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SUMMARY

From the very beginning the seizure prediction commu-

nity faced problems concerning evaluation, standardiza-

tion, and reproducibility of its studies. One of the main

reasons for these shortcomings was the lack of access to

high-quality long-term electroencephalography (EEG)

data. In this article we present the EPILEPSIAE database,

which was made publicly available in 2012. We illustrate

its content and scope. The EPILEPSIAE database provides

long-term EEG recordings of 275 patients as well as exten-

sive metadata and standardized annotation of the data

sets. It will adhere to the current standards in the field of

prediction and facilitate reproducibility and comparison

of those studies. Beyond seizure prediction, it may also be

of considerable benefit for studies focusing on seizure

detection, basic neurophysiology, and other fields.

KEY WORDS: Seizure prediction, Presurgical monitor-

ing, Electroencephalogram, ECoG, Neurophysiological

database.

More than 0.5% of the world’s population has epilepsy.
During the suddenly occurring seizures that characterize
this neurologic disorder, patients may undergo loss of con-
sciousness and/or motor control and therefore are severely
restricted in daily life (Schulze-Bonhage & Buller, 2008).
Seizure control may be achieved by antiepileptic drugs or
surgery for only two thirds of all epilepsy patients. For the
remaining one third, new treatment strategies are of crucial
importance. One promising approach is the prediction of
seizures. If it was possible to reliably predict seizure onsets,
interventions could be applied in a closed-loop manner
(Stacey & Litt, 2008). This would allow timely targeted
seizure-suppressive medication (Stein et al., 2000) or elec-
trical stimulation right before a seizure in order to prevent it

(Theodore & Fisher, 2004; Osorio et al., 2005; Morrell,
2006; Sunderam et al., 2010).

Since the 1980s, much effort has been invested to identify
precursors of seizures in electroencephalography (EEG)
(Mormann et al., 2007; Schelter et al., 2008). Because no
reliable precursors were found by mere visual inspection,
mathematical analysis of EEG was employed to reveal more
complex changes in neural activity preceding seizures. Linear
(Rogowski et al., 1981; Salant et al., 1998) as well as nonlin-
ear (Iasemidis et al., 1990; Lehnertz & Elger, 1995; Martin-
erie et al., 1998; Le Van Quyen et al., 1999, 2005; Mormann
et al., 2007; Stacey et al., 2011; Teixeira et al., 2011)
approaches were applied. Recently, also the electrocardiogra-
phy (ECG) was analyzed to complement EEG (Delamont
et al., 1999; Kerem & Geva, 2005; Valderrama et al., 2010).

However, most early studies were biased in several ways.
They included only selected preictal data and contained
only small numbers of patients as well as seizures. This led
to many shortcomings as, for example, the inability to deter-
mine the specificity of prediction algorithms applied to inte-
rictal data, and also to overfitting. If only preictal data is

Accepted May 8, 2012; Early View publication June 27, 2012.
Address correspondence to Andreas Schulze-Bonhage, Epilepsy Center,

University Hospital of Freiburg, Breisacher Str. 64, D-79106 Freiburg,
Germany. E-mail: andreas.schulze-bonhage@uniklinik-freiburg.de

1These authors contributed equally to this study.

Wiley Periodicals, Inc.
ª 2012 International League Against Epilepsy

Epilepsia, 53(9):1669–1676, 2012
doi: 10.1111/j.1528-1167.2012.03564.x

SPECIAL REPORT

1669



used to evaluate a predictive algorithm one may only access
its sensitivity. It is possible, though, that alarms are raised
based on EEG patterns that often occur during interictal peri-
ods, as well. To reveal the poor specificity of such predictors,
in addition one must test their performance on interictal data.
A recent study showed that the sensitivity of previously
published prediction algorithms was negatively correlated
with both average recording duration as well as average
number of seizures contained therein (Schulze-Bonhage
et al., 2011). An ideal study should be based on a continuous
long-term data set used for optimizing the prediction system
and a second data set from the same patient for evaluating its
performance in a quasi-prospective manner. Hence, high-
quality long-term EEG recordings of many patients contain-
ing interictal data is required. To facilitate reproducibility,
publicly available databases are of great benefit.

During the last years, research groups became increas-
ingly aware of the biases mentioned above and as a conse-
quence the first publicly accessible databases were
installed. They were provided by the epilepsy centers in
Bonn, Germany (http://epileptologie-bonn.de/cms/front_
content.php?idcat=193) and Freiburg, Germany (http://
epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/
eeg-database), as well as by the Children’s Hospital (Boston,
MA, U.S.A.: http://www.physionet.org/pn6/chbmit/). All of
these databases contain recordings performed during presur-
gical epilepsy monitoring, that is, the patients underwent
long-term recordings of the intracranial EEG (databases from
Bonn, Freiburg, and Lawrence), or scalp EEG (database from
Boston). The number of patients ranged from 5 to 23, the
duration of the recordings from 40 min to 142 h, and total
number of seizures from 59 to 189. Although being a first
step in the right direction, those databases still contained only
small amounts of data and provided little annotations and
metadata.

In 2008 the European Union funded project EPILEPSIAE
(http://www.epilepsiae.eu/) was started, with six partners
from hospitals, universities, and industry in France,
Germany, Italy, and Portugal. In the course of this project,
the largest epilepsy database worldwide has been compiled,
consisting of data sets of 275 patients (http://epilepsy-
database.eu/) and exceeding earlier databases by more than
an order of magnitude. In addition to the recordings of the
EEG and ECG of the patients, it contains extensive metada-
ta on technical and clinical details of the recordings and
clinical information about patients. All annotations are
based on standardized annotation rules.

In 2012 this database has been made available to the pub-
lic, allowing researchers worldwide to conduct high-quality
studies not only in the field of seizure prediction, but also
seizure detection, basic neurophysiology, and other fields.
In the following, the precise content of the EPILEPSIAE
database is presented as well as some basic characteristics
of the data sets. The latter may illustrate the scope of the
database and the wide variety of possible queries it offers to

researchers. The relational system underlying the database
allows users to comfortably search for specific questions
and for selection of homogeneous patient groups. The data
are accessible via a graphical interface with input masks for
selected queries. Furthermore, expert users may conduct
any kind of SQL queries. We report distribution of seizures
with respect to circadian rhythms, states of vigilance, and
progress of the recording, no less than distributions of length
of ictal and interictal periods. Differences between clinical
and EEG-based seizure onset will be considered as well as
the spatial propagation of seizures. All of this will be done
for the entire group of patients as well as for subgroups
regarding, for example, the type of epilepsy, medication,
pathology, outcome of surgical resection, and type of elec-
trodes in order to reveal possible correlations.

Database Content

The database contains recordings and metadata of 275
patients from the epilepsy centers of the University Hospital
Freiburg, Germany, of the University Hospital of Coimbra,
Portugal, and of the Hopital de la Pitier-Salpetriere in Paris,
France. The EEG/ECG data have been registered during
long-term presurgical monitoring. During recording, each
patient had at least three clinically manifest seizures with
interictal intervals of >4 h. Moreover data sets had to fulfill
annotation standards defined by the consortium of epilepsy
centers collaborating within the EPILEPSIAE project.
Recordings of the patients last 165 h on average with maxi-
mum durations of 500 h providing >40,000 h of data in total.

Data
The database comprises surface recordings from 217

patients as well as invasive EEG recordings from 58 patients.
The number of seizures per patient range from 3 to 94.
Surface recordings were performed by a 10–20 electrode
scheme, for some patients extended by additional electrode
contacts. For patients with invasive recordings, intracrani-
ally implanted grids, strips, and/or stereotactically implanted
depth electrodes were used, including up to 125 electrode
channels for some patients. Sampling rates range from
250 Hz to 2.5 kHz. In the case of intracranial recordings,
three-dimensional coordinates of the electrodes according to
the Montreal Neurologic Institute (MNI) coordinate system
(Evans et al., 1993) are provided for each patient as well as
functions for calculating the equally widespread Talairach
coordinates (Talairach & Tournoux, 1988). Some patients
underwent additional surface recordings during intracranial
registrations. For all patients, the electrocardiography (ECG)
was also recorded. For 65% of patients, electromyography
(EMG) of the submental muscle for sleep staging is stored.
All electrophysiologic recordings are stored in a simple bin-
ary format with additional header files containing informa-
tion about the sampling frequency, start, and length of the
file.
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Clinical annotations
One of the main advantages of the EPILEPSIAE database,

setting it apart from all previous databases, is its extended
and standardized annotation scheme. Based on both video
analysis and EEG screening, for each patient all clinical sei-
zures were annotated by experienced staff members includ-
ing the time of first visually identified electrographic and
clinical changes, and both electrographic and clinical seizure
onset and offset. Seizures are categorized according to their
dominant pattern, to their type, for example, simple, com-
plex partial, or secondarily generalized, as well as the state
of vigilance 10 s before seizure onset. The spatial propaga-
tion of seizure activity is provided by specifying the elec-
trode contacts involved in initial seizure activity, early
propagation, as well as late propagation. For the majority of
seizures, detailed information about the semiology is given.
In addition to clinically manifest seizures, for patients for
whom also subclinical seizures occurred, the time of occur-
rence of the first subclinical seizures is included. Beyond the
annotations of seizures, interictal events like typical spike
patterns or abnormal EEG activity are marked.

Metadata
Along with the annotated EEG and ECG data, exten-

sive metadata are stored in the EPILEPSIAE database,
which ranges from the patient’s age and the recording
hospital to neurologic findings and MR images. Infor-
mation on each patient’s epilepsy characteristics such as
etiology, neuropsychological data, and seizure frequency
is provided. Furthermore, details concerning antiepileptic

medication during the monitoring may be inferred.
Regarding data acquisition, the type of electrodes, and,
in the case of invasive recordings, the date of implanta-
tion is given. Because the long-term monitoring of all
the patients was performed for the purpose of presurgi-
cal evaluation, decisions on subsequent surgery and its
outcome are also provided. Figure 1 shows a summary
of basic demographic and clinical data of the patients in
the EPILEPSIAE database.

Data Characteristics

In order to predict seizures it is helpful to acquire knowl-
edge regarding their distribution in time, duration, and spa-
tial propagation as well as potential correlations between
those characteristics and, for example, the type of epilepsy.
Questions about seizure distribution were already addressed
previously, yet often only on short-term and/or discontinu-
ous EEG data or as in Milton et al., 1987 only based on
patient’s seizure diaries. Small numbers of seizures diminish
statistical relevance of the results obtained. Although recent
studies were also based on larger data sets and long-term
EEG data, a peculiarity of the recordings in the EPILEPSIAE
database is the presurgical setting in which they were
acquired. During presurgical monitoring there is only little
antiepileptic medication, and often intracranial electrodes
are used. Given the extensive pool of EEG/ECG data on
epilepsy patients accumulated, the questions mentioned
above may be addressed once again in a manner that allows
for statistically reliable results.

A B C

D E F

Figure 1.

(A) Age distribution of all patients. (B) Onset age distribution of all patients. (C) Gender distribution of all patients. (D) Distribution

of number of seizures per patient. (E) Overview of epileptogenic foci location of all patients. (F) Overview of surgical outcome from

84 patients who underwent epilepsy surgery. 1: n.f., no follow-up; Ia–IVb, Engel classification.
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Distribution of seizures during the course of recordings
In the following we describe the distribution of seizures

in the EPILEPSIAE database with respect to the recording,
circadian rhythms, and states of vigilance. The results are
based on data of 275 patients with an average of 9.68 sei-
zures per patient. This by far exceeds the size of databases
used in previous studies (Schulze-Bonhage et al., 2011).
The average distribution of seizures during the recording is
depicted in Fig. 2. The last bin of the histogram shown is
highly biased. Recordings were discontinued when a suffi-
cient number of seizures was reached. Therefore, they tend
to end with postictal rather than interictal data, which leads
to an exaggeration of the last bin. Despite this bias one may
clearly see an increased seizure rate toward the end of the
recording. By comparing the seizure rate during the course
of the recording with the average drug level, one may
deduce that the decreasing dose of antiepileptic medication
causes this effect. The shape of the drug level curve is well
reflected by the course of seizure rates along the recording,
especially if one does not take into account the last bin.

In the field of seizure prediction it is a common strategy
to preselect one or more possibly predictive features (i.e.,
time series derived from the EEG), to optimize a threshold,
and to trigger an alarm in case the feature crosses this
threshold (Mormann et al., 2007; Feldwisch-Drentrup

et al., 2010, 2011). If parameters are optimized on a training
data set, changing medication levels may hamper the appli-
cation of prediction methods. Due to decreasing drug level
and therefore increasing seizure rate in the course of the
training epoch, the predictor might be optimized such that it
slowly drifts in time. And it will do so even if medication
and seizure rate are stable across the test data, which it is
applied to afterward. Therefore the obtained feature does
not represent the factual seizure risk. Hence it is crucial to
ensure that prediction features are not optimized such that
they reflect the patient’s drug level rather than his or her fac-
tual seizure probability.

Distribution of seizures with respect to time of the day
Circadian rhythms in the occurrence of epileptic seizures

were observed early in epilepsy research, and led to classifi-
cations in ‘‘diurnal,’’ ‘‘nocturnal,’’ and ‘‘diffuse’’ seizures
(Gowers, 1885; Langdon-Down & Brain, 1929; Grifiths &
Fox, 1938). In subsequent studies it was found that seizure
distributions in patients with medial temporal lobe epilepsy
(MTLE) often show a primary peak in seizure occurrence in
the late afternoon, and a secondary peak in the morning,
whereas patients with frontal lobe epilepsy (FLE) tend to have
seizures mostly in the early morning (Durazzo et al., 2008).

Figure 3 shows histograms of seizure occurrence plotted
against time of the day. In accordance with the literature,
peaks can be observed in seizure occurrence both in the
early morning and the late afternoon. In addition, Fig. 3 also
presents the sleep stages of the patients 10 s before seizure
onsets. As observed previously (Quigg et al., 1998), most
seizures that occur during the night start during light sleep
(stages I and II), few during deep sleep (stages III and IV),
and almost none during rapid eye movement (REM) sleep.
In total, 61.6% of all seizures occurs when the patient is
awake, 4.3% during sleep stage I, 21.5% during sleep stage
II, 1.6% during sleep stage III, 0.4% during sleep stage IV,
and 1.9% during REM sleep. For patients undergoing inva-
sive recordings without any scalp electrodes, sleep staging
of the EEG cannot be performed. Hence, these seizures
remain unclassified (8.6% of all seizures).

Duration of ictal and interictal periods
The duration of ictal and interictal periods may yield

information regarding the clustering of seizures as well as
the dynamics governing transitions from ictal to interictal
states and vice versa. Distributions of the average durations
of ictal and interictal periods are shown in Figs 4 and 5,
respectively. The histograms were fitted with a C-distribu-
tion

1

N
xa�1e

�x
b

where N serves normalization and a is the so-called
shape parameter. If a = 1, the C-distribution yields an

Figure 2.

Medication level during the recording (upper row) and distribu-

tion of seizures with respect to recording progress (lower

row), averaged over all 275 patients. Different drugs were

weighted equally. The individual drug level reaches the maxi-

mum value of one if the patient’s personal maximum dose of

each drug is administered. Time was scaled to the overall

recording length of each patient. The histogram shows the

number of seizures taking place during the first 5% of the

recording, the second 5%, and so on.
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exponential distribution, thus indicating a Poisson process
underlying the dynamics under consideration (Doob,
1990). In Poisson processes, events occur with equal
probability rate in any given time interval. On the con-

trary, if a is smaller than 1 the chance of an event to
happen decreases with time and if a is >1 it increases. In
the latter case, the C-distribution shows a maximum at a
finite value indicating a preferred duration of interevent

Figure 5.

Distribution of durations of interictal periods. The red line is a fitted C-distribution with shape parameter a. The 95% confidence

intervals for a are given. Numbers are averaged over all patients belonging to the indicated subgroup.

Epilepsia ILAE

Figure 3.

Distribution of seizures with respect to circadian rhythm and states of vigilance. Numbers are averaged over all patients belonging to

the indicated subgroup. Seizures occurred either during the awake state (dark blue), during sleep stage I (medium blue), during sleep

stage II (light blue), during sleep stage III (green), during sleep stage IV (orange), during REM sleep (light red), or are unclassified (dark

red).

Epilepsia ILAE

Figure 4.

Distribution of duration of seizures. The red line in the upper row is a fitted C-distribution with shape parameter a. The 95% confi-

dence intervals for a are given. The lower row reveals the single contributions of the different seizure types: dark blue = simple, light

blue = not classified, light green = complex partial, orange = secondarily generalized. Numbers are averaged over all patients belong-

ing to the indicated subgroup.
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periods and thus implying a periodic process to govern
event occurrence.

The 95% confidence intervals for the shape parameter a
are given in Figs 3 and 4. The distribution of seizure dura-
tions clearly shows a superposition of two distinct distribu-
tions. Accordingly we used as a fit function a superposition
of two C-distribution instead of only one and therefore
obtained two shape parameters: a1 and a2. Considering the
single contributions of the different seizure types shown in
the lower row of Fig. 4, it becomes obvious that higher
durations relate to complex partial and secondarily general-
ized seizures, whereas smaller durations relate to simple
and not classified seizures. The significantly differing dura-
tion of complex partial seizures was reported before and is
confirmed by our analysis. Those durations show a distinct
maximum at a finite value (90 s), which is reflected by the
95% confidence interval 4.483 < a2 < 9.838 of the corre-
sponding shape parameter being above the value one.
Therefore the null hypothesis of the termination of complex
partial seizures being a Poisson process may unequivocally
be rejected. Rather than being equally probable at any given
point in time during complex partial seizures, the chance for
termination grows within the ongoing ictal period.

The durations of interictal periods shown in Fig. 5 exhibit
95% confidence intervals of shape parameter a much below
one. This is incompatible with a Poisson process determin-
ing seizure onset times. The chance for a seizure to occur
decreases within the ongoing interictal period. The longer
the patient has gone without seizures, the less likely is a new
onset. In other words: seizures beget seizures (Hauser &
Lee, 2002). Compared to seizures detected in the scalp
EEG, invasively recorded ones are separated by rather short
interictal periods. This may indicate higher clustering of
those seizures, or the diminished interictal duration may
simply result from intracranial electrodes that lie closer to
the epileptic focus and therefore detect more seizures in
general. This necessarily leads to shorter interictal periods.

Clinical versus EEG based onset
Because both EEG based and clinical onset are provided

for any seizure in the database, one may examine the offset

between them. Clinical onsets were determined by video
analysis of the patient’s behavior, whereas the EEG-based
onsets where determined by visual inspection of the EEG by
experienced staff members. Figure 6 shows the distribu-
tions of the such determined time lags, where positive
values correspond to a preceding EEG-based onset. For
intracranially recorded seizures the average advance of the
EEG-based onset is significantly larger than 0. This seems
to be intuitive, since invasive electrodes are closer to the
spatial origin of seizures.

Propagation
For all seizures contained in the EPILEPSIAE database,

information on spatial propagation is provided. This infor-
mation comprises the number of electrodes involved during
seizure initiation, the early propagation (within 10 s), and
the late propagation. Figure 7 shows averaged propagation
schemes. The spreading of temporal lobe seizures clearly
differs from that of frontal lobe seizures. Whereas seizures
of frontal lobe type reach their maximum number of
involved electrodes rather quickly, seizures of temporal
lobe type continue spreading also toward the end of an ictal
period. Furthermore, the maximum number of involved
electrodes of frontal lobe seizures is significantly higher
than that of temporal lobe seizures. The latter may be due to
more limited spread in temporal lobe seizures, but may also
reflect different implantation schemes used for frontal lobe
and temporal lobe exploration.

Discussion

Up until now, the seizure prediction community world-
wide was facing several obstacles hampering its research.
Only few research groups had access to EEG data. The data
used were often short and/or noncontinuous, and underlying
groups of patients were often small. This led to overfitting
and little statistical reliability of the results obtained. More-
over, due to missing standards, studies were hardly compara-
ble and reproducibility was not always ensured. To conduct
high-quality prediction studies, standardized long-term EEG
recordings of many patients containing interictal data are

Figure 6.

Difference between EEG-based and clinical onset. Positive values correspond to preceding EEG-based onset. The light blue line indi-

cates the median, whereas the red line is located at the mean of the distribution. Numbers are averaged over all patients belonging to

the indicated subgroup.
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required. Therefore, data may be split into a continuous
long-term dataset used for optimizing the prediction system
and a second dataset for evaluating its performance in a
quasi-prospective manner.

In the course of the EU-funded EPILEPSIAE project,
the largest epilepsy database worldwide has been com-
piled. Consisting of datasets of 275 patients and compris-
ing 2,662 seizures, it exceeds earlier databases by more
than one order of magnitude. In addition to the standard-
ized annotated recordings of the EEG and ECG of the
patients, it contains extensive metadata on technical and
clinical details of the recordings and clinical information
about patients. The scope and content of this database,
which will be publicly available in 2012 (conditions listed
at epilepsy-database.eu), has been shown in this article. It
solves the problem of public availability of well-annotated
continuous long-term EEG/ECG data. And it will allow
for annotation standards and facilitate reproducibility and
comparison of prediction studies as well as studies focus-
ing on seizure detection, basic neurophysiology, and other
fields.

The data included were limited to those from patients
who were undergoing presurgical monitoring, as these
patients are pharmacoresistant and were of particular rele-
vance for applications of seizure prediction as targeted in
the EU project EPILEPSIAE. Certainly this criterion as well
as the required seizure frequency led to a strong selection
bias, and data are not representative of all patients with focal
epilepsy. In principle, the database is open to a future exten-
sion to other EEG data from patients with a variety of syn-
dromes and investigated for other diagnostic reasons.
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Appendix: Annotation Standard

Seizures
1 Unequivocal clinical seizure onset: first clear-cut subjec-

tive symptoms or objective signs related to an ongoing
epileptic seizure (e.g., push-button event, seizure-related
movement, impaired responsiveness).

2 First behavioral alteration: unspecific, but possible sei-
zure-related changes in behavior preceding (1), for exam-
ple, awakening from sleep, cessation of prior activity.

3 Unequivocal electroencephalographic seizure onset: onset
of clear-cut seizure pattern (defined as a pattern of rhythmic
activity, repetitivespikingoramplitudedepressionwithevo-
lutioninmorphology, spatialextensionand/orfrequency).

4 First electroencephalographic change, possibly seizure-
related but with questionable specificity (e.g., diffuse
attenuation of background activity, brief rhythmic pat-
terns without clear evolution):

Seizures withclear epileptic semiologyare included in the data
analysis also if EEG patterns are not visible either due to
lack of spread to the lateral convexity or to muscle artifacts.

Heart rate changes obtained by ECG will be regarded as a
(first) clinical sign of a vegetative seizure if there is a
clear and stable baseline without changes in vigilance,
absence of changes in motor activity, increase or decrease
in seizure frequency by more than two standard devia-
tions from the preceding baseline

Similarly, EMG recordings showing typical muscle contrac-
tions without movements visible on the video will be
regarded as clinical signs.

In cortical dysplasia, only unequivocal seizure patterns will
be regarded as ictal events.

For patients with hippocampal sclerosis showing repetitive
spiking, seizure onset was set to the point of transition
from irregular interictal spiking to the period of repetitive
spiking. Furthermore, the evolution into a clear seizure
pattern (e.g., spiking of increasing frequency, spread, low
amplitude fast activity) is marked.

Subclinical electroencephalographic events
Subclinical seizures were defined as electrographic

seizures without observed subjective or objective neuro-
logic or somatic manifestation. The electrographic seizure
onset of subclinical seizures was defined as the time of onset
of a clear-cut seizure pattern, being a pattern of rhythmic
activity, repetitive spiking, or amplitude depression with
evolution in morphology, spatial extension, and/or fre-
quency. For each patient, the first 10 subclinical events were
marked for each day.

1676

J. Klatt et al.

Epilepsia, 53(9):1669–1676, 2012
doi: 10.1111/j.1528-1167.2012.03564.x


