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Statistical validation of event predictors: A comparative study based on the field
of seizure prediction
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The prediction of events is of substantial interest in many research areas. To evaluate the performance of
prediction methods, the statistical validation of these methods is of utmost importance. Here, we compare an
analytical validation method to numerical approaches that are based on Monte Carlo simulations. The comparison
is performed in the field of the prediction of epileptic seizures. In contrast to the analytical validation method,
we found that for numerical validation methods insufficient but realistic sample sizes can lead to invalid high
rates of false positive conclusions. Hence we outline necessary preconditions for sound statistical tests on above
chance predictions.
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I. INTRODUCTION

The occurrence of rare but severe events in fields like
seismology [1], epileptology [2], or meteorology [3] poses
considerable risk to human life. If the time of occurrence
of earthquakes, epileptic seizures, or windstorms could be
reliably predicted, warnings could be issued in order to enable
appropriate preparations. Hence considerable research efforts
have been invested aiming at developing appropriate prediction
methods, which analyze continuous measurements of the
underlying system to identify precursors of an upcoming event.

In order to elicit possibly predictive information from the
measurements, linear as well as nonlinear time series analysis
techniques are applied. This leads to derived time series that
measure specific quantities—so-called features. These feature
time series are supposed to contain characteristic changes that
render raising alarms possible. Alarms, which are triggered,
e.g., when the features cross certain thresholds, are assumed
to be related to the occurrence of the events. However, it is
a priori not known whether the alarms indeed reflect predictive
information. In principle, it is conceivable that alarms are
raised at random times, which then also could—randomly—
predict events. The application of such unspecific “prediction”
methods would certainly not be reasonable. Unjustifiable stress
would be put on the persons involved, who in turn might
disregard the predictions [4]. Thus, statistically speaking,
it must be tested whether the null hypothesis H0, that the
achieved performances based on the triggered alarms do not
differ from performances obtained by chance, can be rejected.

Several methodologies have been suggested for the statisti-
cal validation of event prediction performances. Basically, they
could be grouped into two classes. First, there exist analytical
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approaches that allow an immediate calculation of critical
values for judging on the significance of prediction perfor-
mances. Only if the actual performance of a prediction method
is above this critical value can the predictor be considered to
show above-chance performance. Second, the class of Monte
Carlo based validation methodologies provides critical values
by applying constrained randomizations to either the series
of events or to the prediction methods under consideration.
Again, to be considered significant the performance of the
actual prediction method has to exceed the critical values.

In this study, we compare these methods in order to identify
their advantages and limitations. We exemplify our analysis
on the field of the prediction of epileptic seizures. Here,
methods were developed analyzing electroencephalographic
(EEG) recordings in order to identify seizure precursors. For a
review see [2]. Although we base our study on evaluation
methods developed for this specific application, respective
implications also apply to other fields. Problem-specific
adaptations might be necessary, such as the inclusion of spatial
information. Discussing these in detail would go beyond the
scope of this paper. However, the conclusions drawn about the
characteristics of validation methodologies can be applied in
an analogous manner to related fields.

Besides the statistical validation of prediction methods,
another fundamental question regards their practical relevance,
i.e., whether their performance is sufficiently high for a given
application. The practical relevance needs to be related to the
desired type of intervention. For example, if actual warnings
are given to persons, a low rate of false predictions is usually
required. In contrast, in fields where automatic interventions
can be delivered, higher rates of false predictions are often pos-
sible if the interventions are accompanied by negligible side
effects. In the following, we focus on studying the statistical
significance, which allows an unequivocal evaluation of the
validity of a prediction method.
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FIG. 1. Prediction scheme considered in this study. An alarm
is followed by an intervention time (IT), during which no event
should occur such that an intervention could be applied. During the
occurrence period (OP), the event is expected to occur. If, indeed, an
event occurs during OP, the alarm is regarded correct.

General notions and notations for the evaluation of event
predictions are introduced in the next section. This is fol-
lowed by a description of the validation approaches studied,
motivated and introduced by the seizure prediction applica-
tion. Their properties are compared in a simulation study,
incorporating artificial event times and simulated predictors
with adjustable predictive power. Subsequently, the results
and their implications are discussed to determine necessary
preconditions for statistically sound tests on above chance
performances.

II. QUANTIFYING PREDICTION PERFORMANCES

When evaluating the predictive performance of a prediction
method M , it can be regarded as a “black box” triggering
alarms at specific points in time, which should predict the
occurrence of upcoming events. For each alarm triggered by
M , a well-defined occurrence period (OP) has to be specified,
for which the subsequent event is expected to occur (Fig. 1). In
order to predict an event, the alarms have to precede the event
by a specified amount of time, which then renders a preparation
possible—the so-called intervention time (IT). The prediction
sensitivity S is defined as the fraction of events that were
predicted correctly, i.e., that occurred during the OP of the
previous alarm.

An alarm is considered to be false if no event occurs
following IT during OP. To quantify specificity, we here follow
the approach of a false prediction rate (FPR), i.e., the number
of false alarms divided by the time during which false alarms
could be triggered.

III. STATISTICAL VALIDATION IN THE FIELD OF
SEIZURE PREDICTION

In seizure prediction, both analytical and Monte Carlo based
validation approaches have been introduced [5–13].

A. Analytical random predictor

In order to generate unpredictive alarms, a Poisson process
in time is assumed for the analytical approach, triggering
alarms independently from each other at a constant rate
over time. This rate is determined by the false prediction
rate γ [6,11], leading to the probability Ph = γ h for an
alarm during a short time interval h, strictly speaking in the
limit h → 0. The probability to randomly predict a seizure
correctly, i.e., the probability to trigger an alarm followed by

a seizure in the corresponding occurrence period of length �,
can be approximated by P ≈ 1 − eγ� [6]. In many studies,
parameters of the prediction method under consideration are
optimized in order to improve its performance [10,11]. This
includes, e.g., the selection of an optimal duration of IT, or
an optimal channel of the multichannel EEG recording. The
random predictor (RP) can be corrected for this increased
degree of freedom. If d independent optimizations of, for
example, one optimal EEG channel out of d channels are
performed, the probability to randomly predict at least n out
of N seizures reads [11]

Pd (n,N,P ) = 1−
[

1−
∑
j�n

(
N

j

)
P j (1−P )N−j

]d

. (1)

For a significance level α, a critical sensitivity of

SRP = argmaxn{Pd (n,N,P ) > α}/N × 100% (2)

can be achieved by chance performance. If the observed
sensitivity S of the actual prediction method is higher than
SRP, it can be regarded statistically significant.

B. Numerical approaches

Alternatively, Monte Carlo simulations can be used to
approximate the performance of random predictors. In the
field of seizure prediction, it has been proposed to randomize
either the seizure onset times [7], the alarms triggered by
a predictor [5], or the time series of the features extracted
from the EEG [8]. We emphasize that for other fields of
event predictions, the same strategies can be followed when
substituting seizures by events. For the randomization of the
features, a large number of constraints for the randomization
is possible. Yet it was not established which properties of the
original features should be preserved in the randomization
process. Also due to its high computational demand, it was not
used frequently [5]. In the following, we concentrate on the
other methods. For so-called “seizure times surrogate” (STS),
the time intervals between seizures are randomly permuted by
drawing without replacement to generate randomized seizure
onset times [7,10]. A random offset is added to the first interval
because otherwise all realizations would add up to the same
total duration and the last seizure onset times would always
coincide with the original ones [10]. As an alternative, the
intervals can be drawn with replacement, which corresponds
to the bootstrap resampling approach (BST). For both STS and
BST, the prediction method has to be applied to the randomized
seizure onset times as it was applied to the original ones. For
“alarm time surrogate” (ATS), randomized alarm times are
generated by drawing intervals with replacement from the
pool of original inter-alarm intervals, which were triggered
by the prediction method M under consideration. Here, the
performance is assessed based on the original seizure times.
If the internal state of M is reset after the occurrence of each
seizure, special care has to be taken for the ATS in order to
obtain a valid sample of the inter-alarm intervals [5].

For a given significance level α, the performance of M can
be considered above chance level for a Monte Carlo based
validation method if it exceeds the (1−α) quantile of the em-
pirical distribution of the performances under H0. A minimum
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number of realizations is �1/α − 1�, i.e., 19 realizations
for α = 5%. With more realizations, the distributions of the
performances of the validation methods can be approximated
with higher accuracy.

IV. CHARACTERISTIC PROPERTIES OF VALIDATION
METHODS

For all validation methods, it has to be shown that their
empirical size, which is the empirical probability for α errors
of the resulting test on above-chance performance [14], sticks
correctly to the nominal size α. Otherwise, the test would not
adhere to the chosen maximum probability for α errors; thus
it would be invalid. Additionally, it should be tested whether
the statistical power is sufficient, which is the probability that
a null hypothesis is rejected correctly for various strengths of
violations of the null hypothesis.

In order to analyze the empirical size, it has to be warranted
that no predictive information is incorporated under H0. For
the analytical random predictor, this is ensured by assuming a
Poisson process, which is characterized by exponentially dis-
tributed inter-alarm times. Hence the occurrence of alarms is
neither correlated to other alarms nor to seizures, independent
of the alarm distribution of M and independent of the original
seizure distribution. For STS, BST, or ATS, the original seizure
or alarm distributions are randomized as described above in
order to eliminate possibly predictive information. In cases
of degenerated distributions, this may be impossible. E.g., for
periodically occurring seizures with an almost fixed duration
of the period, the inter-seizure intervals have all approximately
the same duration. Hence no independent realizations can
be drawn—for each realization, the resulting event times are
correlated to the original ones. In such cases, the randomization
would fail and a true predictive performance of M would not
be detected.

For the asymptotic theory of bootstrap tests [15], conditions
are known under which the tests fail [16–18]. One necessary
condition is a consistent estimation of the underlying sample
distribution, i.e., the distribution of the intervals between
seizures for STS and BST, and between alarms for ATS. It
has to be ensured that both the sample size and the number
of bootstrap realizations is sufficiently large. Otherwise,
bootstrap does not necessarily provide consistent and unbiased
results, which could eventually lead to invalid high rates of
α errors and/or a decreased power.

V. SIMULATION STUDY

A. Design

To study empirical size and power of RP, STS, BST,
and ATS, we analyze them based on simulated events and
simulated “predictors” Msim. Here, each simulation instance
represents one patient. For a number of simulation instances,
exponentially distributed inter-event intervals are drawn to
generate artificial series of onset times. Each simulation lasts
for a given total simulation duration Tsim. To be close to an
actual application, a rate rsz of 0.15 events per hour is used,
which is a typical seizure rate occurring during clinical EEG
recordings [19]. For an exemplary IT of 10 min and an OP of
30 min, which are again typical durations in seizure prediction,

artificial prediction methods Msim are simulated that trigger
correct alarms prior to each seizure with probability PCA.
Additionally, alarms are triggered that are uncorrelated to
the seizures, following a Poisson process with exponentially
distributed inter-alarm intervals and based on a false alarm rate
rFA. These alarms thus carry no predictive information. If PCA

is set to zero, Msim is a random predictor.
To derive the performance of the predictor Msim and

the corresponding performances of the validation methods,
sensitivities and specificities of the triggered alarms of Msim

were determined as described in Sec. II. If further alarms
follow each other within the ongoing IT or OP, it would
be possible to prolong the first OP [20]. Yet, this could
result in excessively long prediction windows. Instead, in
such scenarios we consider only the first alarm and discard
all further alarms during IT and OP after an alarm. These
intervals do not enter the calculation of the false prediction
rate (FPR) γ . If two seizures follow each other too closely,
i.e., within the duration of IT plus OP, the later seizure is
regarded unpredictable and is excluded from the analysis.

In order to compare the performances of prediction methods
to the critical values of validation methods, a scalar perfor-
mance measure is required that quantifies both the sensitivity S

and the FPR γ . In the following we use [5,9]

�M (S,γ ) = 1 −
√

(1 − S)2 + γ 2/γ 2
0 . (3)

The performance measure �M equals 1 for the perfect case
of S = 1 and γ = 0. It decreases with decreasing S and
increasing γ , and has no lower bound. The parameter γ0 adjusts
whether �M depends more on S or γ and can be chosen
depending on the priorities of the application. For seizure
prediction, the correct prediction of seizures is considered
more important than the reduction of false alarms [21]. Thus
the normalization parameter γ0 was set to a rather high value
of 1/h in order to down-weight the influence of γ . Typical
values for γ of 0 to 0.5/h result in a maximum contribution of
γ 2/γ 2

0 of 0.25, while S contributes a value between 0 and 1.
Thereby, changes in S lead to multiple higher changes of �M

than changes in γ .

B. Results

The simulations were based on 1000 instances, for which
the ratio of instances with performances higher than the
different validations methods was determined. The STS, BST,
and ATS were based on 100 realizations each. For varying
rates of false alarms rFA, Fig. 2 shows the empirical size,
i.e., the empirical probability that above-chance prediction
performances are detected for the case that H0 is correct
(PCA = 0). In order to yield statistically sound results, the
empirical size is required to be smaller than or equal to the
chosen significance level α = 5% (marked by black horizontal
lines), since otherwise excessive α errors occur. In (a)–(c),
the simulation durations Tsim were varied as an additional
parameter; in (d) and (e), the seizure rates rsz. For small
rFA � 0.05/h, the empirical size decreases for all methods
because only rarely false alarms are issued that could “predict”
an event correctly by chance.

In general, it can be observed that for the numerical
validation methods the empirical size exceeds α for short
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FIG. 2. (Color online) Empirical size of the analytical random predictor (RP, black), the alarm time surrogates (ATS, green or medium
gray), and seizure time surrogates with random offset (STS, orange or light gray) and with bootstrap resampling (BST, red or dark gray)
depending on the rate of false alarms rFA, for α = 5% (black horizontal lines). For exponentially distributed inter-seizure intervals, the results
are shown for varying simulation durations and fixed seizure rate rsz = 0.15/h and γ0 = 1/h in (a)–(c), and for varying rsz and fixed simulation
duration Tsim = 1 day and γ0 = 1/h in (d) and (e). In (f) and (g), the empirical size is shown for gamma distributed inter-seizure intervals with
shape parameter k = 0.2 and k = 5 for rsz = 0.15/h and Tsim = 1 day. In (h) and (i), the normalization factor γ0 of the performance measure
�M was varied, again for rsz = 0.15/h and Tsim = 1 day, for k = 1. Based on 1000 simulation instances, 95% confidence intervals are given.

simulation durations Tsim (a) or small seizure rates rsz (d).
Hence they could lead to invalid conclusions for small numbers
of events. For the BST, the empirical size clearly exceeds
α for Tsim = 1 day and rsz = 0.15/h. Since for increasing
numbers of events the empirical size adheres correctly to
the value of 5%, this discrepancy can be explained by an
insufficient estimation of the underlying sample distributions.
This is especially prominent for the ATS, for which the results
depend strongly also on rFA. For an average of five alarms
or less, i.e., a rate of rFA � 0.2/h for Tsim = 1 day (a) or
rFA � 0.1/h for Tsim = 2 days (b), α is considerably exceeded.
These deviations decrease for increasing numbers of events.
For the STS, in comparison to BST and ATS, α is exceeded
only slightly for Tsim = 1 day (a) and rsz � 0.15/h (d),
and the empirical size adheres to α for increasing Tsim or rsz. For
the RP, all approximations are designed to be conservative, like
the calculation of the maximum number of seizures predicted
by chance in Eq. (2). Hence the RP is statistically conservative
by definition (cf. [11]), which is reflected in an empirical size
smaller than or equal to α.

In order to test the robustness of the validation methods
for varying distributions of the inter-seizure intervals, we
also simulated these intervals following a gamma distribution,
which resembles the actual inter-seizure intervals of epilepsy
patients [22]. For again PCA = 0, i.e., unpredictive alarms,
intervals were generated with mean kθ and variance kθ2.

The scale parameter θ of the gamma distribution was set
to θ = 1/(krsz) for a given shape parameter k such that the
expected seizure rate is rsz as well. For k = 1 the intervals
are exponentially distributed, corresponding to Fig. 2(a). In
Fig. 2(f), the empirical size is shown for k = 0.2, which reflects
variances of the inter-seizure intervals larger than the ones
for the exponential distribution. For this scenario, an invalid
empirical size is observed for all numerical validation methods.
Since more inter-seizure intervals with short durations occur in
this case, leading to so-called “clusters,’ the number of seizures
with sufficient distance to the previous seizure decreases. We
also performed the simulations for k = 5, shown in Fig. 2(g),
for which the empirical size adheres to the chosen significance
level even for small simulation durations for a wide range
of rFA for the BST and STS. This can be explained by the
decreased variance and improved estimation of the underlying
distribution of the inter-seizure intervals for large k, and
the larger number of seizures available. However, for most
epilepsy patients both long and very short intervals occur
[22,23], such that in these cases an adequate number of seizures
has to be ensured.

When varying the rates of γ0 of the performance measure
�M [cf. Eq. (3)], as shown in Figs. 2(h) and 2(i), the empirical
size decreases slightly for numerical validation methods if
γ0 is chosen to be larger than 1/h [Fig. 2(i)]. In this case,
false predictions have a smaller influence on the values of
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FIG. 3. (Color online) Statistical power of the analytical random predictor (RP, black), the alarm time surrogates (ATS, green or medium
gray), seizure time surrogates with random offset (STS, orange or light gray), and with bootstrap resampling (BST, red or dark gray), depending
on the probability of predictive alarms PCA. Simulation durations of 1 day in (a)-(c) and 4 days in (d)-(f) are shown for exemplary rates of false
alarms rFA and γ0 = 1/h. For the case PCA = 0, the power is equivalent to the empirical size (cf. Fig. 2). 95 % confidence intervals are based
on 1000 simulation instances.

�M than correct predictions. Thus it can be concluded that
for small Tsim the false prediction rates are overestimated by
the numerical methods, leading to an invalid high empirical
size. Additionally, we also analyzed the empirical size for
varying values of the occurrence period and intervention times
(not shown). Since the number of seizures with sufficient
inter-seizure duration depends on both OP and IT, it has to
be ensured that a sufficient number is available for the chosen
durations. For a disproportionately large OP of several hours,
the estimation of the FPR fails for short Tsim if no false
predictions are triggered, leading to an incorrect empirical
size for the RP. In this case, a conservative estimate for FPR is
given by 1/Tsim as an upper bound. Otherwise, we emphasize
that we did not find considerable differences to the results
presented. Hence for all prevailing scenarios and independent
of the seizure distribution, the analytical random predictor was
found to keep to α for all simulation durations and all settings
studied.

In Fig. 3, the statistical power of the validation methods is
shown for varying PCA and simulation durations of one day
in (a)–(c) and four days in (d)–(f) for three exemplary rFA. As
expected, the power is higher for longer simulation durations
for all methods. Larger sample sizes allow a better detection
of above-chance performances. For Tsim = 4 days, for which
BST and STS adhere to the given significance level, and
for false alarm rates rFA = 0.2/h [Fig. 3(e)] and rFA = 0.3/h
[Fig. 3(f)], the numerical methods exhibit a slightly higher
power than the RP.

As described in Sec. III, for the STS a random offset
was used, which was uniformly distributed in [0 . . . τ ] with
τ = 4 h, as proposed in the literature [10]. To test its influence,
we also varied τ . For values near to zero, a decrease in power
was observed for small Tsim, because in this case the last
seizure time almost coincides with the original time. Hence the
probability for a correct prediction is higher. For reasonable
maximum offsets τ , i.e., in the order of the duration of the OP

or larger, no considerable changes in power and empirical size
of the STS were found.

VI. DISCUSSION

Both the analytical and numerical validation concepts
are characterized by specific advantages. For the analytical
random predictor, the assumptions made are explicitly stated
and the dependency of its sensitivity on its parameters is known
analytically. Hence it allows the design of studies. For example,
the minimum number of events needed for a rejection of H0

could be calculated in advance. The main advantage of Monte
Carlo based methods, given that a sufficient number of events
is available for valid numerical estimates, is their apparent
flexibility. By applying constraints to the randomized data,
it is possible to test prediction methods for specific properties
beyond randomness of the underlying event generating process
[24]. Such properties could be rhythms in event occurrences
or the observation that events are followed by a refractory
period, as done in a recent study [5]. However, since potentially
predictive information is included into the “random” predictor
here, a true prediction performance may not be detected.
Hence it is of importance to clearly distinguish these tests on
specific characteristics from the test on statistical significance
of prediction performance. While the former allows insights
in the event generating process, the latter is designed to detect
performances above chance.

As shown by the simulation study performed, we summa-
rize that numerical methods proposed for the validation of
prediction performances can lead to invalid high rates of false
positive conclusions for small but realistic numbers of events,
which were used in several studies; for a review see [10]. We
found that the absolute number of events with sufficiently long
inter-event intervals is a decisive factor. Hence also for short
durations of one day, a large number of about five such events
would be required for the STS and BST. This is especially
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important if the inter-event distribution deviates from the
exponential distribution toward a long-tailed distribution. For
the particular case of the ATS, the validity also depends
critically on the total number of alarms. Here, an average of at
least 5 alarms is required, or more than 0.2 alarms per hour for
a duration of 1 day. This conflicts with the goal to trigger as few
false alarms as possible in order to gain optimal performances.
Overall, STS were found to be applicable in a higher number of
prediction settings than BST and ATS. The analytical random
predictor is statistically conservative. It might have a slightly
lower power in some cases, but in general it complies to the
given significance level and hence constitutes a valid test for
statistical significance.

For other fields of event predictions, the situation is similar,
like in the field of earthquake prediction. Here, the place of
occurrence is another parameter that has to be taken into
account. However, when restricting to a confined area, the
considerations presented above apply analogously. Similar
to epileptic seizures, earthquakes with significant impact are
rare events. While the absolute occurrence rates are much
smaller for high-magnitude earthquakes than the seizure rates
considered in this study, they also can be modeled by a

gamma distribution [25]. If, instead of a duration of 1 day for
the seizure prediction example, an exemplary time frame of
2 years is considered with the same average number of 3.6
events per year, the situation is directly transferable. An OP of
30 min for Tsim = 1 day would correspond to an OP of about
10 days here. Hence it can likewise be concluded that for
numerical validation methods comparable numbers of events
are required.

In all of these fields the application of analytical validation
methods constitutes a robust and valid approach in order to test
whether prediction methods are indeed better than chance.
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