S1 UTILISED ALGORITHMS

Since analytical solutions of non-linear ODE systems are in general
not available, a numerical integration has to be performed. In this
work, the dynamical system and its sensitivities were integrated
by the CVODES integrator of the SUNDIALS suite (Hindmarsh
et al.l 2005 |Serban and Hindmarshl 2005). Therein, an implicit
BDF integration method (Gear| [1971) with attached KLU sparse
solver was chosen (Davis and Palamadai Natarajan, [2010).
Numerical optimisation was conducted using a trust-region based,
large scale nonlinear optimisation algorithm implemented in the
MATLAB function LSOQNONLIN (Coleman and Li, [1996). The
inner derivatives of the likelihood, which are used in the
integration mechanism of the prediction bands (PBs) and in
gradient-based parameter estimation were computed via supplied
forward sensitivities (Leis and Kramer} [1988). The advantage of
this procedure is the better accuracy of the sensitivities. For the
mathematical modelling and visualisation, the open-source and
freely available d2d framework (Raue er all 2015), based on
MATLAB, was used.

S2 DERIVATION OF INTEGRATION FORMULA
FOR PREDICTION BANDS

The derivation of the integration mechanism for prediction bands is
conducted based on Equation (10) of the main document:

X*(0(7), (7)) = min VPL(2(7)) +icdf (x1a),  (S-D)
Vox*(0(7),2(7)) =0, (S-2)

wherein both z(7) and 6(r) are explicitly time dependent. The
auxiliary data point z, at the threshold of a specified confidence
level a, computed via the validation profile likelihood approach,
serves as starting point for the integration algorithm. Further on,
a possibly time dependent control u(7) is omitted and 6(7) is
substituted by 6 for better readability. Inserting the negative log-
likelihood of the validation profile likelihood and its derivative with
respect to the parameters 6 (see Equation (7)), Equations and
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To obtain the time course of the prediction interval, we first
calculate the time derivative of Equation (S-3):
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whereby the first term equals zero because V PL(z(7)) minimises

the likeli~h0(3d function. Thus, the ODE for the time evolution of
g-(z(7,0),0) can be stated:
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To obtain an ODE for the parameters §, Equation (S-2) is
differentiated with respect to 7,
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which leads with Equation (S-5) and omitted second order
derivatives to
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As described in the main text, the self-correction term on the right
hand side of equation (S-7) compensates for the omitted second
order derivatives. The second ODE expressing the time evolution
of @ is then obtained as




diTé = (Vo Vox’(0(r), 2(7))) "' x
2[2(7) — g:((1,0),0)]\ 9g: 9 Oz
X(( a2 ) dr ar 98|,  (S8)

—WVeXQ(é(T)yz(T))> :

The integration of prediction bands is performed via the Runge-
Kutta scheme of fourth order (Butcher, |1963). Hence, both 2(r, 0)

and 0 (7, é) of Equations and , respectively, are evaluated to

obtain -
k= (7, 0) (5-9)
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Then, k2, k3, k4 are consecutively computed through
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Thereby, AT denotes the step size of the integration. Finally, z
and 0 are updated via
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S3 INTEGRATION WITHIN THE DATA2DYNAMICS
FRAMEWORK

The d2d framework can be found on ‘https://bitbucket.org/d2d-
development/d2d-software/wiki/Home’| and requires MATLAB
with symbolic and numerical toolbox as well as a working C
compiler set up as MEX compiler in MATLAB. After installation
of the d2d framework, manuals about model setup and analysis
can be found on the homepage as well. Further, an introduction on
prediction bands and its computation in the framework can be found
at |‘Instructions on prediction bands’, In addition, the examples of
this paper are included and can be found in the folder ‘Examples’.
Exemplary, the setup file of the ABC_toyModel folder is stated here,
with description in italic. Execution of this file in MATLAB will
automatically perform all these steps and calculate the PBs.

Initialise framework:
arlnit;

Load ABC toy model:
arLoadModel(’ ABC_model’);

Load data with equidistant observation of state B and C for
t=0,10,..100:
arLoadData(’ ABC_data_BCobs’);

Write and compile C files for ODE integration with forward
sensitivities:
arCompileAll();

Take measurement errors as provided by the data file:
ar.config fiterrors = -1;
arSetPars(’sd_B_au’,[],2);
arSetPars(’sd_C_au’,[],2);

Optimise likelihood to obtain best fit:
arFit();

Get information about prediction profile function:
help doPPL

Calculate prediction bands for the three states:
doPPL(1,1,1:3,0,0,1,0.25);

plot prediction bands:
ar.config.ploterrors = -1;
arPlot2

S4 ABC TOY EXAMPLE AND ANALYTICAL
SOLUTION

In this section, detailed information about the ABC toy model of

Section 3.1 of the main text, available in the folder ‘ABC_toyModel’

in the d2d framework, will be given. The model contains three

states, A_state, B_state and C_state, with the following ODE

system determining the time evolution of the dynamical variables:

d[A_state] /dt =
d[B_state]/dt =
d[C_state]/dt =

—p1A _state

+p1 A_state — p2B_state (S-12)

+p2B_state

Further, the model contains 2 observables:

e Observable 1: C

C(t) = [C_state]
With error model:
o{C}t)= 0.1
e Observable 2: B
B(t) = [B_state]

With error model:

o{B}t) = 0.1

In addition, the initial values of B(¢) and C(t) are fixed to zero:
init_B_state — 0

init_C_state — 0
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S4.1 Analytical solution

In the paper of |Gellene, (1995), the analytical solution of the ABC
system is discussed in detail. It is given by
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Based on this, the first and second-order derivatives with respect
to the parameters pi, p2 and init_A_state can be calculated.
Equation (S-T3) and its sensitivities can be used instead of an
integration with forward sensitivities in order to calculate the
validation profile likelihood for the ABC toy model for distinct
time points. In Figure 1 of the main text, the 95% thresholds of
the analytically derived validation profiles are taken for comparison
with the PBs. In addition, a stand-alone MATLAB code of the
ABC toy model can be found in a zip file at http://www.fdmold.uni-
freiburg.de/~hhass, It features the exact data points used here and
analytical solutions for the calculation of the validation profiles in
order to reproduce our results.

S4.2 Model fit and plots

The agreement of the model observables and the simulated data,
given in Table yields a value of the objective function x* =
11.51 for 21 data points in this data set. The model observables and
the simulated data are shown in Figure [SFI]
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Fig. SF1: ABC toy model observables and simulated data. The
observables are displayed as solid lines. The error describing the
measurement noise is indicated by shades.

S4.3 Estimated model parameters

In Table [ST2] the estimated parameter values are given. The
parameter name prefix init_ indicates the initial value of a dynamic
variable.

name time [min] value [au] o [au]
C.au 0 -0.086488 0.1
C_au 10 0.151805 0.1
C_au 20 0.383077 0.1
C_au 30 0.666288 0.1
C_au 40 0.856965 0.1
C.au 50 0.953492 0.1
C.au 60 0.81654 0.1
C.au 70 0.948258 0.1
C.au 80 0.842301 0.1
C_au 90 0.866566 0.1
C_au 100 0.985896 0.1
B_au 0  -0.0809499 0.1
B_au 20 0.376395 0.1
B_au 30 0.205873 0.1
B_au 40 0.0415357 0.1
B_au 50 0.212383 0.1
B_au 60 -0.123839 0.1
B_au 70 0.0190627 0.1
B_au 80 -0.00616601 0.1
B_au 90 0.0429027 0.1
B_au 100 0.037974 0.1

Table ST1. Simulated data for the ABC toy model

name log1g(Omin) logio(0) logio(@max) ]

init_A_state -5 -0.0315 43 9.30-10701
pl -5 -1.0097 43 9.78 10702
p2 -5 -1.1405 43 7.24 10702

Table ST2. Estimated parameter values

log,4(0) indicates the estimated value of the parameters. log; o (6ymir ) and
1~0g10(9max) indicate the upper and lower bounds for the parameters. The
0-column indicates the non-logarithmic value of the parameter estimate.

S5 ESTABLISHED MODELS

To verify the usability and efficiency of the integration method, PBs
were calculated for three established models for cellular signalling,
of |Bachmann er al| (2011), Raia er al| (2011) and |Swameye
et al.|(2003). Detailed information and supplementary data of these
models can be found at ‘Bachmann et. al paper’,|‘Raia et. al paper’
and ‘Swameye et. al paper’. In addition, the data in xls format and
the ODE systems for these models can be found within the d2d
framework, or on its homepage in the following folders:

e ‘Bachmann et. al data’
e ‘Bachmann et. al ODEs’
e ‘Raia et. al data’

e ‘Raia et. al ODEs’

e ‘Swameye et. al data’

e ‘Swameye et. al ODEs’
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