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a b s t r a c t

Noise in gene expression, either due to inherent stochasticity or to varying inter- and intracellular
environment, can generate significant cell-to-cell variability of protein levels in clonal populations. To
quantify the different sources of gene expression noise, several theoretical studies have been performed
using either a quasi-stationary approximation for the emerging master equation or employing a time-
dependent description, when cell division is taken explicitly into account. Here, we give an overview of
the different origins of gene expression noise which were found experimentally and introduce the basic
stochastic modeling approaches. We extend, and apply a time-dependent description of gene expression
noise to experimental data. The analysis shows that the induction level of the transcription factor can be
employed to discriminate the noise profiles and their characteristic signatures. On the basis of experi-
mentally measured cell distributions, our simulations suggest that transcription factor binding and
promoter activation can be modeled independently of each other with sufficient accuracy.

� 2009 Elsevier Ltd. All rights reserved.
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Fig. 1. Definition and reaction scheme of single-gene reporter system (shaded box)
within intracellular environment (large box). Intrinsic and extrinsic noise can only be
distinguished if expression level of reporter system does not influence extrinsic factors.
Transition rates are defined in the text.
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1. Introduction

Stochasticity is ubiquitous in biological systems. In genetic
networks random fluctuations are inevitable as each step leading
towards gene expression relies upon random encounters between
molecules. Moreover, the molecules participating in each of these
probabilistic chemical reactions often are present in very low
numbers which contribute to the final state of the system. There-
fore, within a genetically identical population, individual cells show
significant phenotypic heterogeneity (Avery, 2006; Raser and
O’Shea, 2005; Spudich and Koshland, 1976). This variability directly
affects the cell’s ability to respond to environmental factors like
changes in ligand concentration. Due to the progress in experi-
mental technologies to use expression reporters in single cells, it is
possible to examine the expression variability in living cells (Ko
et al., 1990). A lot of effort has been undertaken to quantify the
origins of gene expression noise experimentally (Bar-Even et al.,
2006; Becskei et al., 2005; Blake et al., 2003; Cai et al., 2006; Col-
man-Lerner et al., 2005; Elowitz et al., 2002; Golding et al., 2005;
Mettetal et al., 2006; Newman et al., 2006; Ozbudak et al., 2002;
Pedraza and van Oudenaarden, 2005; Raj et al., 2006; Raser and
O’Shea, 2004; Rosenfeld et al., 2005; Sigal et al., 2006; Volfson et al.,
2006) and theoretically (Berg, 1978; McAdams and Arkin, 1997;
Paulsson, 2004, 2005; Pedraza and Paulsson, 2008; Rausenberger
and Kollmann, 2008; Swain, 2004; Swain et al., 2002; Thattai and
van Oudenaarden, 2001; Volfson et al., 2006).

Stochasticity or noise inherent to gene expression seems to be
one of the main driving forces for the observed cell-to-cell vari-
ability in clonal populations. A general framework to describe the
time evolution of such a stochastic system most accurately is given
by a chemical master equation (van Kampen, 1992), which deter-
mines the probability for specific molecular population at a time.
The master equation determines the entire probability distribution
of the molecular system. The chemical reactions themselves are
viewed as distinct and instantaneous physical events in a well-
stirred system (Gillespie, 2007). There are no general methods to
solve the chemical master equation, but several approximations
have been suggested to infer characteristics of the behavior of the
system (Gardiner, 1990; van Kampen, 1992). In the case that fluc-
tuations are negligible, the master equation can be approximated
by a macroscopic ordinary differential equation for the average
value of the involved chemical species. This mean-field approxi-
mation has been successfully used in several studies, e.g., to
quantify cell-cycle averaged inter-cellular variability (Paulsson,
2005; Swain et al., 2002; Thattai and van Oudenaarden, 2001) or to
derive analytical expressions for the distributions of the involved
populations (Friedman et al., 2006; Shahrezaei and Swain, 2008).
Recently, time-resolved experiments on single cells provided
insight into protein levels and noise strengths at every state of the
cell cycle (Sigal et al., 2006). To extract information from these non-
equilibrium protein synthesis trajectories, a cell-cycle averaged
description becomes invalid and a time-dependent description
using the master equation approach has been suggested (Rau-
senberger and Kollmann, 2008; Swain et al., 2002).

The typical model for gene expression is described by a one-
gene-system, consisting of promoter activation/inactivation, tran-
scription, and translation (Paulsson, 2005; Swain et al., 2002). In
addition, transcription factor binding to specific DNA regions can
trigger or inhibit the activation of the gene under consideration and
has been investigated by several authors (Bintu et al., 2005; Buchler
et al., 2003; Gerstung et al., 2009; Pulkkinen and Berg, 2008). The
introduced non-linearity, either due to multiple binding sites
(Gerstung et al., 2009) or to autoregulation of the TF (Pulkkinen and
Berg, 2008), leads to more complex dynamics of the cellular system.
In the following we assume that the transcription factor (TF) acts as
an activator such that transcription can start if and only if the TF is
bound and the promoter is in its active state (Fig. 1).

The cell-to-cell variability of a specific protein in a large clonal
population with fixed generation time can be separated into two
distinct contributions, intrinsic and extrinsic noise (Swain et al.,
2002). All gene specific, stochastic events contribute to the intrinsic
noise. Differences between cells, either in global cellular state or in
the concentration or activity of any factor that affects gene
expression are referred to as extrinsic noise (Elowitz et al., 2002).

Based on the time-dependent description of gene expression
(Rausenberger and Kollmann, 2008), the present work shows that
the magnitudes of the different noise contributions depend
strongly on the induction level of the TF, the synthesis rates, and the
molecule lifetimes associated with each individual gene providing
possible explanations for diverging experimental results as
demanded by Kaufmann and van Oudenaarden (2007). As an
example, we focus on differences in the induction level of a TF, e.g.,
due to different experimental set-ups, which lead to different
signatures of gene expression noise even in the same organisms.
Furthermore, on the basis of experimentally measured cell distri-
butions of wild type and over-expressed cells of Escherichia coli, our
simulations propose that, in prokaryotes, TF binding and promoter
activation are independent of each other and thus can be modeled
to good approximation separately.
2. Different origins of gene expression noise

In a first experiment on the different sources of gene expression
noise, Elowitz et al. (2002) introduced two copies of the same
promoter into the genome of E. coli, driving the expression of YFP
and CFP proteins. Extrinsic fluctuations were quantified when the
expression of both copies was affected, whereas intrinsic fluctua-
tions were specific to one of the copies alone. Several subsequent
experiments have measured the variance in protein abundances in
different cellular systems (Bar-Even et al., 2006; Becskei et al.,
2005; Blake et al., 2003; Colman-Lerner et al., 2005; Golding et al.,
2005; Mettetal et al., 2006; Newman et al., 2006; Pedraza and van
Oudenaarden, 2005; Raj et al., 2006; Raser and O’Shea, 2004;
Rosenfeld et al., 2005; Sigal et al., 2006; Volfson et al., 2006).
Considerable confusion stems from diverging experimental results
which have identified different origins for the main contribution to
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gene expression noise, such that a complete picture is still missing
(Kaufmann and van Oudenaarden, 2007). Moreover, the cell-to-cell
variations arising from gene expression noise are present in all
investigated organisms ranging from microbes to humans (Raj and
van Oudenaarden, 2008; Sigal et al., 2006). For prokaryotes,
translational efficiency was identified as the main source of vari-
ability of expression levels consistent with a stochastic model in
which proteins are produced in sharp and random bursts (Ozbudak
et al., 2002). However, later experimental observations in indi-
vidual living cells either by measuring mRNA levels or by real-time
observations at single-molecule level indicated that promoter
activation predominantly causes gene expression noise (Cai et al.,
2006; Golding et al., 2005). Furthermore, extrinsic factors, like the
cellular state, were also identified to give the main contribution to
phenotypic variations in a clonal population (Rosenfeld et al.,
2005). Similar diverging results have been found in eukaryotes,
where in the budding yeast Saccharomyces cerevisiae a two-
reporter system, expressing two fluorescent proteins from identical
promoters, identified switching between active and inactive
promoter states due to slow stochastic chromatin-remodeling
events as the by far largest source of noise (Raser and O’Shea, 2004).
In later experiments it was shown for a large set of genes at their
native expression levels that the noise has a clear sign of tran-
scriptional origin due to low-copy mRNA molecules (Bar-Even et al.,
2006; Newman et al., 2006). Moreover, a direct monitoring of
mRNA production from a gene at the resolution of single molecules
in mammals revealed strong mRNA bursts dominating gene
expression noise (Raj et al., 2006). For human cells, genes at native
induction level showed significant noise contribution from long-
term variations of the cellular state (Sigal et al., 2006). At first sight
it seems that no general rule can be given to determine the main
sources of gene expression noise. Protein levels, however, should be
strongly regulated to serve for precise and reliable information
processing within a cell. Any significant deviation from the optimal
level would result in reduction of fitness and an evolutionary
disadvantage. Thus, random fluctuations are in most cases detri-
mental for cellular systems and several regulatory mechanisms
have evolved to minimize them. E.g., negative feedback loops have
been shown both theoretically (Thattai and van Oudenaarden,
2001) and experimentally (Austin et al., 2006; Becskei and Serrano,
2000; Dublanche et al., 2006) to reduce the fluctuations around the
mean, since fluctuations below and above the mean are pushed
back toward the mean via the feedback. Only in rare cases noise can
be used to drive phenotypic switching providing a non-genetic
mechanism to population heterogeneity, as found for bacterial
persistence against antibiotics (Balaban et al., 2004) and compe-
tence for DNA uptake from the environment (Suel et al., 2006).

3. Stochastic modeling approaches

In order to track down the individual contributions of the
molecular mechanisms involved in protein synthesis several
mathematical models have been introduced (Berg, 1978; Friedman
et al., 2006; McAdams and Arkin, 1997; Paulsson, 2004, 2005;
Rausenberger and Kollmann, 2008; Swain, 2004; Swain et al., 2002;
Thattai and van Oudenaarden, 2001; Volfson et al., 2006). Four
major steps are involved in a generic model of intrinsic fluctuations
in gene expression in living cells: (i) TF binding (repressor
unbinding), (ii) promoter (DNA) activation, (iii) transcription, and
(iv) translation (see Fig. 1). TF binding and promoter activation are
described as a random telegraph process, because they are assumed
to switch randomly between zero and one with exponentially
distributed waiting times (Golding et al., 2005; Raj et al., 2006). The
state of the TF is given by the stochastic variable B(t) switching
between B(t) ¼ 1 and B(t) ¼ 0, if the TF is bound or unbound,
respectively. Promoter activation A(t) can be expected to occur on
much slower time scales than TF binding (Alon, 2006; Cai et al.,
2006; Elf et al., 2007; Golding et al., 2005) such that the time scales
can be separated. The switching rate from the inactive to the active
state of the promoter is denoted by lA

þ, and lA
� represents the rate

for the inverse process. Furthermore, the process of promoter
activation does not seem to have any significant correlations with
the cell cycle (Raj et al., 2006) leading to a stationary solution for
the auto-correlation function CAðtÞAðt0ÞD ¼ varðAÞe�ðl

þ
Aþl

�
A Þjt�t0 j with

var (A) ¼ lA
þlA
�/(lA

þ þ lA
�). Synthesis and degradation of mRNA and

protein are typically modeled by a birth-and-death process (Kœrn
et al., 2005), where the production probabilities lR

þ and lX
þ per time

unit are proportional to the number of active genes and mRNAs.
The degradation events for the mRNA (lR

�) and proteins (lX
�) are

often assumed to be independent of each other, such that mRNA
and proteins have exponentially distributed lifetimes. Connecting
the stochastic processes in series, the time-dependent moments of
the master equation can be calculated using the approach of
generating functions (Swain et al., 2002; Thattai and van Oude-
naarden, 2001). If the cell-cycle stage can be neglected, the levels of
mRNA and proteins can be assumed to be at their steady-state
values, such that cell-cycle averaged distributions for the mRNA
and protein levels and the normalized stationary variances can be
derived (Paulsson, 2004; Swain et al., 2002; Thattai and van
Oudenaarden, 2001).

The assumption of an equilibrated system with small fluctua-
tions around the mean becomes invalid, if cell division is included
(Berg, 1978; Swain et al., 2002; Volfson et al., 2006). In accordance
with recent experiments (Golding et al., 2005; Rosenfeld et al.,
2005), we assume symmetric cell division and a binomial distri-
bution of the molecules. The mathematical description of gene
expression becomes more complex and the approximation via
linearization fails, due to the introduction of another important
time scale into the system, the generation time TG. However, the
specific intrinsic noise levels can be deduced at every stage of the
cell cycle and can be compared to time-resolved experimental data
(Rausenberger and Kollmann, 2008).

A generic approach to describe extrinsic fluctuations in the
cellular environment and their effect on the time evolution of
a generalized protein production rate is given by an Ohrnstein–
Uhlenbeck process (Rausenberger and Kollmann, 2008; Sigal et al.,
2006). The generalized protein production rate comprises all
factors involved in gene expression as well as the global cellular
state, and is itself expected to be subject to stochastic fluctuations.
The stationary auto-correlation function of the Ohrnstein-Uhlen-
beck process is, as well as the auto-correlation function for
promoter activation which was described by a random telegraph
process, given by an exponentially decaying function, which only
depends on the time differences (Gardiner, 1990). Therefore, these
two processes cannot be distinguished on the basis of stationary
cell-to-cell distributions alone (Fig. 2A), exhibiting the same vari-
ance and relaxation time. If, however, time-resolved expression
data is also included into the analysis, the effect of bursts and dead-
times in mRNA synthesis, which contributes to the intrinsic noise,
can be discriminated from continuously varying synthesis rates
arising from extrinsic factors, Fig. 2B,C (Rausenberger and Koll-
mann, 2008).

4. Determination of noise signatures

4.1. Partial contributions to intrinsic gene expression noise

The heterogeneity in gene expression of a population can be
quantified using the standard deviation s divided by the mean m,
i.e., h ¼ s/m. The quantity h is commonly denoted as noise and
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provides a physiologically relevant measure of gene expression
variability as it quantifies relative fluctuations independent of the
expression level. Two main contributions to the overall variance,
stot

2 , determine the cell-to-cell variability of the amount of a protein
X: the inherent stochasticity of gene expression stemming from the
underlying processes (i)–(iv) is denoted as intrinsic variance, sI

2,
which originates, e.g., from the different time of transcription in
different cells, and is distinctive for each gene in its genomic
context. The extrinsic variance, sE

2, is independent of a specific gene
and acts on multiple genes in the same way. Fluctuations of
upstream factors, which drive expression directly, like a given TF
concentration, and the global cellular state, e.g., RNA-polymerase
and ribosome concentration, are only few examples of the extrinsic
variables on gene expression (Swain et al., 2002). If we do not
assume any significant feedback of the expressed protein on
extrinsic factors (cf. Fig. 1 and T�anase-Nicola et al., 2006), the
overall variance in a large clonal population of cells with fixed
generation time TG sums up to stot

2 ¼ sI
2 þ sE

2. The underlying
stochastic processes of the generic model are connected in series
and hence allow for assignment of the individual noise contribu-
tions to the intrinsic noise of protein synthesis:

s2
I ¼

D�
XðtÞ � hXðtÞiX;R;A;B

�2E
X;R;A;B

¼ s2
B þ s2

A þ s2
R þ s2

X ; (1)

where the average overall possible trajectories of protein copy
number X(t), mRNA copy number R(t), promoter activation
A(t), and TF binding B(t) is defined by C . DX,R,A,B. The average CXDX ¼PN

X¼0 XPðX; tjRðtÞÞ is conditionally dependent on the trajectory of
mRNA synthesis, R(t), which in turn depends on A(t) and B(t). Here,
P(X, tjR(t)) denotes the probability density to observe the protein
Fig. 2. A) Distribution of normalized proteins levels, sampled overall measured time points
promoter activation (solid line) or from extrinsic factors (shaded line). B) Simulated traject
stemming from promoter activation. Adapted from Rausenberger and Kollmann (2008).
copy number X at time t given R(t). The right-hand-side of Eq. (1)
denotes the sum over variances corresponding to the processes of
TF binding (sB

2), promoter activation (sA
2), transcription (sR

2), and
translation (sX

2), respectively (Rausenberger and Kollmann, 2008).
Summing up of the individual variances is only possible if there are
no feedbacks from downstream to upstream processes (T�anase-
Nicola et al., 2006). Otherwise there could exist a stochastic
dependence of R(t) on X(t) making the additive form of Eq. (1)
invalid (Colman-Lerner et al., 2005). We find for the noise contri-
bution due to translation: h2

X ¼ s2
X=CXD

2
X;R;A;B ¼ 1=CXDX;R;A;B. Also,

the binomial distribution of the proteins caused by cell division
converges quite rapidly to a Gaussian distribution for an increased
amount of molecules. The amount of proteins synthesized per
mRNA can be estimated to be of the order 103 (Bar-Even et al.,
2006), such that the protein copy number per cell is of the order
103–106 (Sigal et al., 2006) for the systems considered in this work.
Thus, we can neglect translational noise in comparison to other
noise contributions. To derive analytical expressions we assume
a fixed induction level of the TF, B(t) ¼ Beq. Due to the fast TF
binding and very slow promoter activation, fluctuations from TF
binding can be neglected compared to fluctuations from promoter
activation and transcription such that the averaging over B cancels
out in Eq. (1). Therefore, noise contribution from TF binding, sB

2, is
not present. We introduce the average acceleration of protein
synthesis in absence of mRNA and protein degradation,
A ¼ CADBeqlþR lþX , where the mean 0 � CAD ¼ lA

þ/(lA
þ þ lA

�) � 1 can be
interpreted as a measure of the fraction a promoter spends in its
active state. If we account for cell division with generation time TG

(Rausenberger and Kollmann, 2008), the results can be directly
compared to time-resolved expression data of protein levels. The
within the cell cycle of in silico generated trajectories assuming all noise arising from
ories using exclusively extrinsic noise contributions or C) intrinsic noise contributions
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derived asymptotic expressions for the mean and the variances are
valid for any time t within a given cell cycle, 0 � t � t0 � TG, where
t0 denotes the time point of the last cell division. The most likely
physiological case consists of short mRNA lifetimes and long
protein lifetime, ðl�R Þ

�1 � TG � ðl
�
X Þ
�1. If we also consider a fixed

TF induction level Beq, we obtain for t � t0; TG[ðl�R Þ
�1 the

following asymptotic expressions for the average amount of protein
and mRNA (Rausenberger and Kollmann, 2008):

hXðt � t0ÞiX;R;A¼
A
l�R

h
t � t0 þ TG

i
(2)

hRðt � t0ÞiX;R;A¼ hAiBeq
lþR
l�R
: (3)

Eq. (2) implies a linear increase of the mean amount of protein in
time, whereas the mRNA level is recovered immediately after cell
division and can be interpreted to be stationary (Eq. (3)). The noise
contributions from transcription and promoter activation are also
time-dependent and read in the limit t � t0; TG[ðl�R Þ

�1;g�1
A :

s2
Rðt � t0Þ ¼ 2A lþX�

l�R

�2

�
t � t0 þ

1
3

TG

�
(4)

s2
Aðt � t0Þ ¼ 2A2 varðAÞ

hAi2
1�

l�R

�2
gA

�
t � t0 þ

1
3

TG

�
: (5)

For the case that both protein and mRNA lifetimes are signifi-
cantly shorter than the generation time, memory over generations
is eliminated and both the mRNA and protein levels are recovered
immediately after cell division, leading to the stationary, cell-cycle
averaged description of gene expression described by the mean-
field approximation. Therefore, the solutions are time-independent
and agree with those found earlier by Paulsson (2004, 2005) for the
mean protein level CXDX;R;A ¼ A=ðl

�
R l�X Þ, mean mRNA level

CRDX,R,A ¼ CADBeqlR
þ/lR
�, and the variances

s2
R ¼

AlþX

l�X l�R

�
l�R þ l�X

� (6)

s2
A ¼

A2varðAÞ
hAi2l�R l�X

�
gA þ l�R

��
l�R þ l�X

�
 

1þ l�R
gA þ l�X

!
: (7)

4.2. Noise regimes account for different experimental observations

Different origins of noise have been proposed and measured by
several experimental groups (Bar-Even et al., 2006; Cai et al., 2006;
Golding et al., 2005; Newman et al., 2006; Ozbudak et al., 2002; Raj
et al., 2006; Raser and O’Shea, 2004; Rosenfeld et al., 2005; Sigal
et al., 2006). Recently, Kaufmann and van Oudenaarden (2007)
critically reviewed these experimental observations and formu-
lated as a major goal ‘‘to identify and differentiate between the
myriad possible origins of this variability’’. The diverging experi-
mental results, even in the same eukaryotic organism S. cerevisiae,
support the idea that gene expression is influenced by more than
one main driving source. In the following we focus on the budding
yeast S. cerevisiae and the experimental results found by Raser and
O’Shea (2004), Bar-Even et al. (2006), and Newman et al. (2006).
Raser and O’Shea (2004) measured the intrinsic noise strength of
the PHO5 and PHO84 promoters at different rates of gene expres-
sion in promoter constructs. They distinguished between three
general noise profiles depending on the relative promoter reaction
rates. Therefore, noise intrinsic to gene expression seemed to be
promoter-specific, e.g., noise generation at the PHO5 promoter
depended on stochastic promoter activation due to chromatin
remodeling. Bar-Even et al. (2006) investigated native expression of
43 genes under 11 different conditions, and Newman et al. (2006)
presented an extensive overview of protein noise for more than
2500 proteins expressed from their endogenous promoter and
natural chromosomal position by the use of a combination of high-
throughput flow cytometry and a library of GFP-tagged yeast
strains. Both studies concluded that a random birth-and-death
process of low-copy mRNA molecules describe the large observed
variations quite well: for the great majority of proteins the noise
level is inversely proportional to the mean protein abundance
implying a clear signature of a Poisson process. In addition, Bar-
Even et al. (2006) noted that infrequent promoter activation might
also explain the observed noise trend, but biological mechanisms of
promoter activation are not yet sufficiently characterized.

The following questions arise: how can one differentiate
between the sources of noise? Under which conditions does
promoter activation dominate the noise profile, or when do mRNA
fluctuations due to low-copy number describe the observed noise
trend? A possible mechanism to discriminate noise profiles is given
by our stochastic model considering TF binding explicitly. For
approximately constant TF concentration and high amount of
protein synthesized per mRNA, the intrinsic variance sI

2 of Eq. (1)
reduces to sI

2 ¼ sA
2 þ sR

2. Hence the ratio sA
2/sR

2 determines the
predominant source of noise: if sA

2/sR
2 >>1, promoter activation will

be the dominant process while in the case of sA
2/sR

2 << 1 the major
part of gene expression noise is due to transcription. For long
protein lifetimes and short mRNA lifetimes, Eqs. (4) and (5), the
ratio is given by

s2
A

s2
R

¼ Beq
varðAÞ
hAi

lþR
gA
¼ Beq

l�A lþR
g2

A

: (8)

Note that this ratio is time- and cell cycle-independent although
sR

2, Eq. (4), and sA
2, Eq. (5), both depend on the cell cycle time, t � t0,

and generation time, TG. It follows from Eq. (8) that for fixed rates
the probability of TF binding, Beq, determines the value of the ratio
sA

2/sR
2, i.e., the induction level of the TF provides one possibility to

distinguish between the different origins of noise and therefore
selects the predominant source of noise. Thus, we expect for highly
expressed genes, Beq / 1, to show signature of noise from
promoter activation provided lA

�lR
þ > gA

2 since in this case we find
sA

2/sR
2 > 1. In contrast, we expect for low induced genes, Beq � 1, to

show signature of Poissonian noise from mRNA synthesis, since in
this case sA

2/sR
2 < 1 holds given lA

�lR
þ/gA

2 is not too large. Therefore,
the induction level of the TF, Beq, provides a proper explanation for
the observation of different noise contributions even in the same
organism.

In Fig. 3 we present the mean protein abundance vs. noise under
different induction levels of the TF. In order to select arbitrary time
points t within a given cell cycle, 0 � t � t0 � TG, we use the full
expressions for the mean amount of protein and noise contribu-
tions (see Supporting Information of Rausenberger and Kollmann
(2008)), because the approximations presented in Eqs. (2), (4) and
(5) are only valid in the asymptotic limit t � t0[ðl�R Þ

�1. We
calculate the mean amount of protein and the noise contributions
for several genes at randomly selected time points for several
induction levels of the TF binding Beq. In Fig. 3A, we assume a low
induction of the TF, where the mean induction level Beq equals 0.07.
The noise contribution arising from transcription (black circles)
dominates the overall noise (light shaded diamonds). In Fig. 3B,
noise from promoter activation (dark shaded squares) overrules
noise from transcription. This can be arranged with an highly
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induced TF, with mean induction level Beq ¼ 0.7. In fact, changes in
induction level can be established by different experimental set-
ups. TF induction is expected to be quite low for experiments with
native genes in their chromosomal context (Newman et al., 2006;
Raj et al., 2006). Bar-Even et al. (2006) investigated native genes
implying a large set of low induced genes, Beq � 1, such that
transcription is the prevailing source of noise. In contrast, Raser and
O’Shea (2004) constructed yeast strains that expressed CFP and GFP
proteins from identical promoters. In promoter constructs, TF
induction is likely to be rather strong Beq / 1, such that we expect
that promoter activation noise is the dominant noise contribution.
Therefore, both experimental scenarios can be qualitatively
reproduced quite well with our stochastic model by varying the
induction level of the TF binding.
4.3. Transcription factor binding determines
population distribution

In eukaryotes, promoter activation is believed to occur due to
chromatin remodeling (Raser and O’Shea, 2004) which erratically
uncovers transcription-factor binding sites. TF binding, however, is
assumed to be quite fast and frequent, because of the high copy
number of TFs. Therefore, independence of TF binding and
promoter activation seems to be a reasonable assumption in
Fig. 3. Simulated mean abundance vs. noise for different genes. Transcriptional
contribution (black circles), noise from promoter activation (dark shaded squares) and
overall noise (light shaded diamonds). A) Low induced TF, Beq ¼ 0.07, leads to sA

2/sR
2 < 1

such that transcriptional noise dominates. B) Highly induced TF, Beq ¼ 0.7, leads to
sA

2/sR
2 > 1 such that noise from promoter activation dominates.
eukaryotes. For prokaryotes, the situation is less clear since
a possible explanation or mechanism for the slow process of
promoter activation is still lacking, although it has been measured
quite accurately (Cai et al., 2006; Golding et al., 2005). In recent
experiments Elf et al. (2007) measured the time scale for the
binding/unbinding of TF at the single-molecule level in a living cell
of E. coli. The experiment suggested that the binding/unbinding of
highly abundant TFs is rather fast. Therefore, TF binding does not
seem to be the limiting step within the process of gene expression,
and now is assumed to switch randomly between 0 and 1, i.e.,
B(t) s Beq ¼ const. In order to gain insight into the influence of the
TF binding on promoter activation in prokaryotes, we compare
different theoretical scenarios with experimental data. Kollmann
et al. (2005, Fig. 2a; redrawn in Fig. 4, inset), compared the mean
expression of CheY in a wild type of E. coli and flgM cells, where the
upstream transcription inhibitor, FlgM, was deleted. The deletion
corresponds to a sevenfold over-expression of CheY. Several effects
of an activator/repressor on the activation of the promoter are
possible. We discuss the three most intuitive scenarios:

1. TF binding and promoter activation are independent: The RNA-
polymerase can start transcription if and only if the TF is bound
(repressor is unbound) and the promoter is active.

2. TF binding enhances promoter switch-on rate: For the experi-
mentally observed over-expression we assume that the switch-
on rate lA

þ of the over-expression of CheY is enhanced by the
factor a compared to that of the wild type, i.e., lþA;OE ¼ lþA;WT a.
The switch-off rate lA

� is not affected.
3. TF binding decreases promoter switch-off rate: For the experi-

mentally observed over-expression we assume that the switch-
off rate lA

� of the over-expression is decreased by the factor
a compared to that of the wild type, i.e., lA

�
,OE ¼ lA

�
,WT/a. The

switch-on rate lA
þ is not affected.

Of course, combinations of the mentioned scenarios are possible
and likely to occur in nature. However, to keep the estimated
parameters identifiable, we only focus on these three limiting
scenarios.

The experimental data show that the mean protein level of the
over expressing flgM cells is sevenfold higher than that of the wild
type cells. Furthermore, the standard deviation of the population
distribution for the flgM cells increases quite significantly compared
to the wild type cells (Fig. 4 (inset) and Table 1). Fig. 4 shows the
population distributions of the wild type and flgM cells for the
different scenarios after parameter estimation (see Materials and
methods). The parameters are estimated such that the wild type
standard deviation and the mean fluorescence level of the flgM cells
are represented best. The estimated parameters (CBD for the first
scenario, lA

þ, lA
� and the level of the over-expression factor a for

second and third scenario) and the corresponding characteristics of
the population distributions are summarized in Table 1.

The simulations reveal that there exits a set of parameters for the
first scenario, where the TF binding does not influence the promoter
activation process directly, such that the characteristic standard
deviation of the wild type and the mean fluorescence level of the
flgM cells is reproduced quite well (residual sum of squares,
RSS ¼ 0.004). Furthermore, it also mimics (without any optimiza-
tion) the increased standard deviation of the flgM cells (cf. Table 1
and Fig. 4, light shaded crosses denotes wild type, black crosses
denotes sevenfold over-expression). The mean TF binding for the
flgM cells is 7.3 times larger than that of the wild type cells
(CBDWT¼ 0.13, CBDOE¼0.95) which leads to an about sevenfold protein
over-expression of the mean fluorescence level. For the second
scenario, where TF binding and promoter activation are not inde-
pendent of each other, but TF binding enhances the promoter



Fig. 4. Simulations of different effects of TF binding on promoter switch-on/-off rates
for fixed and estimated parameters. First scenario (circles): Wild type (light shaded)
and flgM cells (black) of assuming that promoter activation and TF binding are inde-
pendent; second scenario (squares): wild type (light shaded) and flgM cells (black)
assuming that the TF binding enhances promoter switch-on rate; third scenario (�):
wild type (light shaded) and flgM (black) cells assuming TF binding decreases promoter
switch-off rate. Means, standard deviations and estimated parameters are summarized
in Table 1, fixed parameters are given in Materials and methods. The inset shows the
experimental levels of CheY, expressed as YFP fusion from native chromosomal posi-
tion for wild type (light shaded) and flgM cells (black). Redrawn from Kollmann et al.
(2005).
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switch-on rate, the simulations with the estimated parameters does
not represent the characteristic standard deviation of the wild type
and the mean fluorescence level of the flgM cells equivalently well
(RSS ¼ 0.67, Fig. 4 light shaded squares and black squares lines
denote wild type and flgM cells, resp.). The standard deviation of the
flgM cells becomes much larger than the experimental one. The
estimated parameters are given by lA,WT

þ ¼ 0.005 for the wild type
switch-on rate and a¼ 413 for the increased over-expression factor
for the flgM cells, i.e., lþA;OE ¼ lþA;WT a ¼ 2:07. This increased switch-
on rate for the flgM cells implies that the promoter is switched-on in
95% of the time for flgM cells, but only in 5% of the time for wild type
cells. For the third scenario, where the binding of the TF decreases
the promoter switch-off rate, a set of parameters can be found such
that both characteristics are reproduced (RSS ¼ 0.04, Fig. 4 light
shaded� and black� represent wild type and flgM cells, resp.). The
standard deviation of the flgM cells is also increased quite well. The
resulting parameters lA

�
,WT ¼ 0.39 for the wild type switch-off rate

and a ¼ 924 for the reduction factor for the flgM cells, i.e.,
Table 1
Characteristic mean m, standard deviation s and skewness for population distribu-
tions from experiments of Kollmann et al. (2005) and simulations using the proposed
stochastic model. Cells in which the upstream transcription inhibitor, the anti-sigma
factor FlgM, was deleted, are denoted by flgM cells. Differences in the simulated
scenarios, interpretation of the over-expression factor a and parameter estimation
are described in the text and in Materials and methods. The residual sum of squares
RSS describes the discrepancy between the data and the corresponding simulated
scenario.

m s Skewness Estimated
parameter

RSS

Experiment Wild type 1 0.69 2.51
flgM cells 6.96 3.38 1.74

Simulation
1st scenario

Wild type 1 0.67 1.26 CBDWT ¼ 0.13 0.004
flgM cells 7.02 2.63 0.44 CBDOE ¼ 0.94

Simulation
2nd scenario

Wild type 1 1.51 2.86 lA
þ ¼ 0.005 0.67

flgM cells 6.92 5.25 1.07 a ¼ 413

Simulation
3rd scenario

Wild type 1 0.63 1.17 lA
� ¼ 0.39 0.04

flgM cells 6.77 2.56 0.1 a ¼ 924
lA,OE
� ¼ lA,WT

� /a¼ 4.2�10�4, imply that the promoter is switched-off
90% of the time for wild type and 1% of the time for flgM cells. The
increased skewness of the flgM cells observed by Kollmann et al.
(2005) in experiments is not reflected in any scenario of the
underlying time-dependent model. The proposed time-dependent
description is a reduced version of the overall system and does not
take into account the complex flagella network such that an entire
coincidence of the experiments and simulations is not expected. The
skewness might also be influenced by external factors, like varia-
tions in ribosome or polymerase concentrations or by feedbacks of
downstream to upstream processes, but none of these features are
explicitly included in the present model. However, if we compare the
resulting skewness of the flgM cells in each scenario with the
experimentally measured one we find that the second scenario has
the largest positive skewness, but this scenario does not fit the
required characteristics quite well. For the first scenario, the char-
acteristics are represented rather well and the skewness is also
increased compared to the third scenario. Thus, TF binding and
promoter activation can be considered to good approximation as
independent processes in prokaryotes. Of course, this hypothesis has
to be investigated in further experiments.

5. Discussion

Especially during the last decade, various experimental tech-
nologies have been developed and a lot of effort has been under-
taken to investigate the stochastic nature of gene expression and its
implications for cell-to-cell variability. Moreover, several mathe-
matical models emerged aiming at interpreting the experimental
results as well as deriving hypotheses for the fundamental
processes involved in gene expression. For the theoretical
description of cell-cycle averaged experimental data, a mean-field
approximation of the master equation has been successfully
applied, whereas for extracting information from time-resolved
experimental data, an out-of-equilibrium description seems to be
appropriate. Different experiments have identified different causes
for the main contribution to gene expression noise. This implies
that there might be no general rule for the main source of noise or
comprehensive knowledge of the overall noise architecture. The
main contribution to the cell-to-cell variation within a clonal
population depends strongly on the kinetic rates and the molecule
lifetimes associated with the expression of each individual gene.
We show that the induction level of the TF binding, Beq, is one
possibility to differentiate between noise stemming from promoter
activation and noise originating from transcription, and thus
determines the dominant source of noise. Low induced genes (Bar-
Even et al., 2006) bear clear transcriptional noise signature due to
low-copy number of mRNA molecules, whereas highly induced
genes (Raser and O’Shea, 2004) show typical characteristics of
noise stemming from promoter activation (Fig. 3). Therefore, one
possible explanation for these diverging experimental results can
be given by the additional incorporation of an TF binding process
acting independently of promoter activation.

In eukaryotes, independence of TF binding and promoter acti-
vation is a reasonable assumption whereas in prokaryotes the situ-
ation is less clear. Based on experimentally measured cell
distributions of wild type and flgM cells of E. coli, we performed
parameter estimation with the time-dependent model of gene
expression to discriminate between limiting cases of the effect of TF
binding on promoter activation. Simulations reveal that for two out
of three theoretical scenarios, a set of parameters can be found such
that the characteristic standard deviation of the wild type cells and
mean fluorescence level of the flgM cells can be reproduced. An
increased standard deviation for the flgM cells can also be observed
in both scenarios such that a qualitative distinction between both
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scenarios based on simulations seems to be difficult. The biological
interpretation of the estimated parameters, however, argues against
one scenario: If the binding of the TF reduced the promoter switch-
off rate (third scenario), the promoter would be switched-off most of
the time, 90% for the wild type. However, these dead-times for the
protein production, even for a repressed gene, contradict the
experimental observations in E. coli where proteins are produced
quite continuously (pers. comm. V. Sourjik). Since the protein level
should be strongly optimized to allow for reliable information pro-
cessing, it seems to be rather unlikely that promoters have evolved
which are so strongly repressed that they are switched-off nearly all
of the time. Furthermore, the over-expression factor is estimated to
be rather large. This implies that an experimental depletion of an
upstream inhibitor leading to a sevenfold increased mean fluores-
cence level corresponds to a theoretical 900 fold change of the
switching rates. The cellular effort to achieve this is expected to be
rather high and therefore inefficient. The independence of promoter
activation and TF binding (first scenario), however, is quite likely
since the cellular effort of a sevenfold increase of the probability that
the TF is bound, is biologically reasonable. Thus, the independence of
promoter activation and transcription factor binding might be an
intrinsic property of the biological system, both for the wild type and
the over-expression line. One way to regulate gene expression is to
fine tune and control the mean binding of the TF which could be
tested in experiments.

To move forward in this exciting field and to gain deeper insight
into the underlying mechanisms contributing to the overall vari-
ance, more studies on mRNA/protein synthesis events and lifetimes
are required across a variety of organisms. It would be also desir-
able to develop techniques bridging the gap between cell-cycle
averaged and time-resolved expression data. These studies and
techniques could serve to ensure or argue against the different
theoretical assumptions and descriptions of gene expression with
the help of idealized stochastic processes. Moreover, there are still
many open questions, e.g., how cells control and regulate gene
expression noise to behave most efficiently, what are the biological
consequences of gene expression noise for the underlying biolog-
ical system, and to what extend can the noise properties or noise
regimes be generalized across different organisms. Due to the
complexity of gene expression, theory alone or experimental
progress on its own seem to be inefficient. Iterative studies of
experiments and modeling, however, seem to be promising to
establish stochastic gene expression as an on-going research area in
biophysics and molecular biology.

6. Materials and methods

6.1. Simulating stochastic processes

We assume that TF binding and promoter activation can be
described by a random telegraph process with transition rates lB

þ,
lB
� (TF binding), lA

þ and lA
� (promoter activation). The initial state of

the promoter is determined by drawing a uniformly distributed
random number (URN) r˛½0;1� and checking whether r < lA

þ/gA,
such that the promoter is on. Otherwise it is off in its initial state.
Transcription is a birth-and-death process with time-dependent
synthesis rate lR

þ(t) ¼ lR
þA(t)B(t), i.e., mRNA can only be synthesized

if the TF is bound and the promoter is in its on-state (Fig. 1). The
original Gillespie-algorithm (Gillespie, 1977) has been refined (for
review see Gillespie and Petzold, 2006), but also modified and
extended to model growing cell volume via time-dependent reac-
tion rates (Lu et al., 2004). To determine the next time s of the
reaction and the next reaction m for time-dependent reaction rates,
we follow the lines of Gillespie (1977) and Lu et al. (2004) and
arrive at the cumulative distribution function
FðsÞ ¼ 1� exp

2
4�XZs

a ðt þ s0Þds0
3
5 ¼ : 1� P ðsÞ: (9)
m
0

m 0

Drawing a URN u1˛½0;1�we set u1 ¼ 1� P0ðsÞ and obtain, since
1� u1 is also a URN, the new URN u1¼ P0(s). The stochastic time s for
the next reaction to occur is obtained by inverting this equation. We
formulate the cumulative distribution function for transcription with
a time-dependent synthesis rate a1(t) ¼ lR

þ(t) ¼ lR
þA(t)B(t) of mRNA.

The degradation does not depend on time s > t with transition rate
a2¼ lR

�R(t) where R(t) represents the actual amount of mRNA at time t.
We find that at time t, the next stochastic time s has to satisfy

lnðu1Þ ¼ �lþR

Zs

0

Bðt þ s0ÞAðt þ s0Þds0 � l�R RðtÞs: (10)

Drawing a second URN u2˛½0;1�, the next reaction m must fulfill
the inequality

lþR Aðt þ sÞBðt þ sÞ < u2

�
lþR Aðt þ sÞBðt þ sÞ þ l�R Rðt þ sÞ

�
(11)

The modified Gillespie-algorithm with time-dependent reaction
rate a1(t) determines the next stochastic time s in Eq. (10) as the
upper bound of the integral. In our case, however, the integrand has
a very special form, i.e., it is 1 if and only if the TF is bound as well as
the promoter is on. Otherwise the integrand is 0. Therefore, the
integration becomes a simple summation overall on-states, Os, of
the product of the TF times the promoter within the time interval [t,
t þ s]. We define as as the ratio of the on-states to the time interval
[t, t þ s], i.e., 0 � as ¼ Os/s � 1. The next time s can therefore be
calculated according to Eq. (10) which reduces for an exponentially
distributed stochastic variable lnðu1Þ ¼ : �z to

s ¼ z

lþR as þ l�R RðtÞ
: (12)

Note that as depends on the single realization of A(t)B(t) and is
thus also a stochastic variable. If A(t) and B(t) are time-independent,
e.g., A(t)B(t) h 1, it follows that as ¼ 1 and the original Gillespie-
algorithm (Gillespie, 1977) is recovered. Therefore, we use the
original Gillespie-algorithm to determine the next time s and
reaction m and check afterwards whether the proposed Gillespie-
step can be performed or not. If A(tþ s)B(tþ s)¼ 1, mRNA synthesis
can be realized, but if A(t þ s)B(t þ s) ¼ 0 and mRNA synthesis is
selected as reaction m, the step is rejected and new URNs are drawn.
In general, this procedure will always select a stochastic time s
which is smaller than that of the modified algorithm of Eq. (12)
since 0 � as � 1. However, the above procedure of taking the
original Gillespie-algorithm and rejecting specific reactions is
equivalent to the determination of the next time s via Eq. (12). To
obtain the same stochastic time for both procedures, the following
equation should hold:

z ¼ lþR as þ l�R RðtÞ
lþR þ l�R RðtÞ

z; (13)

where z and z are exponentially distributed variable stemming
from a URN u via ln (u). This equation holds since an exponentially
distributed variable can be described by the product of a constant
(given a specific as) times another exponentially distributed
stochastic variable z. Therefore, taking the original Gillespie-algo-
rithm and rejecting specific reactions according to the time-
dependent trajectory A(t)B(t) is just another realization of the
modified Gillespie-algorithm from Eq. (12) and averaging over a lot
of trajectories yields the same result.
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The generated mRNA trajectory R(t) can directly be used to
calculate the appropriate mean protein number CX(t)DX. At the end
of one cell cycle, the cell divides symmetrically into two daughter
cells. The mother’s cell amount of protein and mRNA is divided
binomially to both daughter cells.
6.2. Effect of TF binding on promoter activation:
parameter estimation

A least-square fit is performed with MATLAB such that, after
data normalization to mean wild type fluorescence of 1, the
experimental standard deviation of the wild type cells (s ¼ 0.69)
and mean flgM fluorescence (m ¼ 6.96) of the population distribu-
tions are best represented. For each optimization step,
20 � 29 ¼ 10 240 realizations of the time-dependent gene
expression model of Rausenberger and Kollmann (2008) are
generated. The following parameters are fixed for the simulations:
lR
þ ¼ 2, lR

� ¼ 0.2, lX
þ ¼ 4 and lX

� ¼ 10�4. In the first scenario, the
promoter switch-on/-off rates are set to lA

þ ¼ 0.05 and lA
� ¼ 0.1,

representing realistic kinetic rates for a repressed gene (Golding
et al., 2005). The mean TF binding rates of wild type, CBDWT, and flgM
cells, CBDOE, are estimated separately. For the second and third
scenario we assume a mean TF binding of CBD¼ 0.5 for the wild type
as well as for the flgM cells. The promotor switch-off rate is set to
lA
� ¼ 0.1 and the promoter switch-on lA

þ
,WT for the wild type and the

strength of the over-expression, a, are estimated in the second
scenario. If the TF is bound, the promoter switch-on rate for the
flgM cells, lA

þ
,OE, will be enhanced by the over-expression factor a,

i.e., lþA;OE ¼ lþA;WT a. In the third scenario we set the promoter
switch-on rate to lA

þ ¼ 0.05 and estimate the promoter switch-off
rate lA

�
,WT for the wild type and the strength of the over-expression

a. If the TF is bound, the promoter switch-off rate for the flgM cells,
lA
�

,OE, will be reduced by the over-expression factor a, i.e.,
lA
�

,OE ¼ lA
�

,WT/a. The estimated parameters are summarized in
Table 1.
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