
Cross-spectral analysis of physiological tremor and muscle activity
I Theory and application to unsynchronized electromyogram

J. Timmer 1, M. Lauk 1;2, W. P¯eger 1, G. Deuschl 3

1 Zentrum fuÈ r Datenanalyse und Modellbildung, Eckerstr. 1, D-79104 Freiburg, Germany
2 Neurologische UniversitaÈ tsklinik Freiburg, Breisacher Str. 64, D-79110 Freiburg, Germany
3 Neurologische UniversitaÈ tsklinik Kiel, Niemannsweg 147, D-24105 Kiel, Germany

Received: 7 October 1996 /Accepted in revised form: 29 January 1998

Abstract We investigate the relationship between the
extensor electromyogram (EMG) and tremor time series
in physiological hand tremor by cross-spectral analysis.
Special attention is directed to the phase spectrum and
the e�ects of observational noise. We calculate the
theoretical phase spectrum for a second-order linear
stochastic process and compare the results to measured
tremor data recorded from subjects who did not show a
synchronized EMG activity in the corresponding exten-
sor muscle. The results show that physiological tremor is
well described by the proposed model and that the
measured EMG represents a Newtonian force by which
the muscle acts on the hand.

1 Introduction

Time series of hand tremor and the related muscle
activities of the ¯exor and extensor muscles are obtained
by measuring the acceleration of the hand (denoted here
by ACC) and the surface electromyogram (denoted here
by EMG). The ACC data of physiological tremor have
been described as a linear stochastic process driven by
uncorrelatedly ®ring motoneurons (Stiles and Randall
1967; Randall 1973; Rietz and Stiles 1974; Elble and
Koller 1990; Gantert et al. 1992; Timmer et al. 1993).
The description of physiological tremor by a linear
model is reasonable because linear approximations hold
due to its small amplitude. These linear stochastic
processes and their spectral and cross-spectral properties
have been studied exhaustively (Bloom®eld 1976; Brock-
well and Davis 1987; Priestley 1989). Usually, they are
denoted by autoregressive processes, since actual values
are given by a linear combination of past values plus a
driving noise. In physical terms, these processes are
linear damped oscillators driven by noise.

In the context of linear stochastic processes, the re-
lation between two processes can be analyzed by in-

vestigating phase and modulus, i.e., coherency, of the
normalized cross-spectrum. Applications of cross-spec-
tral analysis to EMG and ACC data of physiological
tremor have been reported (Fox and Randall 1970;
Pashda and Stein 1973; Elble and Randall 1976; Stiles
1983; Iaizzo and Pozos 1992). Up to now, the coherency
and the phase spectrum were investigated only at a
single frequency. In particular, the phase was always
interpreted as a time delay between the two processes.

The interpretation of the phase spectrum as a whole is
di�cult. For example, as will be shown below, the phase
spectrum between EMG and ACC time series depends
only on the mechanical properties of the hand and does
not allow us to draw conclusions about the dynamics of
the driving force, i.e., the EMG. In general, the phase
spectrum can only be interpreted under quite strong
assumptions about the interrelation of the processes. We
discuss those cases relevant for the EMG-ACC rela-
tionship. Finally, we compare the spectra predicted from
the model with those estimated from measured data.

The paper is organized as follows: In the next section,
we brie¯y describe the data. In Section 3, we introduce
the mathematical background for this and a companion
paper (Timmer et al., 1998). Section 4 gives theoretical
and empirical results for physiological tremors showing
a ¯at EMG power spectrum, resulting from unsyn-
chronized muscle activity. EMG power spectra exhibit-
ing a synchronization and the possible role of re¯exes
are discussed in a companion paper (Timmer et al.,
1998).

2 The data

The data were recorded from normal subjects. The
recording technique is described in detail elsewhere
(Deuschl et al. 1991). Brie¯y, the time series of the hand
tremor (ACC) were measured by a lightweight piezo-
resistive accelerometer. The sampling rate was 300Hz.
The outstretched hand was supported at the wrist. We
recorded three data sets for each subject, the ®rst with
the hand unloaded, the second with a 500-g load, and
the third with a 1000-g load. The weights were ®xed to
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the back of the outstretched hand. External elements
such as the ampli®ers and the piezoresistive sensors
produce additive white observational noise in each
recorded time series, uncorrelated to the measured
dynamical process itself. The variance of the observa-
tional noise can be estimated from the high frequency
part of the power spectrum where the contribution of
the tremor oscillation can be neglected. This noise
contributes up to 10% of the variance of the recorded
data and has a signi®cant e�ect on the estimated
coherency and phase spectra, as will be shown in
Section 3.

The EMG time series (EMG) were measured by
surface electrodes ®xed over the belly of the extensor
carpi ulnaris muscle and the ¯exor carpi ulnaris muscle.
These data represent broad band noise. The information
about a possible synchronization of the muscle activity is
encoded in a modulation of this noise. The data were
high pass ®ltered (cut-o� frequency 80Hz) in order to
remove movement artifacts, recti®ed in order to obtain
time series re¯ecting the muscle activity (Journee 1983),
and then low pass ®ltered (cut-o� frequency 150Hz) to
avoid aliasing. Finally, the signals were digitized and fed
into a computer for o�-line analysis.

Like the tremor time series, the EMG time series are
contaminated with additive observational noise. Its
variance cannot be estimated analogously to that of the
ACC data, since uncorrelated EMG activity also shows
a ¯at power spectrum at higher frequencies indistin-
guishable from that of the observational noise.

Time series from 58 subjects who showed no signi®-
cant EMG synchronization, i.e., a ¯at spectrum, were
examined. The statistical decision of consistency with a
¯at spectrum was performed by means of a Kolmogorov-
Smirnov test at the level of con®dence P � 0:05 (Timmer

et al. 1996). A representative example of such a time
series is shown in Fig. 1. Time series from 19 subjects
with enhanced physiological tremor who showed a sig-
ni®cant EMG synchronization are analyzed in the com-
panion paper. In each time series, the mean was
subtracted, and all series were scaled to variance one.

3 Mathematical methods

In this section, we introduce the mathematical methods
that will be used below and in the companion paper to
analyze the simulated and the measured data. First, we
brie¯y summarize the time and frequency domain
properties of linear stochastic processes before discuss-
ing the cross-spectral estimation and interpretation.
Special attention will be paid to the e�ects of observa-
tional noise, which is always present in the data of
physiological tremor and its EMG and renders the
interpretation of the mathematical results more di�cult.

3.1 Linear stochastic processes

An example of a linear stochastic process is the
autoregressive (AR) process of order p:

x�t� �
Xp

i�1

aix�t ÿ i� � ��t� �1�

where ��t� denotes uncorrelated Gaussian noise with
variance r2. For ease of notation, we set the sampling
interval to unity for the theoretical discussion. Such a
process can be interpreted in physical terms as a

Fig. 1. Acceleration of the hand (a) and recti®ed electro-
myogram (EMG) (b) of physiological tremor
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combination of relaxators and damped oscillators
(Honerkamp 1993). For example, an AR process of
order 2 with appropriate parameters a1 and a2 describes
from a physical standpoint a linear, damped oscillator
with characteristic period T or frequency x � 1=T , and
relaxation time s. T and s are related to the parameters
a1 and a2 by:

a1 � 2 cos
2p

T

� �
exp�ÿ1=s� �2�

a2 � ÿ exp�ÿ2=s� �3�

AR processes can be generalized to the autoregressive
moving average (ARMA) processes by including past
driving noise terms in the dynamics. A more substantial
generalization is the linear state space model (Honerk-
amp 1993). It allows one to model explicitly the
observational noise g�t� that covers the dynamical
variable ~x�t� which is mapped to the observation by C
and contributes to the measured z�t�:

~x�t� � A~x�t ÿ 1� �~��t� �4�
z�t� � C~x�t� � g�t� �5�

This model has been applied successfully to physiolog-
ical tremor time series (Gantert et al. 1992). If the
observational noise is not modeled explicitly, e.g., by
applying an ARMA model, the characteristic times will
be underestimated, and statistical tests to decide on the
model order will fail to detect the correct order (KoÈ nig
and Timmer 1997). This might explain the high model
order reported earlier (Randall 1973; Miao and Saka-
moto 1995).

3.2 Spectral properties of linear stochastic processes

The power spectrum S�x� of a mean zero and unit
variance process x�t� is de®ned as the Fourier transform
of the autocorrelation function ACF�s�:

ACF�s� � hx�t�x�t ÿ s�i �6�

S�x� � 1

2p

X

s

ACF�s� exp�ÿixs�; x 2� ÿ p; p� �7�

with `h i' denoting expectations. The estimation of the
power spectrum is usually based on the Fourier
transform F �x� and the periodogram Per�x� of the data:

X �x� � 1����
N

p
XN

t�1

x�t� exp�ÿixt� �8�

Per�x� � jX �x�j2 �9�

and is evaluated at the frequencies:

xk �
2pk

N
; k � ÿN

2
� 1; . . . ;

N

2
�10�

The expectation of the periodogram is the power
spectrum, but the periodogram is not a consistent
estimator for the power spectrum since the standard

deviation of this v22 distributed random variable is
equal to its mean and does not decrease with increasing
number of data (Brockwell and Davis 1987; Priestley
1989):

Per�x� � 1
2
S�x�v22 �11�

In order to estimate the power spectrum, the periodo-
gram has to be convolved by a window function W �j� of
width 2h� 1:

bS xk� � � 1

2p

Xh

j�ÿh

W �j�Per xk�j

ÿ �
�12�

It is also possible to estimate the power spectrum by
averaging the periodograms of segments of the data or by
®tting an AR process to the data and calculate the
spectrum of the ®tted process. General aspects of spectral
estimation as well as con®dence intervals are given in
Brockwell and Davis (1987) and Priestley (1989). Special
aspects concerning spectral estimation for tremor time
series are discussed in Timmer et al. (1996).

For linear processes, the power spectrum can be cal-
culated analytically. In the case of an AR process of
order 2 it is given by:

S�x� � 1

2p

r2

j1ÿ a1 exp�ÿix� ÿ a2 exp�ÿ2ix�j2
�13�

Expressed in terms of T and s, the power spectrum
shows for j cos�2p=T �j cosh�1=s� � 1 a peak at the
frequency:

xpeak � arccos cos�2p=T � cosh�1=s�� � �14�

Therefore, for small s, the peak of the power spectrum is
not located at the frequency 2p=T . The width of the peak
is proportional to 1=s. If the driving force is character-
ized by some nontrivial power spectrum, Sdrive�x�
instead of the constant spectrum of uncorrelated white
noise (13) changes to:

S�x� � Sdrive�x�
j1ÿ a1 exp�ÿix� ÿ a2 exp�ÿ2ix�j2

�15�

3.3 Cross-spectral analysis

Analogously to the univariate quantities introduced in
the previous section, the cross-spectrum CS�x� of two
zero mean and unit variance time series x�t� and y�t� is
de®ned as the Fourier transform of cross-correlation
function CCF �s�:

CCF �s� � hx�t�y�t ÿ s�i �16�

CS�x� � 1

2p

X

s

CCF �s� exp�ÿixs� � X �x�Y ��x�h i �17�

Here the asterisk denotes complex conjugation. The
coherency spectrum Coh�x� is de®ned as the modulus of
the normalized cross-spectrum CS�x�:
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Coh�x� � jCS�x�j�����������������������
Sx�x�Sy�x�

p �18�

and the phase spectrum U�x� by the representation:

CS�x� � jCS�x�j exp�iU�x�� �19�
It can be shown that Coh�x� equals 1 whenever y�t� is a
linear function of x�t�. This holds especially for the
coherency between an AR process and its driving noise
��t� (Brockwell and Davis 1987; Priestley 1989). Thus,
the coherency can be interpreted as a measure of linear
predictability. The interpretation of the phase spectrum
is more di�cult. For the following cases, the phase
spectrum can be calculated analytically:

± If the process y�t� is a time-delayed version of process
x�t�, i.e., y�t� � x�t ÿ Dt�, the phase spectrum is given
by a straight line with its slope determined by Dt:

U�x� � Dtx �20�
± If y�t� is the derivative of x�t�, i.e., y�t� � _x�t�, a

constant phase spectrum of ÿ p
2
results.

U�x� � ÿp=2 �21�
± In the case of an AR process of order 2 (AR[2]), the

phase spectrum between the driving noise ��t� and the
resulting process is given by:

U�x� � arctan
a1 sinx� a2 sin 2x

1ÿ a1 cosxÿ a2 cos 2x

� �
�22�

It is important to note that the phase spectrum does
not change if the driving noise is not a Gaussian white
noise process. Because of the linearity of the system,
(22) holds whenever the driving process shows a
broad band power spectrum. It might even be chaotic.
If the relaxation time s is not smaller than the period
T , the phase relation Udiscr�x� between a (time-dis-
crete) AR[2] process and its driving noise (22) is re-
lated to a good approximation to the well-known
phase relation Ucont�x� for a (time-continuous) dif-
ferential equation of a linear, driven, damped oscil-
lator by:

Ucont�x� � Udiscr�x� � x �23�
Equation (23) shows that there is a substantial
di�erence between a discrete- and continuous-time
treatment of the data, since modeling continuous-time
data by discrete time models yields a spurious
time delay of one unit of the sampling period.
Although, in the case of tremor data, the natural
approach would be the continuous-time version, we
chose the discrete-time version because the simulation
studies become much easier and the mentioned e�ect
is easily corrected for.

Figure 2a displays the power spectrum of an AR[2]
process and Fig. 2b, the phase spectrum between the AR
process and its driving noise. The solid line gives the
result according to (22), the dashed line shows the result
for the continuous time case taking (23) into account.

Figure 2 demonstrates that an interpretation of the
phase spectrum U�x� for a single frequency is only
possible given strong assumptions about the relation
between the processes. In particular, the interpretation
of the phase spectrum at a single frequency x0, e.g., the
frequency of maximum coherency, as a time delay by
Dt � U�x0�=x0 may be erroneous. This situation is
similar to the interpretation of power spectra where, in
general, a certain amount of power at a certain
frequency may not be interpreted as an oscillator of
this variance. The whole phase spectrum, on the other
hand, can provide substantial information on the
relation between the processes if the empirical phase
spectrum ®ts to one of the theoretical phase spectra
(20,21,22) or combinations of them.

The cross-spectrum CS�x� is estimated analogously
to (12). The critical value s for the null hypothesis of
zero coherency for a signi®cance level a is given by:

s �
���������������
1ÿ a

2
mÿ2

p
�24�

where m is determined from the window function W �j�
by:

m � 2
Ph

j�ÿh W
2�j�

�25�

Con®dence intervals for the coherency are given in
Bloom®eld (1976). Besides the simple case where y�t�
and x�t� are indeed uncorrelated, at least the following
reasons can result in a coherency unequal to 1:

± A nonlinear relationship between x�t� and y�t�
± Additional in¯uences on y�t� apart from x�t�
± Estimation bias due to misalignment (Hannan and

Thomson 1971)

Fig. 2. a Power spectrum of a AR[2] process. b Phase spectrum
between the AR process and its driving noise. Solid line gives the result
according to (22), dashed line the result for the continuous time case
taking (23) into account
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± Observational noise

If y�t� is a linear function of x�t� but the measurement
of y�t� is covered by white observational noise of
variance r2ob, the coherency is given by (Brockwell and
Davis 1987):

Coh�x� �
������������������������

Sy�x�
Sy�x� � r2ob

s
�26�

Thus, the coherency is a function of the frequency-
dependent signal-to-noise ratio. For the general case of
observational noise on both processes, the coherency is
given by:

Coh�x� �
�����������������������������������������������
1ÿ

r2xSy � Sxr2y � r2xr
2
y

Sx � r2x
ÿ �

�Sy � r2y�

s
�27�

where the argument x was suppressed on the right hand
for ease of notation and r2x and r2y denote the constant
power spectra of the observational noise. Figure 3
illustrates (27) for di�erent signal-to-noise ratios of both
processes. This might partially explain the ®ndings of
Stiles (1980) and Lenz et al. (1988), who report a
correlation between peak power and coherency at the
peak frequency as an e�ect of observational noise. If we
assume a constant amount of observational noise, the
peak power is correlated with the signal-to-noise ratio.

Equation (27) is of particular interest since the vari-
ance of the estimator for the phase spectrum bU�x� de-
pends on the coherency (Priestley 1989):

var bU�x�
� �

� 1

m

1

Coh2�x�
ÿ 1

� �
�28�

where m is given by (25). Equation 28 holds if the
coherency is signi®cantly larger than zero. For a
coherency towards zero, the distribution of the estimat-
ed phase approaches the uniform distribution in �ÿp; p�.
Therefore, the phase spectrum cannot be estimated
reliably in the case of small coherency.

Using (28), theoretical phase spectra like (20) or (22)
can be ®tted to estimated phase spectra by a maximum
likelihood procedure. We used the Levenberg-Mar-
quardt algorithm (Press et al. 1992). This algorithm
provides con®dence limits for the estimated parameters
that are asymptotically valid. The asymptotic results
hold in the ®nite case when the parameter estimates are
Gaussian. In order to test whether this condition applies
in our case, we performed a Monte Carlo simulation for
an AR[2] process under conditions analogous to those
observed in the empirical data. The variance of the
driving noise, i.e., the unsynchronized EMG, was set to
unity, the frequency of the AR process was 10Hz, the
relaxation time 0:1 s, i.e., one period. For a sampling
frequency of 300Hz, according to (2,3), the parameters
of the AR[2] process are a1 � 1:8922 and a2 � ÿ0:9355.
The time delay Dt is one sampling period. Gaussian
observational noise was added to both processes to ob-
tain a signal-to-noise ratio of 10:1. Figure 4 shows
scatter plots of the estimated frequency, relaxation time
s, and delay Dt for 500 realizations of the process. The
Gaussianity of the estimates is clearly visible. Further-
more, the estimates are uncorrelated. This is plausible
since the period T determines the frequency at which the
phase spectrum is varying vastly, whereas the relaxation
time s is related to the steepness of the phase spectrum at
that frequency. The estimated delay time corresponds to
the sampling period of 0:0033 s. The variances and the
covariance of zero are consistent with the results from
the Levenberg-Marquardt algorithm. Note that the rela-
tive error in s is much larger than that in T . The goodness-
of-®t is judged by the v2 statistic (Press et al. 1992).

The peak frequencies of the power spectra were esti-
mated by the frequency of maximum power. A boot-
strap method to obtain con®dence regions for the true
peak frequency is described elsewhere (Timmer et al.
1997). Brie¯y, many periodograms are simulated from
the estimated power spectra by the relation (11), and the
power spectrum is re-estimated. The quantiles of distri-
bution of the peak frequencies from the re-estimated
power spectra yield a con®dence region for the estimated
peak frequency.

Fig. 3. Coherency between linear related processes
in the case of observational noise on both processes
for di�erent signal-to-noise ratios (SNR). Abscissa
displays the SNR for one of the signals. The
di�erent curves parameterize the SNR for the other
process
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If two linear processes with autocorrelation functions
ACF 1�t� and ACF 2�t� are independent, the estimated
cross-correlation function dCCF �s� is Gaussian distrib-
uted as:

dCCF �s� �N 0;Nÿ1
X

t

ACF 1�t�ACF 2�t�
 !

�29�

Therefore, independence is di�cult to infer from the
cross-correlation function since the con®dence interval
depends on the autocorrelation functions of both
processes that are, in general, not known. Only for the
case of one of the processes is white noise, the 95%
con®dence interval for a zero cross-correlation function
is given by �1:96 Nÿ1=2. Furthermore, the estimated
cross-correlation function is not uncorrelated for di�er-
ent lags. The covariance is given by:

dCCF s1� �dCCF s2� �
� �

� Nÿ1
X

t

ACF 1�t�ACF 2 t � s2 ÿ s1� �

�30�
Again, the autocorrelation functions of both processes
enter the equation (Brockwell and Davis 1987). If, for
example, one process is white noise and the other is
oscillating, the cross-correlation function will show an
oscillating behavior, even if the processes are indepen-
dent. If the processes are not independent, (29,30) also

contain the true cross-correlation function (Bartlett
1978), rendering the interpretation even more di�cult.

In the following section, we apply the methods in-
troduced above to measured data of physiological
tremor without synchronization in the EMG. Whether
and how cross-spectral analysis can contribute to de-
ciding about the origin of synchronized EMG in the case
of (enhanced) physiological tremor is discussed in a
companion paper (Timmer et al., 1998). In both cases,
the ¯exor EMG appeared to have a negligible contri-
bution to the ACC data, i.e., the coherency spectrum is
most often consistent with the hypothesis that the pro-
cesses are uncorrelated. Whenever there was a signi®cant
coherency, it was invoked by cross-talk from the ex-
tensor EMG. The amount of cross-talk can be estimated
from the discontinuity at lag zero of the cross-correla-
tion function because of its instantaneous e�ect. The
dominant contribution of the extensor is plausible since
it is the anti-gravity muscle. Thus, only the extensor
EMG is considered in the analysis.

4 Results

It was frequently observed that a tremor appears even
without synchronization in the EMG. This was interpre-
ted as a resonance phenomenon and described by an AR
process (Stiles and Randall 1967; Randall 1973; Gantert
et al. 1992). Figure 5 shows the results of the spectral and
cross-spectral analysis for the data displayed in Fig. 1.
Figure 5a shows the corresponding spectra, Fig. 5b the
coherency spectrum, Fig. 5c the phase spectrum, and
Fig. 5d the cross-correlation function estimated as de-
scribed in Sect. 3. The straight line in Fig. 5b represents
the 5% signi®cance level for the hypothesis of zero
coherency. The dashed line in Fig. 5d gives the 5%
signi®cance level for the hypothesis of zero cross-
correlation assuming that at least one of the processes
is white noise according to (29). The phase spectrum is
shown 2p periodically for a range of�3p. The con®dence
regions of 2r are only given for the central curve.

The coherency spectrum seems to exhibit two peaks
at approximately 8 and 12Hz. Taking the con®dence
regions for the true coherency into account, which are
not shown for the sake of clarity, reveals that these
peaks are not signi®cant, but represent a single peak in
the region 7±14Hz. The fact that the coherency spec-
trum shows its maximum values in the region of the
peak of the ACC power spectrum can be explained by
(27) since EMG and ACC data are contaminated with
noise. Compared with Fig. 2, the phase spectrum of
the data is shifted by p. Since we measured the accel-
eration instead of the position, this results from ap-
plying (21) twice to the ACC data. For frequencies
below 3Hz, the small coherency and, therefore, the
large errors of the estimated phase disable its interpr-
etation. Note that the cross-correlation function shows
a periodic structure also for negative time lags. Al-
though they are statistically not signi®cant, one could
speculate whether they give evidence for some kind of
re¯ex feedback.

Fig. 4. Scatter plots of estimated frequency and relaxation time s (a)
and delay Dt and relaxation time s (b) from the Monte Carlo study
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In the frame of linear stochastic processes (without
re¯ex feedback), the di�erent spectra and the cross-
correlation function should be determined by the fol-
lowing six parameters.

� The characteristic times T and s, determining the
parameters a1 and a2 of the AR process modeling the
mechanic properties of the musculoskeletal system;

� A possible time delay Dt between the EMG and ACC
data;

� The variance varEMG of the white noise ��t� modeling
the asynchronous EMG activity;

� The variances varobs:ACC and varobs:EMG of the obser-
vational noises gi�t�.

Denoting the EMG by y�t�, the movement of the hand
by x�t�, and the measured values by the subscript m, the
model reads:

y�t� � ��t�; ��t� �N 0; varEMG� � �31�
x�t� � a1x�t ÿ 1� � a2x�t ÿ 2� � y�t ÿ Dt� �32�

ym�t� � y�t� � g1�t�; g1�t� �N 0; varobs:EMG� � �33�
xm�t� � x�t� � g2�t�; g2�t� �N 0; varobs:ACC� � �34�

By (2,3,4,5,13,20,22,27), we ®tted the parameter to the
data. First, we ®tted the phase spectrum without taking
a possible time delay into account. This resulted in an
inappropriate ®t. Only the inclusion of a time delay
according to (23) into the model gave a ®t consistent
with the data. Note that this time delay of one sample
unit does not re¯ect a time delay between the processes
under investigation. It results from using a time-discrete
model to describe an originally time-continuous process,
as discussed in Sect. 3.3. A realization of the ®tted model
and the estimated spectra are displayed in Fig. 6. Taking
into account the errors of all estimated quantities, it
shows good quantitative agreement with the empirical
results of Fig. 5. The decreasing coherency for the high
frequencies due to the frequency-dependent signal-to-
noise ratio and the resulting errors in the phase spectrum
are well reproduced. For the low frequencies, the
coherency of the model seems to be larger than that of
the data. This phenomenon was con®rmed in many data
sets. The discrepancy between the data simulated by the
model and the measured data results from the contri-
bution of the heart beat to physiological tremor (Elble
and Koller 1977). This additional in¯uence on the ACC
apart from the EMG is not captured by the model.
Thus, the coherency of the measured data is reduced
more than expected from the model that only considers
the e�ect of observational noise.

From a comparison of Figs. 5d and 6d it can be
concluded that the small oscillations of the cross-corre-
lation for negative lags give no evidence for a re¯ex
feedback. These oscillations appear because the cross-
correlation estimates are not uncorrelated, as discussed
in Sect. 3.3.

Assuming the validity of the AR[2] model to describe
physiological tremor, one can compare the peak fre-
quency estimated from the power spectrum (14) with
that estimated from the phase spectrum according to
(2,3,22). Taking the errors of the estimates into account,
both values are consistent.

We received similar results in 70% of the investigated
series. In the other 30%, an interpretation of the phase
spectrum was not possible because of the poor coher-
ency and, therefore, large errors in the phase spectrum.
As discussed in Sect. 3, this might be simply the result of
a smaller signal-to-noise ratio in the EMG and/or ACC,

Fig. 5a±d. Results for a physiological tremor without EMG synchro-
nization. a Power spectra (EMG: dashed line, ACC: solid line), b
coherency spectrum; straight line represents the 5% signi®cance level
for the hypothesis of zero coherency, c phase spectrum with 95%
con®dence intervals, d cross-correlation function, dashed lines display
the 5% signi®cance level for zero cross-correlation assuming that at
least one of the processes is consistent with white noise. Con®dence
intervals for the power spectra and the coherency are not displayed for
reasons of clarity
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in these cases due to a very low tremor amplitude. An
estimation of the power in the ACC and EMG spectra
supported this hypothesis.

5 Conclusions

We investigated the relation between muscle activity and
physiological tremor in the case of unsynchronized
EMG activity by cross-spectral analysis with special
respect to the phase spectrum and the e�ects of
observational noise. Such an analysis is not a straight-
forward task since one cannot a priori expect a one-to-
one relationship between one muscle and a speci®c

mechanical measure like force, movement, or accelera-
tion due to the redundancy of the muscle system.
Furthermore, the analysis is handicapped by the small
tremor amplitude.

We found that this type of physiological tremor can
be regarded as an AR process driven by the uncorrelated
EMG activity without involving any re¯ex mechanisms.
We showed that the phase spectrum between EMG and
ACC cannot be interpreted at a single frequency in terms
of a delay. The phase spectrum depends on the me-
chanical properties of the hand, i.e., the driven part of
the system, but not on the characteristics of the driving
force. The behavior of the coherency spectrum can be
explained as an e�ect of the frequency-dependent signal-
to-noise ratio. In addition, for low frequencies, the e�ect
of the heart beat on the tremor further reduces the co-
herency between the EMG and the ACC.

Autoregressive processes of order 2 are derived from
stochastic di�erential equations where the noise repre-
sents a force in a Newtonian sense, i.e., causing an ac-
celeration. The conformity of the theoretical phase
spectrum assuming such a process with the empirical
data shows that in the case of this small amplitude hand
tremor, the measured EMG represents a Newtonian
force by which the muscle acts on the hand.
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