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Inferring knowledge about biological processes by a mathematical descrip-

tion is a major characteristic of Systems Biology. To understand and pre-

dict system’s behavior the available experimental information is translated

into a mathematical model. Since the availability of experimental data is

often limited and measurements contain noise, it is essential to appropri-

ately translate experimental uncertainty to model parameters as well as to

model predictions. This is especially important in Systems Biology because

typically large and complex models are applied and therefore the limited

experimental knowledge might yield weakly specified model components.

Likelihood profiles have been recently suggested and applied in the Systems

Biology for assessing parameter and prediction uncertainty. In this article,

the profile likelihood concept is reviewed and the potential of the approach

is demonstrated for a model of the erythropoietin (EPO) receptor.

Introduction

A major aim of Systems Biology is the establishment

of mathematical models of biological processes like

signal transduction, metabolism, or gene regulation in

order to gain insight in these nonlinear dynamical sys-

tems. As an initial step, an appropriate model struc-

ture has to be identified, i.e. the relevant molecular

compounds and the nature and characteristic of their

interactions. Then, the model’s parameters like concen-

trations of compounds and rate constants are esti-

mated from experimental data to calibrate the model.

For this calibration step, an objective function assess-

ing the goodness of fit can be optimized, e.g. the

parameters are chosen to minimize deviations between

measurements and model. A very efficient and flexible

objective function for this purpose is the so-called like-

lihood which coincides with the least-squares criterion

in typical Systems Biology applications.

An essential task of the modelling procedure is the

assessment of uncertainty, e.g. by calculating confidence

intervals for parameters and predictions. In the classical

regression setting, this is typically accomplished by

so-called standard errors, i.e. by propagating the mea-

surement uncertainty using the Gaussian law of error

propagation which is based on linearization of the model.

In Systems Biology, the models are typically mecha-

nistic, i.e. the components of the models have counter-

parts in the biological process. Therefore, the

mathematical models are typically nonlinear and more
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complex than in a regression setting. Frequently,

ordinary differential equations are used to describe the

dynamics of biochemical interactions. For such mod-

els, the likelihood is nonlinear and therefore confidence

regions for model parameters can exhibit complex

shapes. This renders classical approaches as rough

approximations in the finite sample case. Sometimes,

they are even infeasible, e.g. if structurally non-identifi-

able parameters are present.

In contrast, the profile likelihood approach [1,2]

results in confidence intervals which are invariant

under parameter transformations [3] and therefore not

affected by nonlinear distortions of the likelihood

landscape. The profile likelihood is a one-dimensional

representation of the likelihood indicating which val-

ues of a single parameter component are in statistical

agreement with the available measurements. In the

Systems Biology setting, the parameter profile likeli-

hood has been proposed for the calculation of confi-

dence intervals and in addition for the investigation of

parameter identifiability [4,5]. It is increasingly applied

in recent years [6–12].
For the more general setting of a model prediction,

a respective theoretical concept was established dec-

ades ago [13,14]. However, the classical calculation of

a prediction profile likelihood requires analytical for-

mulas which are only available for trivial ODE mod-

els. To circumvent this hurdle, the prediction profile

likelihood approach was presented in the context of

differential equation models [15,16]. Subsequently, this

concept and its use for investigating practical non-

observability were rephrased in [17], but without mak-

ing reference to earlier literature.

The suggested calculation procedure in [15,16]

derives the prediction profiles likelihood either based

on numerical constraint- or on penalized optimization.

In these publications, it has been demonstrated by

Monte-Carlo simulations, that the resulting confidence

intervals have desired statistical properties like proper

coverage. Moreover, the prediction profile likelihood

has been utilized for a data-based observability analysis

and for experimental design considerations. Within this

concept, sampling of the parameter space is replaced

by optimization which constitutes the most efficient

way to numerically evaluate the parameter space.

In the following, the potential of likelihood profiles

in Systems Biology is discussed and illustrated. For

this purpose, a model of the EPO receptor is used [6].

Methodology

Experimental observations are always compromised by

measurement errors. A general goal of statistical anal-

yses is to evaluate feasible conclusions despite this

uncertainty. For this purpose, experimental data y is

described by a probability density q(y|h) with parame-

ters h. A mathematical model of a biological process

typically describes the relationship q(y|h) between

parameters and data, comprising experimental condi-

tions like time or treatment. For biochemical reactions

in the cell, as an example, the dependency can be

described by ordinary differential equations

ðtÞ ¼ f ðxðtÞ; uðtÞ; hÞ (1)

for the concentrations x of molecular compounds. u(t)

denotes the input to the system, e.g. a treatment or

stimulation. f is given by rate equations like the law of

mass action or the Michaelis–Menten rate law [18].

The time course x(t) of the concentrations is calculated

by integration of Eqn (1). For comparing the model

with experimental data, the dynamic variables x are

mapped to the experimentally observed quantities

yðtÞ ¼ gðxðtÞ; hÞ þ eðtÞ: (2)

by the so-called observation function g. Typically, the

noise e is additive either on the nominal or on the log-

arithmic scale [19] although this is not required for the

presented formalism. The parameter vector h com-

prises the kinetic parameters of f, like rate constants

or Hill coefficients, as well as the initial concentrations

x(0), and additional offset or scaling parameters for

the observations contained in g. Equations (1) and (2)

comprise the effect of the parameters, of time, and

treatment on the studied system and the expected out-

come of an experiment and is referred as the state

space model in literature.

EPO receptor model

Figure 1A shows the EPO receptor model and experi-

mental data as published in [6] which is used for dem-

onstration purpose in the following. Briefly, EPO can

bind to its membrane receptor (EpoR). The Epo_E-

poR complex activates the downstream signaling, e.g.

the JAK2/STAT5 signaling cascade [7]. The Epo_E-

poR complex can be internalized (Epo_EpoRi) and

degraded. Degraded EPO can accumulate inside

(dEpoi) or outside (dEpoe) of the cell. Unoccupied

receptors EpoR are constantly transported to the cell

membrane and degraded with turnover rate kt. Trans-

lating the depicted interactions using mass action

kinetics yields a system of six ordinary differential

equations with nine kinetic parameters which are com-

plemented by one parameter for the observations, see

in [6] for details. Two different stages of experimental
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setup will be used in the following. In the basic experi-

mental Setup A, time-course data of EPO in the extra-

cellular medium Epo_ext = scale � (Epo + dEpoe) and

of intracellular EPO, Epo_int = scale � (Epo_EpoRi +
dEpoi) are available. The parameter scale accounts for

the unknown absolute physical unit of the data. In the

comprehensive experimental Setup B, a Scatchard

analysis was performed yielding further data for

parameters Bmax and kD. Additionally time-course

data of the receptor attached to the cell membrane

Epo_mem = scale � Epo_EpoR are available, see in

Fig. 1B. This setup is identical to the extended experi-

mental setup investigated in [5,7]. In both setups, the

amount of stimulating EPO in the medium is assumed

to be known without error. In order to match the

model’s observables with the experimental data,

the parameters have to be estimated as discussed in

the following.

Parameter estimation

Estimation of parameters from measurements can be

accomplished by calculating the likelihood L(y|h)
which denotes the probability of the measured data y,

given a model with parameters h. For statistically inde-

pendent additive noise, the likelihood is given by the

product

LðyjhÞ ¼
Y
i

qðyijhÞ (3)

and the maximum likelihood estimator (MLE)

ĥ ¼ argmax
h

LðyjhÞ (4)

is the parameter vector maximizing the likelihood.

Maximum likelihood estimation is widely applied in

statistics because of its beneficial properties like effi-

ciency and consistency [20]. For additive Gaussian

noise e ~ N (0, r2) with known variance r2, MLE is

equivalent to least squares estimation

ĥ ¼ argmin
h

X
i

yi � gðti; u; hÞð Þ2=r2: (5)

The right hand side of Eqn (5) is proportional to

minus two times the log-likelihood, �2LL, and is

called the v2 or goodness of fit statistic in literature

[21]. �2LL is usually easier to interpret than the likeli-

hood L because it typically has the same order of mag-

nitude as the number of data points if the model is

appropriate. Since maximization of the likelihood L

and minimization of �2LL is equivalent, the discus-

sion will be focused on the least square setting in the

following without loss of generality.

Parameter profile likelihood

The impact of the value of a parameter component for

fitting the model to the data can be assessed by the

profile likelihood

PLjðpÞ ¼ max
h2fhjhj¼pg

LLðyjhÞ; (6)

i.e. the log-likelihood is evaluated as a function of the

values p of a parameter component hj while all other
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Fig. 1. Structure of molecular interactions and experimental data. (A) EPO receptor model. EPO can bind to its membrane receptor (EpoR).

The Epo_EpoR complex activates the downstream signaling. The Epo_EpoR complex can be internalized (Epo_EpoRi) and degraded.

Degraded Epo can accumulate inside (dEpoi) or outside (dEpoe) of the cell. (B) Experimental data obtained by labeled EPO in different

compartments. In the experimental Setup A, time-course data of EPO in the extracellular medium (Epo_ext) and of intracellular EPO

(Epo_int) attached are available. In the experimental Setup B, additionally data of the receptor amounts on the cell membrane (Epo_mem)

are available as well as estimates of Bmax and kD from Scatchard analysis.
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parameters hi, i 6¼ j are reoptimized. Confidence inter-

vals

CIj;aðyÞ ¼ pj � 2 PLjðpÞ� min
h

�2 LLðyjhÞ þ DðaÞ
� �

(7)

for the estimation of the j’th parameter component

are given by a threshold Δ(a) according to the confi-

dence level a [3]. Asymptotically, i.e. for a sufficiently

large number of data points, the threshold

DðaÞ ¼ icdfðv21; aÞ (8)

is given by the a-quantiles of a v2 distribution with

one degree of freedom. These quantiles are given by

the inverse cumulative density function denoted by

icdf.

In general, a flat profile likelihood indicates an infi-

nite size of the confidence interval for all confidence

levels a which corresponds to a structural non-identifi-

ability. In such a case, changing the parameter compo-

nent has no impact on the likelihood, i.e. the effect

can be compensated by adjusting other parameters.

Therefore, the data provides no information about the

respective parameter component.

If the profile likelihood has a unique minimum but

does not exceed the threshold in at least one direction,

e.g. exhibits a plateau below the threshold, the parame-

ter is termed practically non-identifiable [4]. In such a

case, the data contain information about the parameter,

but in terms of significance, the supposed parameter

range is not restricted towards small and/or large values.

Figure 2 shows the profile likelihood for all parame-

ters of the EPO receptor model for the two experimen-

tal setups. For the basic experimental Setup A, plotted

in the upper panel, three profiles do not exceed the

threshold and therefore indicate practical non-identifi-

ability. The profiles of kex and kD are monotonically

decreasing towards small values, the profile likelihood

for kdi exhibits a flat plateau below the 95% confi-

dence threshold.

In general, additional experiments have to be per-

formed to resolve such identifiability issues. In the

lower panel of Fig. 2, the outcome is plotted for the

comprehensive experimental Setup B. Here, all likeli-

hood profiles indicate identifiability because the thresh-

old is exceeded in upward- and in downward direction.

In such circumstances, the respective confidence inter-

vals cover only a finite range.

Prediction profile likelihood

The parameter profile likelihood yields the dependency

of the likelihood on a single parameter component.

This idea can be generalized by a more general con-

straint optimization of the likelihood, i.e. instead of

fixing a single parameter component like in Eqn (6), a

constraint for a prediction F is introduced [15,16]. This

yields the prediction profile likelihood which is given by

PPLFðzÞ ¼ max
h2fhjFðhÞ¼zg

LLðyjhÞ: (9)

Here, maximization is performed only for the subset

of parameters with model response F (h) equals to z.

Fig. 2. Parameter profile likelihood. Likelihood profiles for all parameters for two experimental setups, i.e. the basic experimental Setup A

(upper panel) and the comprehensive experimental Setup B (lower panel). In the experimental Setup A, there are three practically non-

identifiable parameters. Two parameters are have flat profiles towards lower values, namely the Michaelis constant kD for binding of EPO to

the receptor as well as the rate for externalization kex, i.e. recycling of the receptor to the membrane. For the degradation rate kdi in the

cytoplasm, there is a unique minimum but the profile flattens out on a plateau below the 95% confidence threshold. In the comprehensive

experimental Setup B, all parameters are identifiable, i.e. the profiles exceed the threshold yielding confidence intervals of finite size and the

minima, i.e. the maximum likelihood estimates, are unique.
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In analogy to Eqn (7), the prediction confidence inter-

val is given by

PCIF;aðyÞ¼ z j �2 PPLFðzÞ�min
h

�2LLðyjhÞþDðaÞ
� �

:

(10)

The prediction or response F could be any characteris-

tics of a model which may serve as a constraint. Typi-

cal examples comprise the concentrations of the

compounds occuring as dynamic variables but also

more complex features like concentration ratios,

steady states, minimal or maximal abundances, or

the position and height of a peak. This flexibility

emphasizes the relevance of the predictions profile

likelihood.

As argued in [15,16], there is a strong relationship

between the parameter and the prediction profile like-

lihood. On the one hand, the value of a parameter

can be seen as special kind of prediction. On the

other hand, a reparametrization of the model could

be performed in a way that the prediction is unam-

biguously given by a single parameter. Then, the

parameter profile likelihood for such a parameter

coincides with the respective prediction profile likeli-

hood. Due to this equivalence, the threshold Δ(a) for

the parameter- and prediction profile likelihood

approaches coincides.

Figure 3 shows the prediction profile likelihood for

predicting the concentration of degraded EPO recep-

tors in the cytoplasm (dEpoi). For this illustration pur-

pose, the concentration is predicted for three time

points. Applying the threshold (Eqn 8) yields the

respective predictions confidence intervals. For the

basic experimental Setup A (red lines), the dEpoi con-

centration is practically non-observable which is indi-

cated by flat prediction profiles. These profiles show

that the lower boundary of the concentration of

degraded receptors in the cytoplasm is not specified by

the data in the basic setup. In contrast, the compre-

hensive experimental Setup B yields almost quadratic

prediction profiles indicating observability. For plot-

ting purpose, the minimum of �2LL has been sub-

tracted so that the 95% prediction confidence intervals

are given the intersection of the profiles with the

threshold Δ(95%) = 3.81.

Although non-identifiability and non-observability

are not independent, the relationship is typically non-

trivial. In general, it only holds that non-observabil-

ity requires weakly specified parameters and that a

non-identifiable parameter induces some weakly speci-

fied model predictions. In our illustration, predictions

of the dynamic variables have been considered. Such

predictions are of primary interest in terms of

observability. The term practically non-observability

has been introduced in [15] for indicating the inabil-

ity of making predictions with finite size confidence

intervals based on the available data. In our exam-

ple, there are three practically non-identifiable param-

eters, but there is only a single practically non-

observable dynamic state, namely dEpoi. This practi-

cal non-observability is due to the practical non-iden-

tifiability of the parameter kdi controlling the

production of dEpoi. In contrast, neither the non-

identifiability of the export rate of unoccupied recep-

tors causes non-observability of membrane bound

receptors, nor does the non-identifiability of kD
induce non-observability of receptor-ligand com-

plexes. Because of the complex relationship between

identifiability and observability, the prediction likeli-

hood profiles provides insight which is not directly

given by parameter profiles.

Profiles for validation data

A prediction confidence interval can be used to indi-

cate uncertainty of the systems’ behaviour for a condi-

tion of a new validation experiment. However, the

prediction confidence intervals covers only the uncer-

tainty of the model, i.e. the restricted knowledge about

the true underlying process but not the limited accu-

racy of the new measurement. Depending on the noise

level of a new data point, such a new validation mea-

surement can exhibit an increased dispersion.

Fig. 3. Prediction likelihood profiles. Prediction profile likelihood for

the dynamics of degraded EPO receptors in the cytoplasm, dEpoi,

at time points 10, 100, and 300 min. In the experimental Setup A,

the dynamics is practically non-observable indicated by the flat

profiles (red vertical lines) whereas in the comprehensive

experimental Setup B (black vertical lines) dEpoi is observable.
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To account for the this effect prediction, the predic-

tion confidence intervals have been generalized in

[15,16] for the validation setting. Let z denote a poten-

tial value of a new data point with standard deviation

SD of the measurement error, the validation profile

likelihood is the maximized joint likelihood

VPLSDðzjyÞ ¼ max
h

LLðz; yjhÞ (11)

of the existing data y and new data point z read as a

function of the new measurement z. Again, validation

confidence intervals are asymptotically given the set of

measurements

VCISDa ðyÞ ¼ zj � 2 VPLSDðzjyÞ� min
h

�2 LLðz; yjhÞ
�

þDðaÞ
o
:

(12)

using the same threshold as before. Validation confi-

dence intervals are always larger than the respective

prediction confidence intervals. In the limit SD ? 0,

both confidence intervals coincide.

Implementation

Likelihood profiles for parameters, predictions, or vali-

dation measurements are one-dimensional representa-

tions of the likelihood ratio statistic. A fundamental

theorem in statistics, the so-called Neyman-Pearson

lemma states, that the likelihood ratio is the most pow-

erful statistic to test hypothesis related to specific

model components [22]. This lemma elucidates the

widespread use of likelihood ratio based methods in

statistical literature and theoretically corroborates the

capability of likelihood profiles.

An analytical calculation of the profile likelihood

requires an explicit formula for the maximum likeli-

hood estimate. Usually, such formulas are not avail-

able because ordinary differential equations (1) cannot

be integrated analytically in general. Therefore, likeli-

hood profiles have to be calculated numerically. Imple-

menting Eqn (9) constitutes an optimization problem

which is nonlinear with respect to the parameters and

has a nonlinear equality constraint. In addition, fur-

ther constraints like upper and lower boundaries for

the parameter may exist. There are several numerical

techniques for solving such optimization problems, e.g.

summarized in [23]. Since it is usually not feasible to

explicitly account for the constraint, so-called indirect

methods can be applied, i.e. the unconstrained problem

is iteratively solved, to approximate the constrained

solution, e.g. by projection of the gradient on the lin-

earised constraint.

As an alternative, it has been shown in [15,16] that

the prediction profile likelihood can be calculated

from the validation profile likelihood (Eqn 11) since

the additional term can be interpreted as a penalty

which can be subtracted after the validation profile

calculation. This constitutes an elegant way to calcu-

late the prediction and validation profiles in parallel

without reformulating or impeding the optimization

problem. This approach has been used in this article,

the ODEs have been solved by the CVODES algo-

rithm [24] and the trust-region method LSQNONLIN

from MATLAB was used for numerical optimization.

Since any continuous set of solutions of a penalized

optimization problem can be adjusted to be inter-

preted as a solution of the constraint optimization

problem as shown in [15,16], any penalization term

can be utilized to find prediction profiles. A promi-

nent class of penalties are so-called l1-penalties which

are proportional to the absolute value of the con-

straint violation and are more appropriate than qua-

dratic penalties to guarantee that constraints are

exactly satisfied [25].

These numerical computations of likelihood profiles

for ordinary differential equation models typically

requires optimization of the likelihood for each value

of the profiled parameter. Alternatively, approximate

profiles can be obtained by an integration method

based on the Lagrange multiplier formulation. Let l

(h) = �2LL(y|h) and G(h) = F (h) � F(ĥ) be the nega-

tive log-likelihood and the constraint function, respec-

tively. For each constraint value G = Δz, there are

parameter values ĥDz and a Lagrange multiplier value

ĥDz such that

ol
oh

����
ĥDz

þ k̂Dz
oG
oh

����
ĥDz

¼ 0; (13)

GðĥDzÞ ¼ Dz; (14)

i.e. ĥDz is optimal and satisfies the constraint. For

smooth l and G, both equations depend smoothly on

Δz and can be derived with respect to Δz resulting in

an ordinary differential equation for ĥDz and k̂Dz.
Hence, the likelihood profile Dz 7!lðĥDzÞ can be

obtained by numerical integration instead of optimiza-

tion. According to [2,26], this differential equation can

be efficiently approximated using only sensitivity infor-

mation, ofi
ohj
, and gradient information,

�
ol
ohj

; oGohj

�
.

This integration approach allows a considerable

reduction of function evaluations compared to the

optimization approach. It can be used for both,

parameter profiles and prediction profiles.
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Two-dimensional profiles

If the likelihood is optimized with two constraints

PPLF1;F2
ðz1; z2Þ ¼ max

h2fhjF1ðhÞ¼z1 ;F2ðhÞ¼z2g
LLðyjhÞ (15)

a two-dimensional profile likelihood is obtained. Such

two-dimensional profiles can be used to calculate com-

mon confidence intervals for two predictions. For the

special case of predicting two parameters, PPLF1,F2

indicates the combination of values of the two parame-

ters which are able to explain the data. This outcome

is more valuable for understanding which model com-

ponents are weakly specified by available experiments

than one-dimensional profiles. In [6, Supplementary

Fig. S13], such two-dimensional parameter profiles

have been used to identify combinations of kon and

koff rates of the EPO receptor which are in statistical

agreement with the measurements. These combinations

are then interpreted in terms of the trade-off between

bioavailability and bioactivity of Epo-stimulating

agents.

Summary

Likelihood profiles generalize traditional concepts for

confidence interval calculation like standard errors or

the Fisher Information to the nonlinear and finite sam-

ple setting as it is typically realized in Systems Biology

applications. In addition, likelihood profiles enable the

investigation of practical identifiability of parameters

as well as practical observability of model predictions.

As long as optimization is feasible, the method is

asymptotically exact, i.e. the probability that the true

parameter or the prediction for true parameters is in

the confidence interval is properly controlled by the

confidence level a. If the asymptotic assumption is vio-

lated due to insufficient amount of data, adapting the

threshold recovers this desired property [15,16].

In this article, the methodology related to the profile

likelihood has been summarized briefly. Moreover, the

profile likelihood method has been demonstrated for a

model of EPO receptor and the interpretations of like-

lihood profiles with respect to identifiability and

observability have been shown.
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