
On the irregular temporal behaviour of the variable star R Scuti
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A B S T R A C T

We comment on the recent results of a temporal analysis of R Scuti, a star of RV Tauri type,

presented by Buchler et al. As an alternative approach, we apply the technique of linear state

space analysis to describe the irregular temporal behaviour with a linear stochastic process. We

find evidence that the variability of R Scuti can be explained by the superposition of two

stochastically driven damped oscillators.
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1 I N T RO D U C T I O N

The optical light curves of metal-poor Population II Cepheids

(W Virginis and RV Tauri) often exhibit irregular pulsations (e.g.

Kukarkin 1975). It can be shown that a deterministic model of a

multi-periodic Fourier decomposition is not compatible with the

observational data (Buchler et al. 1996). The irregularity in the

pulsation pattern can be attributed to a manifestation of low-

dimensional chaos (Buchler & Kovacs 1987). In a recent paper

(Buchler et al. 1996), theoretical conclusions of such a non-linear

model are applied to observational data on the long-term light curve

of R Scuti provided by the American Association of Variable Star

Observers (AAVSO). Recently, the AAVSO has completed a

compilation of the observational data on some RV Tauri stars. Of

these, the R Scuti light curve is particularly long (c. 31 yr) with a

relatively good temporal sampling and a large pulsation amplitude.

The AAVSO light curves of the RV Tauri star R Scuti are

available for the intervals 1963–85, 1985–90 and 1991–95. The

observations include the Julian date of the observation and the

visual magnitude of the variable at the reported time (and further

information). In order to obtain comparable data sets, we followed

the data preparation method of Buchler et al. (1996) by combining

all observation sets. Then, we binned the data to 2.5-d time bins,

arriving at 4714 time bins for the 1963–95 observations. Finally, we

subtracted a low-order polynomial fit to reduce the influence of

long-term variations with time-scales of a few years or longer (this

subtraction has no influence on the results given below). Fig. 1(a)

shows the resulting time series with a mean of 5:86 mag and a rms of

0:70 mag, respectively.

The time series displayed in Fig. 1(a) clearly shows a strong non-

linear behaviour of the irregular pulsations. This apparent non-

linearity is at the root of the failure to describe the dynamics of the

light curve (Buchler et al. 1996) with linear models [i.e. auto-

regressive (AR) models]. We believe that this property is caused by

a fact which is apparent already when the physical units are

considered that scale the light curve. The photometry signal is

given in units of magnitudes. If the emission properties of a variable

star are examined, the signal values to be processed should be

linearly correlated with the emitted photon flux S of the star, thus

mag1 ¹ mag2 ¼ ¹2:5 log10

S1

S2

� �

: ð1Þ

Following equation (1), we have transformed the AAVSO R Scuti

light curve into a time series which represents the photon flux

(Fig. 1b). The resulting light curve displays an enhanced symmetry

about the mean value, as compared with the magnitude light curve

in Fig. 1(a). Therefore, we have assumed an underlying linear

stochastic process to have generated the transformed light curve of

R Scuti. To handle the observational noise, we have used the

technique of a linear state space model, which models the noise

and thus allows an estimation of the underlying dynamics of an AR

process (König & Timmer 1997).

2 T E M P O R A L A NA LY S I S

In this section we briefly introduce the linear state space model

(LSSM). For a detailed discussion, see Honerkamp (1993). The

LSSM is a generalization of the AR model proposed by Yule

(1927), which inspired the analysis of the variability of Wolf’s

sunspot numbers.

A given discrete time series xðtÞ is considered as a sequence of

correlated random variables. The AR model expresses the temporal

correlations of the time series in terms of a linear function of its past

values plus a noise term, and is closely related to the stochastic

differential equation which describes the system’s dynamics (a

detailed description can be found in Priestley 1992). The fact that

xðtÞ has a regression on its own past terms gives rise to the

terminology ‘autoregressive process’ (for detailed discussions see

Scargle 1981 and Priestley 1992). A time series is thus a realization

of a stochastic process or, even more precisely, the observation of a

realization of the process during a finite time interval. The

‘AR process’ variable xðtÞ is recursive and expressed in linear
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combinations of xðt ¹ 1Þ; xðt ¹ 2Þ; . . . plus an uncorrelated (Gaus-

sian) white noise process, eðtÞ (assuming a normal distribution as a

consequence of the central limit theorem).

xðtÞ ¼
X

p

i¼1

aixðt ¹ iÞ þ eðtÞ; eðtÞ , N ð0; j
2
Þ: ð2Þ

The number of terms p used for the regression of xðtÞ determines is

the order of the AR process, which is thus annotated as an AR[ p].

Depending on the order p and the values of the parameters ai, the

process is represented by damped oscillators, pure relaxators or

their superpositions. The formulae to transform the dynamical

parameters ai to periods and relaxation times are given in Priestley

(1992).

LSSMs generalize the AR processes by explicitly modelling

observational noise. The variable xðtÞ must be estimated indirectly

as it is corrupted by observational noise hðtÞ. The measured

observation variables yðtÞ need not necessarily coincide with the

system variables xðtÞ that provide the best description of the system

dynamics. Thus an LSSM is defined by two equations, the system or

dynamical equation (3) and the observation equation (4):

xðtÞ ¼ A xðt ¹ 1Þ þ eeðtÞ; eeðtÞ , N ð0; QÞ; ð3Þ

yðtÞ ¼ C xðtÞ þ hðtÞ; hðtÞ , N ð0; RÞ: ð4Þ

This definition is a multivariate description of equation (2), i.e. the

AR[ p] process is given as a p-dimensional AR process of order one,

with a matrix A that determines the dynamics. The matrix C maps

the unobservable dynamics to the observation. The vector-valued

noise variable eeðtÞ represents the dynamical noise and is governed

by a covariance matrix Q. The one-dimensional observational noise

hðtÞ is described by its covariance R. The matrices A, Q and the

scalar R are estimated by a maximum likelihood algorithm

(Honerkamp 1993).

A necessary condition that the LSSM AR[ p] model fits the data is

that the residuals between the measured and the estimated time

series [i.e. the difference yðtÞ ¹ CxðtÞ] should be undistinguishable

from white noise, i.e. the time series of prediction errors should be

uncorrelated. The variance of the observational noise is correlated

with the variance of the residuals given in Table 1 (see König &

Timmer 1997 for details). A Kolmogorov–Smirnov test was

computed in order to test for a flat spectrum and to quantify the

goodness of fit for the fitted LSSM AR[ p] models (Table 1). This

test has been used to obtain a reliable criterion for the validity of the

a priori assumption of Ansatz functions in the study of non-periodic

temporal behaviour in the X-ray light curves of active galactic

nuclei (König, Staubert & Wilms 1998). For details on this test and

other alternative methods the papers of Honerkamp (1993) and

König & Timmer (1997) should be consulted.

We applied LSSMs with different orders of the AR processes. An

LSSM using an AR[0] process corresponds to a pure white noise

process without any temporal correlation and a flat spectrum. The
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Figure 1. AAVSO R Scuti light curve 1963–95 with (a) ordinate in magnitudes and (b) ordinate in arbitrary photon flux units (zero is JD 243 8295.5).

Table 1. Results of LSSM AR[ p] fits.

Order j
2
res

a Period b
t

c KStest
d

p (d) (d) %

0 1 – – 0

1 0.339 – 37.93 0

2 0.257 93.79 39.38 4.6

3 0.252 115.63 36.54 24.5

– 16.71

4 0.213 141.03 1450.41 78.1

71.21 267.95

5 0.214 142.99 1073.09 89.1

70.92 390.06

– 27.85

6 0.211 142.58 1875.90 86.7

71.45 515.89

– 17.12

– 11.47

7 0.210 142.84 1340.40 66.2

70.81 850.19

61.81 36.81

– 23.94

aVariance of the residuals yðtÞ ¹ CxðtÞ (the variance of the RScuti light curve

is set to 1 for clarity).
b ;cPeriod and relaxation time of a damped oscillator (both values given) or a

relaxator (only t given).
dProbability that the residuals arewhitenoiseascomputedbyaKolmogorov–

Smirnov test.



Kolmogorov–Smirnov test rejects this model at any level of

significance (Table 1). The LSSM AR[4] model gives a good fit

to the AAVSO R Scuti data as the residual variance remains nearly

constant for model orders p $ 4 (j
2
res < 0:21) and the residuals are

consistent with white noise. The dynamical capabilities of less

complex LSSM AR models ( p ¼ 1 . . . 3) only give an insufficient

description of the light curve variability. On the other hand, higher

order LSSM AR[ p] fits ( p > 4) yield no improvement of the

dynamical description of the LSSM AR[4] model, as the additional

relaxators and damped oscillators are negligible. Any further

increase of the model order will not reduce the variance signifi-

cantly. Oscillators and relaxators which might occur in unnecessa-

rily more complex LSSMs should be highly damped and can

therefore be neglected. We therefore conclude that the LSSM

AR(4) model supplies a reasonable description of the underlying

dynamics of the light curve. As the light curve data are a composi-

tion of different observations with different statistical qualities, the

statistical significance of the fitted models is affected and the

variance of the residual time series slightly varies for model order

p > 4.

We have also used the Durbin–Levinson algorithm to estimate

the parameters of a competing simple AR model (see König &

Timmer 1997 for details). As expected for time series containing

observational noise, the characteristic time-scales are underesti-

mated by fitting a simple AR process and the statistical test rejects

the AR model. A test for white noise residuals fails, which means

that there are still correlations present that cannot be modelled with

an AR process.

Any initial correlation in the observed time series is removed

with the subtraction of appropriate Ansatz functions of damped

oscillators and relaxators, the parameters of which have been

estimated (Buchler et al. 1996; König 1997).

3 D I S C U S S I O N

We have found that the AAVSO light curve of the variable RV Tauri

star R Scuti can be adequately modelled with an LSSM AR[4]

model. The dynamical parameters of the LSSM AR[4] fit reveal two

damped oscillators with periods of <141 and <71 d, and relaxation

times of ,1500 and ,300 d, respectively. Higher order LSSM

AR[ p] models cannot improve these fits significantly. Therefore,

models with augmented complexity (with additional relaxators and

damped oscillators) fail to ameliorate the description of the light

curve dynamics. In addition, the AR[4] model provides all features

occurring in the R Scuti periodogram (see Fig. 2), especially the

broad peaks which indicate the periods of the damped oscillators,

the increase of power with decreasing frequency and the flattening

of the periodogram at low frequencies. Please note that the 71-d

peak does not occur as a harmonic of the 141-d oscillation, but

represents an independent oscillating mode. The parameters that

determine both oscillations are independently estimated. No rela-

tionship between the amplitudes and phases of the two oscillation

modes can be detected.

Our dynamical interpretation follows the idea of a dissipative

system with ‘viscous’ behaviour of the opacity in the outer stellar

atmosphere.

This damped oscillating system releases energy mainly in two

oscillating modes. We are thus led to conclude that a description of

the irregular variability of R Scuti by means of a linear stochastic

model class is an interesting and competitive alternative to the non-

linear description of multiperiodic chaotic models of stars.
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Figure 2. Periodogram of the AAVSO R Scuti photon flux time series. The dashed lines display the centres of the broad period peaks at 141 d (8:21 × 10¹8 Hz)

and 71 d (1:63 × 10¹7 Hz) as estimated by the LSSM AR[4] model. The line gives the estimated LSSM AR[4] spectrum. Both axes are scaled logarithmically in

order to allow a direct identification of periodic and non-periodic components of the process. For a linearly scaled periodogram, Buchler et al. (1996) should be

consulted.
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