the rather

special case of one signal being a mere time-shifted

copy of the other one. On the contrary, we demonstrate

that using a procedure called Hilbert transform method
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delay estimation is possible for the very wide class of

linear, causal, minimum-phase systems. These systems

are characterized by nontrivial transfer functions, in

contrast to the simple time shift systems to which the

straight line fit method applies.

The paper is organized as follows. In Section 2, we

outline the methods and present the experimental neu-

rophysiological data. This section also gives the neces-

sary background on cross-spectral analysis. In

particular, we point out the differences between the

Hilbert transform procedure and the method of fitting a

straight line to the phase curve. In Section 3, we test the

Hilbert transform method on simulated data and evalu-

ate its performance in the presence of observational

noise, an inevitably strong component of most mea-

surements in human physiology. We explore the limita-

tions of the method in this case. Subsequently, we

present the application of the Hilbert transform method

to simultaneous measurements of electrocorticogram

(ECoG), electromyogram (EMG) and accelerogram

(Acc) in Section 4. We demonstrate the advantages of

the Hilbert transform method on this data by compar-

ing it to the traditional delay estimation procedure. In

Section 5, we discuss the results in the neuroscience

context. In particular, we discuss the justification and

implications of the assumption of minimum-phase be-

havior of the system.

2. Materials and methods

2.1. Data recording

We analyzed three female and three male patients

with intractable focal epilepsy prior to undergoing

surgery to remove an epileptic focus. The patients had

subdural epicortical grid electrodes implanted covering

parts of the primary sensorimotor area of the cortex.

All data were sampled at a rate of 520 Hz. The

ECoG was recorded with a time constant of 0.3 s and

a lowpass filter at 160 Hz. In parallel to the ECoG

bipolar surface EMG and Acc were recorded from

those regions of the body which showed a motor re-

sponse on cortical electrostimulation. Hand muscles

were recorded with the hands extended against gravity

with uniaxial accelerometer fixed on the dorsum of the

hand. The EMG was bandpass-filtered between 50 and

260 Hz on-line. The duration of each recording was

between 40 and 60 s. As we focus on the methodologi-

cal side here, recordings from two patients have been

selected as examples for this paper. The recording

procedure and the neurophysiological results for the

full data set have been reported elsewhere (Raethjen et

al., 2000a,b).

2.2. Cross-spectral analysis

In this section, we briefly discuss the necessary back-

ground on cross-spectral analysis. For a more detailed

treatment and further references, see the recent review

by Timmer et al. (2000).

The power spectrum Sx(�) of a zero mean process

X(t) is defined as the Fourier transform of the auto-co-

variance function ACF(�)=�X(t)X(t−�)�,

Sx(�)=
1

2�
�
�

ACF(�)e− i��, �� (−�,� ] (1)

The estimation of the power spectrum is performed

by direct spectral estimation (Brockwell and Davis,

1991), based on the Fourier transform FTx(�k) of the

tapered measured data x(t),

FTx(�k)=
1

�N
�
N

t=1

x(t)e
− i�k t

(2)

with

�k=
2�k

N
, k= −

N

2
,…,

N

2
−1 (3)

The periodogram Perx(�k) is defined as the squared

modulus of FTx(�k). Whenever the auto-covariance

function ACF(t) is decaying fast enough for larger lags,

the real and imaginary part of the Fourier transform

FTx(�k) are asymptotically Gaussian distributed with

variance determined by Sx(�). Therefore, the periodo-

gram Perx(�k) is distributed as �2
2, a random variable,

which does not represent a consistent estimator for the

spectrum because its variance is equal to its mean. To

obtain a consistent estimator of the spectrum, the peri-

odogram is smoothed by a window function Wj,

Ŝx(�k)=
1

2�
�
h

j= −h

Wj Perx(�k+ j) (4)

The hat symbol is used to indicate estimators of theo-

retical quantities throughout the paper.

Similar to the univariate case, the cross-spectrum

CS(�) is defined as the Fourier transform of the cross-

covariance function CCF(�)=�X(t)Y(t−�)�. Again,

the estimation is based on smoothing the cross-

periodogram.

The cross-spectrum between input and output of a

linear process is related to the spectrum of its input by

the complex-valued transfer function A(�),

CS(�)=A(�)Sx(�) (5)

The gain is defined as the modulus of the transfer

function,

�A(�)�= �CS(�)�
Sx(�)

(6)

and characterizes the systems amplitude transmission.

Normalizing the modulus of the cross-spectrum by

the spectra of both processes gives the coherency

Coh(�),
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Coh(�)=
�CS(�)�

�Sx(�)Sy(�)
(7)

The coherency is a bounded measure of linear associ-

ation with a value of 1 in case of a perfect linear

relationship between the time series and a coherency of

0 in case of linear independence within a given fre-

quency band.

The argument of the cross-spectrum is called phase,

�(�)=arg CS(�) (8)

Gain, coherency and phase spectra are estimated by

replacing the spectra in Eqs. (6) and (7) and Eq. (8) by

the above spectral and cross-spectral estimates.

The estimates for the spectrum, the gain and the

phase are asymptotically Gaussian distributed with

variances given by:

var(�A� (�k)�)=1

�

�
3+

1

Coh(�)2

��A(�k)�2 (9)

var(�� (�))=
1

�

� 1

Coh(�)2
−1

�
(10)

where � is the so called equivalent number of degrees of

freedom, determined by the window function W( j )

used (Brockwell and Davis, 1991). Eq. (10) holds if the

coherency is significantly larger than zero. For a co-

herency towards zero, the distribution of the estimated

phase approaches the uniform distribution in [−�,�].

Therefore, the phase spectrum cannot be estimated

reliably in the case of small coherency. The same holds

for the gain spectrum as can be seen from Eq. (9).

Based on the coherency, the time series can be tested

for linear independence. The critical value s for the null

hypothesis of zero coherency for a significance level � is

given by:

s=
�

1−�
2

�−2 (11)

While the interpretation of the coherency is straightfor-

ward, the interpretation of phase-spectra is more

complex.

2.3. Phase spectra of linear delay processes

In this section, we point out that while phase spectra

contain information about a delay in the system, the

estimation of this delay from the phase spectrum is a

non-trivial task.

Any linear process containing a delay, for ease of

notation referred to as a delay process, can be sepa-

rated into the concatenation of one process without

delay and one process representing nothing but the

delay. The latter simply represents a time shift of the

output with respect to the input. The phase spectrum of

such a time shift � is well known to be,

�(�)=�� (12)

Eq. (12) is the basis for the previously mentioned

straight line fit approach to delay estimation from the

phase spectrum. Indeed, it can be shown that for pro-

cesses consisting of nothing but a delay a consistent

estimator of the delay can be obtained by a weighted

least squares line fitted to the phase spectrum (Hamon

and Hannan, 1974; Rosenberg et al., 1989). As men-

tioned before, corticomuscular delay estimation is to

date usually done by this procedure.

Nevertheless, the phase spectrum of a delay process

in general is given by:

�(�)=��+arg A(�) (13)

where A(�) denotes the transfer function of the process

without delay. Eq. (13) shows that the estimation of the

delay time from the slope of the phase curves is valid

only if the argument of the transfer function arg A (�)

is identically zero. This is the case if and only if the one

process is a time-delayed version of the other one, i.e.

y(t)=x(t−�). In all other cases, we need to estimate

the arg A (�) and the delay time �. This can be done by

the method described in the next section.

2.4. Delay estimation by the Hilbert transform method

It is known that for linear systems satisfying what is

called the minimum-phase condition, the argument of

the transfer function is related to the log of its modulus

by the following Hilbert transform relation (Oppenheim

and Schafer, 1975)1,

arg A(�)=
1

2�

	 �

0

log�A(	)��cot
�−	

2
+cot

�+	

2

�
d	

(14)

The minimum-phase condition can be expressed in

various forms, the most intuitive being that a linear

system satisfies the minimum-phase condition if it has a

causal, stable inverse. Another characterization builds

on the properties of the system function, given by the

z-transform of the unit sample response (Oppenheim

and Schafer, 1975). The system function evaluated on

the unit circle is the transfer function. A process has the

minimum-phase property if the system function has no

poles or zeros outside the unit circle. While the assump-

tions of linearity, causality and stationarity ensure that

1 The application of the Hilbert transform and the notion of phase

in the present context should not be confused with the application of

the Hilbert transform for the construction of an analytic signal xa(t)

from a measured time series x(t) such that x(t) is the real part of the

complex analytic signal xa(t). This analytic signal is given by xa(t)=

x(t)+ ix̃(t), where x̃(t) is calculated from the time series x(t) by the

Hilbert transform. The analytic signal can be decomposed into a

slowly varying amplitude time series A(t)= �xa(t)� and a phase time

series �(t)=arg xa(t). For examples of this alternative use of the

Hilbert transform in studies concerning cortico-muscular interactions

see Tass et al. (1998) and Gross et al. (2000).
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the system function has no poles outside the unit circle,

the zeros are not determined by these conditions. We

will discuss further justifications of the minimum-phase

assumption and consequences of its violation in detail

in Section 5. For now, we only note that all members of

the very general class of autoregressive models possess

the minimum-phase property, regardless of their spe-

cific parameters and order.

Eq. (14) is the center piece of the delay estimation

procedure to be described in the following. As the

modulus of the system function is defined to be the gain

we can get an estimate for arg A (�) by simply replac-

ing the spectra in Eq. (6) by their estimates given in

Section 2.2,

arg A� (�l)=
1

2M
�
M

k=1,k� l

log�A� (�k)�C(�l,�k) (15)

with

C(�l,�k)=cot
�l−�k

2
+cot

�l+�k

2
(16)

and M being the number of independent spectral esti-

mates determined by the length of the time series T, the

sampling frequency fs and the effective number of de-

grees of freedom � via,

M=
fsT

2�
(17)

As the estimate of the gain is asymptotically Gaus-

sian distributed, the same holds true for the estimate of

arg A (�) with variance given by:

var(arg A� (�l))=
� 1

2M

�2

�
M

k=1,k� l

�C(�l,�k)

�A(�k)�
�2

var�A(�k)�
(18)

We will refer to the right hand side of Eq. (14) as the

minimum phase of the system, a term whose physiolog-

ical impact will be discussed in more detail in Section 5.

For now, we only note that for minimum-phase systems

the minimum phase is a consistent estimator of

arg A(�) (Nakano and Tagami, 1988).

One might argue that an ambiguity arises from the

fact that the gain spectrum is only defined up to a

constant factor, corresponding to a normalizing factor

in the output time series. However, this factor does not

influence the minimum-phase estimate, as can be seen

from Eq. (14) by virtue of the symmetry properties of

the cotangent function.

For minimum phase systems, the Hilbert transform

thus provides an alternative way of obtaining the phase

spectrum. More importantly for systems consisting of

the superposition of a minimum phase system and a

delay system, the contribution of the minimum phase

system to the phase spectrum can be estimated by the

Hilbert transform. The precise amount of the delay can

be estimated from the difference between the phase

spectrum of the minimum phase system (estimated from

the Hilbert transform) and the phase spectrum of the

compound system (estimated from the argument of the

cross-spectrum). To this end, it is important to note

that the gain spectrum is independent of the delay. We

can thus apply the Hilbert transform to the gain spec-

trum of the compound system in order to obtain the

phase spectrum of the minimum phase system and

compare it with the phase spectrum of the compound

system calculated from the cross-spectrum. If the sys-

tem is indeed the superposition of a minimum phase

system and a delay system, this difference should follow

a straight line, with the slope of the line given by the

amount of the delay. Consequently, an estimate of the

delay � can be obtained by maximizing the following

expression:

obj(�)=�
B

Coh� 2(�)

1−Coh� 2(�)
cos(�� (�)−arg A� (�)−��)

(19)

where �B denotes the sum over all � in a proper band

B of frequencies contained in [0,�]. This procedure for

estimating parameters in �(�) from discrete stationary

time series was proposed by Hamon and Hannan

(1974) and was shown to be an approximation of the

maximum likelihood method by Hannan (1975) and

Knapp and Carter (1976). The definition of the objec-

tive function obj(�) in Eq. (19) is motivated by the need

to find a time delay � such that the deviation of the

model given in Eq. (13) from the phase estimates is

minimal. Taking the cosine of the deviation resolves the

2� ambiguity of the phase estimate. The assignment of

weights proportional to the inverse of the coherency

follows from the fact, that the variance of the phase

estimates is inversely proportional to the coherency.

3. Simulations

In this section, we will test the Hilbert transform

method on minimum-phase model systems with known

transfer function and delays. While Nakano and

Tagami (1988) showed that the method yields consis-

tent delay estimates in the limit of infinitely long noise-

free time series and Boeijinga and da Silva (1989)

applied it to low-noise EEG recorded invasively in cat,

we here study the performance of the Hilbert transform

method in the presence of observational noise. We

thereby check the applicability of the Hilbert transform

method to experimental neurophysiological time series

containing substantial amounts of observational noise.

3.1. The influence of obser�ational noise

We apply the method to a well known model-system,

namely an autoregressive process of order 2, short

AR(2) process. This system is defined by:
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y(t)=a1y(t−1)+a2y(t−2)+x(t−�) (20)

where x(t) is the input and y(t) is the output of the

system and � is the delay between the input and output.

The input x(t) is taken to be Gaussian white noise. It is

important to note that while due to stationarity shifting

the Gaussian white noise x(t) by a time delay � does

not change its auto-spectrum it still affects the cross-

spectrum between x(t) and y(t).

From a physical point of view an AR(2) process can

be interpreted as a stochastically driven, damped, reso-

nant, harmonic oscillator with period and relaxation

time determined by the parameters a1 and a2

(Honerkamp, 1994). Its phase spectrum can be calcu-

lated analytically. For ease of comparison with the

experimental results, we use a fictitious sampling rate of

500 Hz in the simulations, a realization length of 215

and a1= −1.9691, a2=0.9753, corresponding to both

a mean oscillation period T and relaxation time � of 80

samples. Observational noise was added for a signal-to-

noise ratio of 1. We define the signal-to-noise ratio to

give the ratio of the variances of the signal and the

observational noise. � was chosen to be ten sampling

units, corresponding to a delay time of 20 ms. Fig. 1

shows the result of a simulation of an AR(2) process

with the above parameters. In Fig. 1(a), the spectra of

the driving white noise (dashed line) and the resulting

AR(2) process (solid line) are plotted. In Fig. 1(b), the

estimated coherency between the two signals is shown.

The coherency is smaller than 1 due to the added

observational noise. It is larger in the region with large

spectral power of the AR(2) process, as in the case of

linearly correlated processes the coherency is a function

of the frequency dependent signal-to-noise ratio (Tim-

mer et al., 1998a). Fig. 1(c) displays the gain, exhibiting

a maximum at the peak frequency of the oscillator.

Here and throughout all the plots in this paper confi-

dence intervals are given for the 95% level. Fig. 1(d)

shows the minimum phase, estimated from the gain by

the Hilbert transform together with its confidence inter-

vals (solid line with error bars) and the analytically

calculated phase curve of an AR(2) process with the

given parameters (dashed line). The characteristic shape

of the phase curve is well captured by the estimate.

Nevertheless for frequencies larger than the resonance

frequency, the estimate is significantly smaller than the

theoretical value; a point that will be elaborated later.

In Fig. 1(e), the phase estimates and their confidence

intervals (error bars) are plotted together with the curve

Fig. 1. Results for an AR(2) process with parameters a1= −1.9691 and a2=0.9753 with signal-to-noise-ratio of 1. From top left to bottom right

the subplots display: (a) the spectra of the AR(2) process (solid line) and its driving noise (dashed line); (b) the coherency between the two signals

(solid line) and the critical value s (dashed line) for the null hypothesis of zero coherency defined in Eq. (11); (c) the gain normalised to a maximum

value of 1; (d) the minimum phase estimate with its 95% confidence interval; (e) the estimated phase spectrum between the two signals together

with the best fit of the sum of the minimum phase and the delay term identified from the objective function; (f) the objective function obj(�)

defined in Eq. (19).
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Fig. 2. Comparison of an AR(2) process with snr=� (solid curves) with the same process with snr=1 (dashed curves). Displayed are: (a) the

estimate for the gain �A(�)� (a); (b) the minimum phase arg A(�).

calculated from the estimated minimum phase and de-

lay time according to Eq. (13). The model well explains

the observed phase curve. In Fig. 1(f), the objective

function obj(�) is displayed, which exhibits a maximum

at about 25 ms. Thus, the delay time is overestimated

by about 5 ms.

This bias can be understood from Fig. 2 which

compares the results of a simulation of the above

AR(2) process for the noise-free case (solid lines) with

those for a signal-to-noise ratio of 1 (dashed lines). It

can be seen from Fig. 2(a) that compared to the noise-

free case in the presence of observational noise, the gain

�A(�)� is overestimated for frequencies greater than 20

Hz. This is due to the fact that for high frequencies the

spectrum of the AR(2) process is small compared to the

spectrum of the observational noise. The gain thus

approaches a constant, given by the frequency-indepen-

dent gain between the white noise input to the AR(2)

process and the white observational noise covering its

output (Jenkins and Watts, 1968). This introduces a

negative bias into the minimum-phase estimate, as fol-

lows from Eq. (15) by taking into account that

C(�l,�k) is negative for �l��k. The greater variability

of the gain estimate in the presence of observational

noise is due to the reduced coherency (Eq. (9)).

In order to quantitatively study this bias, we ana-

lyzed realizations of the AR(2) process defined before

with varying amounts of observational noise added to

the time series. Table 1 summarizes the results from 100

realizations for every noise-level. The variance of the

delay estimate is very small, even with low signal qual-

ity. The bias increases with decreasing signal-to-noise

ratio and it depends more on the SNR of the output

than on that of the input. All of this is consistent with

the explanation given for the bias above.

We stated that the strong bias in the delay estimates

for time series with large observational noise is due to

the fact, that for higher frequencies the spectrum of the

AR(2) process is small compared to the noise spectrum.

This in turn means that the method is more robust

against observational noise when applied to processes

with a broad band spectrum. We demonstrate this for

an AR(2) process with a mean period of oscillation of

T=80 samples as before but with a smaller relaxation

time of �=10 samples resulting in a broader spectrum.

The result is given in Table 2 showing that indeed the

bias is much smaller than for the previously studied

AR(2) process with �=80 samples (Table 1).

We note that the bias only depends on the spectral

properties of the process. Thus, the results of the simu-

lations apply to a wide range of processes with spectra

comparable to the ones of the processes studied here.

We pointed out that in order to decide whether the

method can be applied to specific experimental data the

signal-to-noise ratio has to be estimated. In practice, it

is often impossible to determine the noise level without

additional information such as bandlimits for the sig-

nal. In these cases, one can use the coherency function

to obtain an estimate for the signal-to-noise ratio.

If one time series Y(t) is a linear function of another

time series X(t) but the measurements of Y(t) and X(t)

are covered by white observational noise of variance 
x
2

and 
y
2, the observed resulting coherency is given by

Timmer et al., (1998a):

Coh(�)=
�

1−

x

2Sy+Sx
x
2 +
x

2
y
2

(Sx+
x
2)(Sy+
y

2)
(21)

where the argument � was suppressed on the right

hand side for ease of notation and 
x
2 and 
y

2 denote the

constant power spectra of observational noise. Given

the coherency, Eq. (21) can in turn be used to identify

pairs of SNRs consistent with the observed level of

coherency.
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3.2. Causality

From the above description of the Hilbert transform

method, it follows that in principle the direction of the

relationship has to be known in advance. This would

severely restrict its domain of applicability. Fortu-

nately, in practice this problem can be resolved by

studying both alternative directions and comparing the

results. We exemplify this in Fig. 3 on the same AR(2)

process data that has been previously analyzed in Fig. 1

but for now we assume the driver to be the response

and vice versa. Spectra and coherency displayed in Fig.

3a and b, respectively, are unchanged compared to Fig.

1(a) and (b). The gain spectrum (Fig. 3(c)) is changed

as it is now calculated by dividing the unchanged

cross-spectrum by the output of the AR(2) process

which is incorrectly assumed to be the input. Conse-

quently, the minimum phase shown in Fig. 3(d) is also

changed. The objective function Fig. 3(f) displays a

maximum at about 55 ms, while the true delay is 20 ms.

This estimate can be identified as misleading from Fig.

3(e) displaying the phase estimates and their confidence

intervals (error bars) together with the curve calculated

from the estimated minimum phase and delay time

according to Eq. (13). This fit provides an important

check for the validity of the results and allows for the

identification of driver and response by comparing the

results based on assuming the one and the other direc-

tion. This example should also be taken as a word of

caution against interpreting any local maximum of the

objective function obj(�) as evidence for an according

delay. It is in contrast always necessary to evaluate the

goodness of fit of the data to the model using plots like

Fig. 3(e).

4. Applications

In this section, we present the application of the

Hilbert transform method to concurrently recorded

ECoG, EMG and Acc.

As stated in the previous section, we first have to

estimate the signal-to-noise ratio of the data. For the

accelerometric signal this can be done from the high

frequency part of the power spectrum where the signal

amplitude is negligible due to the mechanical properties

of the hand. This yields an estimate for the SNR in the

order of 4 for the Acc time series. From the observed

coherency spectrum, we can then infer from Eq. (21) a

SNR in the order of 1 for the ECoG time series. As the

spectrum of the Acc of the hand in physiologic tremor

is similar to that of the AR(2) process with �=80

samples, we can obtain an estimate for the bias from

Table 1. We find that the bias is in the order of 5 ms

rendering the method applicable in this case.

For the EMG and ECoG data, there is no direct way

to estimate the SNR for the individual time series.

However, we can use the observed coherency spectrum

for inference about the SNRs as described above.

Given the coherency of about 0.45 over a broad band

of frequencies that can be seen from Fig. 4(b) SNRs in

the order of 1 can be established from Eq. (21). The

spectra of EMG and ECoG are rather flat, such that we

can refer to Table 2 for an estimate of the bias, which

is in the order of 2 to 3 ms in this case.

4.1. EcoG–Acc relation

We first study the relation between the ECoG and

Acc, recorded simultaneously from the dorsum of the

hand. The result is shown in Fig. 5. We see from Fig.

5(a) that the hand oscillates at its resonance frequency

while the ECoG has a rather flat spectrum over the

region of significant coherency (Fig. 5(b)). The gain

(Fig. 5(c)) consequently exhibits a maximum at the

resonance frequency. The minimum phase displayed in

Fig. 5(d) calculated from the gain by the Hilbert trans-

Table 1

Summary of the results obtained for the simulation of an AR(2) process with T=80 and �=80 with additive observational noise and a delay time

of 20 ms

SNRinput SNRoutput

� 4 2 1 0.5 0.25

SD�� ��SD SD��SD��SD��SD��

20.1 0.0 23.4 0.5 24.4� 0.5 28.925.6 0.7 26.9 0.9 1.3

0.6 25.0 0.8 26.0 0.8 27.6 1.24 29.820.2 1.50.2 23.9

0.6 25.3 0.8 26.7 1.0 28.3 1.12 30.120.2 1.40.4 24.1

1.531.21.329.01.227.00.91 25.90.824.80.420.2

0.6 25.4 1.2 26.7 1.4 28.2 1.6 30.6 1.5 32.7 2.120.20.5

26.31.0 2.635.02.232.32.230.220.2 1.40.25 27.91.5

The realization length was 215. The following abbreviations are used: �� and SD are the mean and standard deviation of the delay time estimated

from 100 realizations, SNRinput and SNRoutput denote the signal-to-noise ratios of the input and output of the AR(2) process, respectively.
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Table 2

Summary of the results obtained for the simulation of an AR(2) process with T=80 and �=10, additive observational noise and a delay time

of 20 ms

SNRoutputSNRinput

4 2 1 0.5 0.25�

SD �� SD�� �� SD �� SD �� SD �� SD

0.0 20.7� 0.220.0 21.1 0.2 21.6 0.3 22.3 0.4 23.0 0.5

0.2 20.9 0.3 21.3 0.4 21.920.0 0.44 22.6 0.5 23.4 0.7

0.4 21.0 0.4 21.5 0.4 22.12 0.520.0 22.8 0.7 23.7 0.8

0.5 21.2 0.6 21.8 0.7 22.320.0 0.71 23.1 0.9 24.2 1.0

0.70.5 21.520.1 0.8 22.0 0.8 22.8 1.0 23.4 1.0 24.9 1.2

0.9 21.8 1.1 22.6 1.1 23.4 1.2 24.5 1.4 25.7 1.520.10.25

The realization length was 215. The following abbreviations are used: �� and SD are the mean and standard deviation of the delay time estimated

from 100 realizations, SNRinput and SNRoutput denote the signal-to-noise ratios of the input and output of the AR(2) process, respectively.

form fits the observed phase spectrum very well (Fig.

5(e)). In Fig. 5(f), a delay of 19 ms can be identified

from the objective function.

In a total of eight recordings from one patient and

four recordings from the second patient, the delay

could be estimated by the Hilbert transform method.

The delay estimates are very well reproducible. The

delay was (19.3�2.0) and (18.0�3.5) ms, respectively.

This is in keeping with a transmission via fast pyrami-

dal pathways. It should be emphasized that a delay

estimate cannot be obtained by a straight line fit in this

case, as the phase curve obviously exhibits a nonlinear

behavior.

One might argue that the phase estimate in Fig. 5(e)

has an approximately constant slope from 8 to 14 Hz

and does extrapolate back to the origin, just as it would

be expected for a system consisting of nothing but a

delay between the input and the output. This, however,

does not mean that the phase spectrum can be well

described by a pure delay model, as this model does not

fit the data for frequencies smaller than 8 Hz. If,

however, a simple delay model would apply, the phase

would follow a straight line over the whole range of

significant coherency. On the contrary, Fig. 5(d) clearly

show that a pure delay model does not apply to the

data, as in this case arg A(�) should be identically zero.

Furthermore, for a pure delay model to be valid, the

spectra of the input and the output signal of the system

must be identical. This claim can hardly be made based

on Fig. 5(a), although it should be kept in mind that

differences in the observed spectra might also be due to

colored observational noise.

We recommend not to use the straight line fit method

if the phase spectrum does not follow a straight line

over the whole frequency range of significant coherency

(FRSC). Nevertheless, there are cases in which the

phase spectrum follows a straight line only over part of

the FRSC and a fit of a straight line over only this part

of the FRSC gives a correct delay estimate. Whether

this estimate is correct or not can not be judged based

on the straight line fit method. However, the Hilbert

transform method provides a way of checking this

estimate. Only if we find that the minimum phase is

constant over the region for which we see a linear

increase of the phase spectrum, the slope of the phase

spectrum provides a valid estimate of the delay. This is

why a straight line fit to the portion from 8 to 14 Hz of

the phase spectrum in Fig. 5(e) does not give a correct

delay estimate, as clearly the minimum phase shown in

Fig. 5(d) is not constant from 8 to 14 Hz.

The transfer function shown in Fig. 5(d) closely

resembles the one of an AR(2) process. This is in line

with previous studies, showing AR(2) characteristics for

the resonant relationship between muscle activity and

the corresponding limb acceleration in the physiological

situation (Timmer et al., 1998a).

4.2. EcoG–EMG relation

As a second example, we present the results for the

relation between concurrently measured ECoG and

EMG recorded from the hand muscle extensor carpi

ulnaris. In Fig. 4(a), we display the spectra of ECoG

and EMG in the region of significant coherency, which

can be seen from Fig. 4(b). Both spectra do not exhibit

significant peaks rendering the gain function (Fig. 4(c))

rather uninformative. The minimum phase, displayed in

Fig. 4(d) shows a monotonous increase with frequency.

In Fig. 4(e), the resulting fit to the phase estimates, for

a delay time of 21 ms identified from the objective

function obj(�) (Fig. 4(f)), is displayed.

In a total of 12 recordings from one patient and 15

recordings from the second patient, the delay could be

estimated by the Hilbert transform method. The delay

was (18.0�1.6) and (15.0�3.1) ms, respectively. As

for the EcoG–Acc relation the delay estimates are very
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well reproducible. They are again in accordance with a

transmission via fast pyramidal pathways.

It is interesting to compare this finding to the result

of the straight line fit method as the approximately

linear increase of the phase estimates with frequency

suggests that it might be applicable here. Following the

argument of Mima and Hallett (1999b), we do not

impose the restriction of zero phase at zero frequency a

priori but rather fit a straight line taking into account

only the observed values for the phase spectrum over

the FRSC. The slope of this straight line yields a delay

estimate of about 40 ms. This is not only in contradic-

tion to the neurophysiologically reasonable assumption

of a conduction via fast pyramidal pathways but also in

contradiction to the results derived for the EcoG–Acc

relation before. This error can be understood from the

minimum phase displayed in Fig. 4(d), which is

monotonically increasing with frequency. Conse-

quently, the straight line fit overestimates the delay, as

it does not account for this contribution to the phase

spectrum.

The phase spectra between the ECoG and the EMG

are more variable than for the EcoG–Acc interaction

and are therefore more difficult to interpret. While the

delay estimates are very well reproducible the shape of

the minimum phase component differs considerably

from patient to patient and also from recording to

recording within the same subject.

5. Discussion

The Hilbert transform method provides a valuable

approach to disentangle the effects of a delay and the

transfer function on the phase spectrum. As pointed

out before there are however a number of assumptions

involved in the derivation of the Hilbert transform

relations which we want to discuss in more detail here.

The first obvious assumption is the one of linearity.

On the one hand, it is well known that the fundamental

processes underlying the generation and transmission of

cortical signals are nonlinear (Porter and Lemon, 1993).

On the other hand, it is important to note that the

Hilbert transform method does not rely on the linearity

of the processes but rather on the linearity of the

relation between them. The large coherency observed

between the signals shows that under the given record-

ing conditions the relation between the processes is to a

good approximation described by a linear filter. Thus,

the Hilbert transform seems to be applicable with re-

spect to the assumption of linearity.

Fig. 3. Results for an AR(2) process with parameters a1= −1.9691 and a2=0.9753 with signal-to-noise-ratio of 1 assuming the wrong

driver-response relationship. From top left to bottom right, the subplots display: (a) the spectra of the AR(2) process (dashed line) and its driving

noise (solid line); (b) the coherency between the two signals (solid line) and the critical value s (dashed line) for the null hypothesis of zero

coherency defined in Eq. (11); (c) the gain normalised to a maximum value of 1; (d) the minimum phase estimate with its 95% confidence interval;

(e) the estimated phase spectrum between the two signals together with the best fit of the sum of the minimum phase and the delay term identified

from the objective function; (f) the objective function obj(�) defined in Eq. (19).
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Fig. 4. Results for the EcoG–Acc relation. Displayed are from top left to bottom right: (a) the spectra of the ECoG (dashed line) and

accelerometric signal (solid line); (b) the coherency between the two signals (solid line) and the critical value s (dashed line) for the null hypothesis

of zero coherency defined in Eq. (11); (c) the gain normalised to a maximum value of 1; (d) the minimum phase estimate with its 95% confidence

interval; (e) the estimated phase spectrum between the two signals together with the best fit of the sum of the minimum phase and the delay term

identified from the objective function; (f) the objective function obj(�) defined in Eq. (19).

Furthermore, the method theoretically rests on the

assumption of causality or, in other words, prior

knowledge about the direction of interaction. We have

pointed out how this information can be obtained a

posteriori by comparing the results for both alternative

directions.

The assumption of minimum-phase behavior has to

be motivated carefully, as has been pointed out by

Victor (1989). It is well known that any linear system

can be decomposed into a sequence of up to three

filters: a time shift filter, a minimum-phase filter and an

allpass filter. The Hilbert transform relation given in

Eq. (14) applies only to minimum-phase filters. The

Hilbert transform method employs the difference in the

phase spectrum of a minimum-phase system and the

composition of a minimum-phase system and a time

shift filter, in order to estimate the delay introduced by

the time shift filter. A violation of the minimum-phase

assumption is therefore tantamount to including an

allpass filter into the system. The properties of allpass

systems thus allow us to study the error made in the

application of the Hilbert transform method to a non-

minimum-phase system. An allpass system has unit

amplitude response. While its phase response is not

uniquely determined by this condition two important

characteristics are guaranteed. Firstly, the group delay,

defined as the first derivative of the phase with respect

to frequency, is positive for all frequencies. And sec-

ondly, it is not constant, thus the phase does not

increase linearly with frequency.

The second characteristic implies that in principle

non-minimum-phase systems can be identified by the

fact that the model underlying Eq. (19) does not fit the

data. Consider a system consisting of the composition

of a minimum-phase system and an allpass. As an

allpass has unit gain, it does not influence the minimum

phase arg A(�) of the system. However, it adds a

component to the phase spectrum of the system that is

not increasing linearly with frequency. So while for the

system consisting only of a time shift and a minimum-

phase filter a � can be found in Eq. (19) such that the

sum of �� and arg A(�) fits the observed phase

spectrum, this is not possible if the systems contains an

allpass component. It is thus important to note that

although the application of the Hilbert transform is

based on the assumption that no allpass component is

contained in the system, this assumption can be con-

firmed a posteriori by the fact that the sum of the

minimum phase system and the delay component de-

scribes the observed phase spectrum well. In practice,

however, this model fit might be hard to infer based on

bandlimited data, because only the region of significant

coherency can be used to test the model. Nevertheless,

the very good fit of the model to the experimental data
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Fig. 5. Results for the EcoG–EMG relation. Displayed are from top left to bottom right: (a) the spectra of the ECoG (dashed line) and EMG

(solid fine) signal; (b) the coherency between the two signals (solid line) and the critical value s (dashed line) for the null hypothesis of zero

coherency defined in Eq. (11); (c) the gain normalised to a maximum value of 1; (d) the minimum phase estimate with its 95% confidence interval;

(e) the estimated phase spectrum between the two signals together with the best fit of the sum of the minimum phase and the delay term identified

from the objective function; (f) the objective function obj(�) defined in Eq. (19).

in Fig. 5(d) and Fig. 4(d) provides an indication that

the minimum-phase assumption is valid for our data.

The fact that allpass systems have a positive group

delay is very important for the interpretation of the

delay estimates obtained by the Hilbert transform

method. We first note that this property of allpass

systems is the motivation for the term minimum phase.

As stated before, given a particular gain spectrum, the

conditions of linearity and causality do not determine

the phase spectrum uniquely, but there are rather infi-

nitely many phase spectra consistent with every given

gain spectrum. Out of these phase spectra, it is the one

with the smallest group delay that is linked to the gain

spectrum by the Hilbert transform. This implies that for

non-minimum-phase systems, the delay calculated by

the Hilbert transform method provides an upper bound

for the true delay time. Combining the results on the

delay time for the EcoG–EMG and the EcoG–Acc

relation compiled in Table 3 we can thus establish an

upper bound of about 20 ms for the delay time between

cortex and periphery. This upper bound is sufficient to

infer that the transmission has to be via fast oligosy-

naptic pyramidal pathways, pathways that are well

understood in terms of neurobiology. Their con-

stituents, namely the transmission via nerve fibres, the

integration on the spinal motoneuronal level and the

electromechanical coupling in the periphery do not only

transmit the cortical signal hardwired but also change it

in a dynamical manner (Kandel et al., 1991). They

mostly have lowpass characteristics in terms of signal

processing. Lowpass filters are minimum phase, as well

as any serial combination of minimum-phase systems.

We thus have strong neurophysiological evidence that

the system under study exhibits minimum-phase behav-

ior to a good degree of approximation and the delays

can indeed be estimated correctly except for the positive

bias introduced by observational noise.

We have pointed out and explained a positive bias

introduced into the delay estimates by observational

noise. We demonstrated that the bias depends both on

the amount of noise and on the spectrum of the pro-

cess. The bias is worst for narrow-band signals, which

consequently have to be measured with little noise in

Table 3

Summary of mean and standard deviations of the delay estimates

between concurrently recorded ECoG and peripheral EMG and Acc

given in milliseconds

EcoG–EMG ECoG–AccPatient c

Mean MeanSD SD

19.31.6 2.018.01

2 3.515.0 3.1 18.0
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order to render the Hilbert transform method applica-

ble. We exemplified how the applicability of the method

can be checked on model systems and presented a

successful application to relations between ECoG and

EMG and between ECoG and Acc.

So far, we have discussed separately the problems

originating from a violation of the minimum-phase

assumption on the one hand and from observational

noise on the other hand. We note however that from a

theoretical point of view observational noise just corre-

sponds to a special case of non-minimum-phase sys-

tems. The observational noise contributes an additive

component to the gain spectrum, while changing only

the confidence intervals of the phase spectrum but not

the phase spectrum itself. Although the minimum-phase

estimate is invariant under a multiplication of the gain

by a constant factor it is changed by adding a constant

to the gain and it is thus not a consistent estimator of

the phase spectrum of a minimum-phase system with

additive observational noise.

We pointed out that a prerequisite for the commonly

used straight line fit method of delay estimation is the

assumption of a hardwired transmission that is the

peripheral signal being a mere time delayed version of

the cortical activity. This is an obvious oversimplifica-

tion of the biological situation and explains the superi-

ority of the Hilbert transform method as shown in the

examples of the present paper.

The delay between ECoG and Acc should consist of

two contributions, the delay between ECoG and EMG

plus the one between EMG and Acc. So as a check for

consistency of the results, we also estimated the delay

between EMG and Acc and found it to be (2.6�2.9)

ms. This is in keeping with the results for the EcoG–

EMG and EcoG–Acc delay reported in Table 3. It is

also in line with our previous studies (Timmer et al.,

1998a,b) in which we found no delay between EMG

and Acc. We however note that there are other studies

in which the delay between EMG and Acc was esti-

mated to be in excess of 10 ms (Halliday et al., 1995;

Wessberg and Vallbo, 1996; McAuley et al., 1997). All

of these studies are based on the straight line fit

method, which might be the reason for the discrepancy

with our results. Further studies are needed in order to

resolve this issue.

The phase spectra of the EcoG–Acc relation indicate

that the dynamics of this system are well described by a

second order linear stochastic oscillator like an AR(2)

system. However, the phase spectra of the EcoG–mus-

cle interaction are more variable and therefore more

difficult to interpret. The shape of the minimum phase

component differs considerably from patient to patient

and also from recording to recording within the same

subject. It is well recognized that the corticospinal

system is extremely dynamic and flexible with regard to

the relationship between corticospinal cellular discharge

and muscular contraction (Porter and Lemon, 1993).

The diversity of the results in previous studies on the

timing relations of corticomuscular interaction ranging

from zero-delay corticomuscular synchronization to de-

lays compatible with corticospinal transmission (Con-

way et al., 1995; Halliday et al., 1998; Brown et al.,

1998, 1999; Salenius et al., 1997) has already been

attributed to these dynamics by Farmer (1998). It seems

very likely that this is the basis for at least part of the

varying shapes of the phase spectra in the present

study. Therefore, these spectra cannot be interpreted in

terms of a single biological mechanism. Nevertheless, it

is the great advantage of the Hilbert transform method

that it allows to understand a part of it, that is the pure

delay, without assuming a full parametric model for the

system, like for example AR(2).

A problem that should be mentioned is that of an

unmeasured confounder, namely a common input to

both the central and the peripheral signal. As in this

case, there is no direct connection between the mea-

sured variables, any technique of delay estimation must

fail. In general, the estimated delay time between cortex

and periphery will typically be the difference between

the delay times from the unmeasured confounder to the

cortex and the periphery. This is not a problem specific

to delay estimation but it is inherent to any bivariate

time series analysis and can only be resolved by mea-

suring the confounder and using multivariate tech-

niques of time series analysis such as graphical models

(Dahlhaus et al., 1997; Dahlhaus, 2000).
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