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The Effects of Non-ldentifiability on Testing for Detailed Balance in
Aggregated Markov Models for lon-Channel Gating
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ABSTRACT Aggregated Markov models are a widely used tool to model patch clamp data measured from single ion
channels. These channels must obey the principle of detailed balance in thermodynamic equilibrium; otherwise, the channel
is driven by an external source of energy. We investigate the power of a likelihood ratio test for detailed balance for a number
of data points which is in the order of magnitude of patch clamp experiments. We show that for certain models with nearly
equal dwell times, a test for detailed balance suffers from a loss of power to detect violations of detailed balance which is due
to the non-identifiability of the transition rates for models with equal dwell times.

INTRODUCTION

The recording of single ion channel currents by the soproducts of the transition rates in clockwise and counter-
called patch clamp technique has deepened the understandeckwise direction in each loop are the same (Kelly, 1979;
ing of the fundamental physiological mechanisms of a cellKijima, 1997).
in the last two decades (Neher and Sakmann, 1976; Hamill In the following, we investigate the power of likelihood
etal., 1981; Sakmann and Neher, 1995). In steady state, iofatio tests to detect violations of detailed balance in two
channels permanently perform transitions among a numbetifferent gating schemes each with one loop: the simplest
of unobserved states which are divided into two groups: théour-state model with one loop (see Fig. 1), which we refer
open and closed states. (Some channels posses sub-condicas the “loop model”, and a six-state model in which the
tance levels, i.e., open states with different conductivitiesopen and closed state alternate and in which the states are
All results in this paper generalize for this case.) In an operyrranged in a circle (see Fig. 2). This model was used by
and in a closed state, the measured currents fluctuate arousghng and Magleby (1994) to investigate their method to test
a certain conductance level which is the same for all opefior microscopic reversibility based on visual inspection of
and all closed states, respectively. Thus, the observed iogstimated two dimensional dwell time histograms. Below
current provides an aggregated image of the underlyingye will refer to this model as the SM model.
process. ) Both models serve as simplified examples for investigat-
Aggregated Markov models are a suitable model class tgyg the difficulties in testing for detailed balance in more

describe the dynamics of the measured currents (Colquhoyrjistic. but also more complicated aggregated Markov
and Hawkes, 1977, 1982; Colquhoun and Sigworth, 19954,4els. This is not a severe restriction because any more
Fredkin et al., 1983).

- o ) complicated aggregated Markov model with loops contains
In thermodynamic equilibrium, the dynamics of the gat

. . L , “these simple models as submodels and, therefore, the larger
ing are subject to the principle of detailed balance. Thereh\odel will exhibit an analogous behavior
fore, a violation of detailed balance would indicate the The loop model and the SM model havé been chosen for

]E)re(s;lap Ci of anl e?tern{a}l enecrigy Isoutrce.l I Tra]lstbeten observ&ﬁs paper because they differ in the identifiability of their
borrane eﬁe?t?gﬁhserr:i::nal S:SSie%tecea(\:nr?:gj:e sici ;azzr;ir;&)larameters. Whereas the transition rates in the SM model
librium behavior of the CI ion-channels (Richard and are always identifiable, the transition rates in the loop model

Miller, 1990). loop are not identifiable if the open or the closed dwell

._..times are equal, that is, the time constants characterizing the
Often, aggregated Markov models used to model realistic : - . . .
. exponentially distributed dwell times in the open states or in
lon channels have one or more loops (Horn and Langet,he closed states are the same. Moreover, this non-identifi-
1983; Ball and Sansom, 1989; Bates et al., 1990; Vanden- ) ’

berg and Bezanilla, 1991). In these models the principle Of:lbility' severely influences the estimation of the transition
detailed balance is equivalent to the condition that théate_S n the case of_nearly equa! _dwell times; the standard
deviations of the estimated transition rates become extraor-

dinarily large even for the number of data points typically

recorded in experiments (Wagner et al., 1999). In the
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large sample size, the covariance matrix of the estimated transition rates is
@ given by the inverse Hessian matrix of the likelihood function evaluated at
the maximum likelihood parameters (Bickel et al., 1998). Assuming that
the maximum likelihood parameters correspond by chance to equal open
times, then the Hessian matrix would be singular due to the non-identifi-
ability for equal open times in the loop model, its condition number would
be infinity (Golub and VanLoan, 1996). Since the condition number of a
matrix depends continuously on its entries, the Hessian matrix is ill-
conditioned if the maximum likelihood parameters correspond to nearly
equal open times. Therefore, if the true model has almost equal open times

@ and the maximum likelihood estimators converge to the true parameters,
the estimated standard deviations of the parameters might become unex-
pectedly large even for a large amount of data (Wagner et al., 1999).

The transition rates in the SM model are always identifiable even if the
open times are equal. The reason for this difference between the loop
model and the SM model is given in the next section, in which a criterion

@ for the non-identifiability will be derived.

FIGURE 1 Loop gating scheme: Identifiable gating scheme with oneCriteriOn for non-identifiability
loop and four states. O, open state; C, closed state.

Indistinguishable aggregated Markov models for ion channel gating are
related by a so-called similarity transformation, i.e. the generator matrices
QandQ’, respectively, of both models ob&/ = S™* QSwhere the matrix
fiability for equal open times on the power of a likelihood sis of the form

ratio test by a simulation study. The number of data points
is chosen to be in the order of magnitude of the number < So | O ) 1)
recorded in experiments. 0|

and each row o5 sums to 1 (Kienker, 1989). Lei, andn. denote the

number of open and the number of closed states, respectively. The matrix

S in general can be parameterized with(ng — 1) + nc(ne — 1)

parameters because of the row normalization, e.g.nfor nc = 2, the

transformation matriXS has 4 degrees of freedom and a possible choice

The aggregated Markov models used to describe ion channel gating aRarameterization o§ would be

parametrized by transition rates and not by transition probabilities. The o o c ¢

estimation of transition rates in aggregated Markov models is burdened b)éb _ 1-¢ €1 Sec = 1-¢ €

the possibility that the transition rates might not be identifiable (Kienker, ~00 € 1-¢€ ) c— € 1- ¢

1989). For instance, the maximum number of identifiable parameters in 2

aggregated Markov models with two output levels for open and closed

states is restricted to two times the number of open states times the numb@fe combine these parameters to a vector denoted foy the example of

of closed states (Fredkin et al., 1983; Fredkin and Rice, 1986). MoreoverEq. 2¢ is (€9, €9, €5, €5). In the following, we will investigate similarity

in aggregated Markov models, there is not only a maximum number ofiransformations that are near to the identity transformation. Therefore, we

parameters that can be estimated from the recorded data but, under cert@dopt the convention th&i(¢) is the identity transformation foé = 0.

circumstances, the transition rates might not be identifiable, although th&nder this assumption, the condition ttf&teeds to be invertible does not

upper limit of parameters is not exceeded. For example, the transition ratémpose any further constraints on the maximal number of parameters of the

in the loop model with equal open dwell times are not identifiable becausdransformation matri>xS if the magnitude of is sufficiently small.

for a given loop model with equal open dwell times, certain arbitrary small A given aggregated Markov model is described by its generator matrix

variations can be performed on the transition rates without changing th€. The gating scheme of this model is determined by the vanishing entries

probability distribution of the observed data (Wagner et al., 1999). in the generator matrix. A similarity transformation leads to a new aggre-
The restriction of equal open times would rarely be put on analyses ofyated Markov model which is both statistically indistinguishable from the

experimental ion channel data. However, the non-identifiability for equaloriginal one and compatible with the gating scheme of the original model

open times in the loop model has an effect on the estimation of thef the vanishing entries of the original generator matare preserved in

transition rates. The transition rates in aggregated Markov models arthe transformed generator matX and the off-diagonal non-zero entries

typically estimated by the maximum likelihood method (Horn and Lange,of Q" are not negative. For similarity transformations sufficiently near to

1983; Ball and Sansom, 1989; Bates et al., 1990; Fredkin and Rice, 1992he identity transformation, the requirement of non-negative entries is

Colquhoun et al., 1996; Qin et al., 1996, 1997; Ohno et al., 1996). For always fulfilled due to the continuity of the transformation.

B — —_— B — B — B —
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FIGURE 2 Gating scheme 4 from Song and Magleby
(1994). 1 ‘ l 1
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scheme of the original model, imposes restrictions on the similarity
matrix Swheremis lower than or equal to the number of vanishing entries
in the original generator matriQ. For example, in the loop gating scheme
with equal open times the submatr,o is proportional to the 2x
2-identity matrix. Consequently, the requirement that the off-diagonal
elements 0fQy¢ vanish is fulfilled by any similarity transformation. We
combine them entries in the transformed generator mat@X =

(&) *QgE&) which are required to vanish, to a vector-valued funcﬁ(ﬁ)

of dimensionm, in particularF(0) = 0. In the loop model with equal open
times, a direct transition from open stafg to closed stateC, and vice

versa is not allowed, i.e., the entrigs; andqgs, of the generator matriQ
must also vanish in the transformed generator ma&ixand the function
F(¢) is given byF(€) = (0ba(€), 0x(€)) in the example.

If the similarity transformatiorS(€) preserves the gating scheme, the

Under these conditions, the constraint, to be compatible with the gating @

function F(¢) satisfiesF(€) = 0 for all sufficiently smalle.

If mis strictly smaller thamg(ng — 1) + ne(nc — 1), the theorem of
implicit functions can be applied tﬁ(é). We split the parameter vectér
into a (ig(no — 1) + ne(nc — 1) — m)-dimensional partn and a
m-dimensional par$: F(¢) = F(%,8). Under mild regularity conditions
there exists a vector-valued functié() of dimensionmwith F(%,f(%)) =
0 for n of sufficiently small magnitude. Under these conditions the con-
tinuous family of transformation matric&%7) = S = (7,{(%))) yields a

continuous family of aggregated Markov processes which are both statis- " f a similarity t f tion i tible with the i ti
tically indistinguishable from the original one and compatible with the Imation of a simiarity transtormation IS compatible wi € given gating

gating scheme of the original model scheme gives a good hint for the minimal number of restrictions

Thus, the transition rates in a given aggregated Markov model are not
identifiable if the minimal number of restrictioms needed to preserve its . .
gating scheme is smaller than the degrees of freedgin, — 1) + Testing for detailed balance
Nc(ne — 1) of the similarity transformation. The principle of detailed balance imposes one constraint on the transition

Theorem B of Fredkin and Rice (1986) derives an upper bound for th&ates per loop, i.e., one transition rate per loop can be calculated from the
maximum number of identifiable parameters. In contrast to this result, weythers by the law of detailed balance. In the case of the loop model, one
provide a checkable sufficient condition for non-identifiability which is restriction is not sufficient to remove the non-identifiability in the loop
applicable in cases where this upper bound is not exceeded, e.g., in the I0@Rodel with equal open times, because the family of indistinguishable
model with equal open times. o aggregated Markov models with the same equal open times has two
~ For equal open times in the SM model, the submaQix is propor-  gegrees of freedom and the constraint imposed by the law of detailed
tional to the 3x 3 identity matrix, but the submatric€c, Qco, andQcc balance lowers the degrees of freedom only by one. In particular, it follows
still contain 12 non-vanishing entries, which is equal to the number ofihat 4 loop model with equal open times, which satisfies the principle of
degrees of freedom of a similarity transformation for a gating scheme Withyetajled balance, is statistically not distinguishable from a model that
3 open and 3 closed states. Thus, the assumptions of the above criterion afg)jates this principle. Detailed balance, therefore, is not determinable in
not fulfilled, and all transition rates are identifiable in the SM model for e loop model with equal open times. This does not apply for a loop model
equal open times. o ~_with different open times but which follows the principle of detailed

As a further illustration of the non-identifiability criterion, we investi- pajance. The transition rates in such a model are always identifiable.
gate a slight variation Of the '009 gating scheme givenin Fig. 3. Accordingpowever, as in the case of parameter estimation, tests for detailed balance
to Theorem B of Fredkin and Rice (1986), this gating scheme exceeds thgjj| be affected by the non-identifiability for equal open times if the true
maximum number of identifiable parameters. We can also derive the samgnderlying model has almost equal open times. This will be investigated
result with the non-identifiability criterion. The degrees of freedom of the frther in the following.
similarity transformation for this gating scheme arex2L + 2 X 1 = 4. The hypotheses are as follows. Under the null hypothesis the principle

Each of the 2X 2 submatriceQoc, Qco contains 2 vanishing entries,  of detailed balance is fulfiled and under the alternative it is violated:
however, these are not four independent restrictions to preserve the gating

FIGURE 3 Variation of the loop gating scheme which is not non-
identifiable.

scheme, but only two. A similarity transformation cannot change the rank Hq: Detailed balance is fulfilled 3
of the submatriceQoc, Qco both have rank 1. Therefore, from the
restriction that one of the vanishing entriesQp and Q.. respectively, H,: Detailed balance is not fulfilled (4)

is preserved under similarity transformations, it follows that the other
vanishing entry must also vanish under similarity transformations, other- We use the likelihood ratio as a test statistic because it has the following
wise the transformed submatric®s,, Qe would have rank 2. Thus, the favorable asymptotic property under the null hypothesis (Cox and Hinkley,
degrees of freedom of the similarity transformation for this gating schemel974):
are 4 and the minimal number of restrictions to preserve the gating scheme e
is only 2, i.e., this gating scheme is not identifiable. ' 2(Lo(3) — LRB(6)) ~ x5 (underHo) (5)

This example indicates that, in general, the minimal nhumber of restric-
tions m may not be trivial to determine because the ranks of the submaThe asymptotic normality of the maximum likelihood estimators is a
trices Qco and Qo are preserved by similarity transformations. We prerequisite of this result. This was recently shown by Bickel et al. (1998).
suppose that the investigation of infinitesimal similarity transformations isL,(.) denotes the log likelihood function as a function of the parameters
a successful strategy for determinimg In particular, the first order  without the constraint of detailed balance, the parameters are all transition
approximation of a similarity transformation is easy to compute even forrates, the parameter vectgris the maximum likelihood estimator, and
more complicated models, and the requirement that the first order approx-28(.) denotes the likelihood function with the constraint of detailed
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balance. In the case of the loop model and the SM model, the paramete®.0. For givenr,/7; and InK the parameters, andd,, of the

are all transition rates but one which is calculated from the principle °fgenerator matrix are calculated by the following formulas:
detailed balance, the parameter vedids the maximum likelihood esti-

mator under the restriction of detailed balance. The substdpnotes the Tl
number of data points. There are efficient algorithms to calculate the Ty, =, (7)
maximum likelihood estimator from the measured data (Baum et al., 1970; O13 + Oia
Horn and Lange, 1983; Fredkin and Rice, 1992; Albertsen and Hansen,
1994; Michalek and Timmer, 1999). _ OuaQasOan 1
As indicated in Eq. 5, the twofold log likelihood ratio is asymptotically Oa = O304 ) K" (8)

x3-distributed under the null hypothesis. Tkdistribution has one degree
of freedom because the law of detailed balance imposes one constraint on For eachr,/; and InK, we simulate 500 recordings of
the transition rates per loop. o _ _ length 105 s with a sampling rate of 5 kHZ?2lata points)

In the following, the power of the likelihood ratio test to detect viola- and estimate the transition rates by the maximum likelihood
tions of the law of detailed balance will be investigated. The natural . . y L
logarithm InK of the ratio of products of the transition rates in clockwise meth_Od twice, namely with and without the_ restrlctlop of
and counterclockwise direction serves as a measure for the strength of tidetailed balance, and calculate the twofold difference in the
violation of detailed balance. A biophysical justification for this measure isJog likelihood functions evaluated at the maximum likeli-
given below. If the gating of an ion channel follows the principle of hooq parameters according to Eq. 5. The maximization of
detailed balance, IK vanishes, and it is positive after possibly inverting the likelihood function is performed numerically by the EM
the ratio of transition rates for a gating, which violates the principle of . . P . y by !
detailed balance. algorithm (Michalek and Timmer, 1999) and a non-linear

The detection of violations of detailed balance requires a precise estimaximization routine based on a quasi-newton method
mation of InK. For a loop model with almost equal open times, the (NAG, 1997). For the calculation of the first derivatives of
transition rates cannot_ bg estimated reliably even _for a large number qfikelihood function, we use Fisher's identity (Fisher, 1925:
data; consequently, this is also true for the estimation df.Ii5o a loop Jamshidian and Jennrich 1997) and the “sinch” algorithm
model with nearly equal open times that follows the law of detailed balance . . ! 9
is hardly distinguishable from a model which violates detailed balance.d(:f'slcnb_(:—‘d by Najfeld _and Havel .(1995) to evaluate the
Thus, the power of the test for detailed balance will depend not only on thelerivatives of the matrix exponential.
strength of violation of the null hypothesis expressed b lbut also on Fig. 4 summarizes the results of these simulations. The
the ratio of open times denoted byr,. The dependence of the power on b ohapility of rejecting the null hypothesis of detailed bal-
7,/7, is the subject of the first simulation study in the next section. - . .

ance against the ratio of open time constants for a test to the
5% level is shown for different values of K Below a ratio
SIMULATION STUDIES of 2 of the open time ratior,/7;, a reliable numerical
. ) estimation of the transition rates is not possible (see Wagner
The power of a likelihood ratio test approaches 1 for thegt 5 1999, for the order of magnitude of the estimation

number of data points going to infinity (Cox and Hinkley, grrors in the transition rates). The power of the likelihood
1974). The purpose of the first simulation study described inyyig test significantly drops for smaller values of the open
this section is to show that the power to detect violations of; ., ratio, as expected, whereas for increasing values of In

detailed balance in the loop model is still quite low for @ that is for stronger violations of detailed balance, the
number of data points in the order of magnitude avaiIabIepOWer of the likelihood ratio test increases.

from experiments if the ratio of the open timegr, is only
small enough.
The data were simulated by the loop model with the
following generator matrix: 1 -
/, In K ~2.30
In K ~ 1.61

&)

0.8

=
E
©
S 06
(=%
—100 0 25 75 5 04t InK ~0.92
_ O _1/'7'2 O 1/’7'2 6 g
I 0 ‘ —44 20 - 6 g 027 K ~0.22 |
— — i/%\k,/——%/li
Qa1 25 41 66 — Qs oL ' i - s s ‘
" . ) 2 4 6 8 10 12 14
All transition rates are given in Hz. We denote the entry of /T

a generator matrix in the ith row andjth column byg;.

The open dwell times aret; = 10 ms andr,. The shut FIGURE 4 Loop model: The probability to reject the null hypothesis of
dwell times are given by the inverses of the eigenvalues ofietailed balance against the ratio of open time constants for a test to the 5%
the submatrixQ... The ratio of the open time@/fr varied level is shown for different values of IK of the products of the transition

f ce . 17 rates in clockwise and counterclockwise direction. The simulated data sets
rom 2 to 14 and the _n_atural Iogz_anthm K Qf the ratio of have an approximate length of 105 s with a sampling rate of 5 kHz (524288
products of the transition rates in clockwise and counteryata points). The topmost line corresponds té&In- 3.00. The error bars

clockwise direction is varied independently from 0.22 toindicate the standard deviation of the estimated rejection probability.
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In the second simulation study, we demonstrate that de- 1 . : ;
tailed balance is determinable in a SM model with equal 2 . log likefihood ratio
open times. We use the following generator matrix accord-  4¢
ing to Scheme 4 from Song and Magleby (1994):

(%’&) < 06 r
Qco Qcc l\g
& o4}
1000 O 0 500 O 500 '
0 -1000 O 500 500 0
| o0 0 —-1000 O 500 500 02} InK =244
= 5000 5000 0 —10000 O o |- ©
0 250 250 0 —-500 O 0
23 0 Oe3 0 0 —23— Qg 0O 20 40 60 80 100 120 140 160 180

x = 2 - log likelihood ratio
We investigate the distribution of the test statistic for the
following cases: The law of detailed balance holdg; (= FIGURE 6 SM model. The probability distribution of the twofold log
23) and it is violated C(GS — 2) with a InK ~ 2.44. We likelihood ratio under the alternative with K = 2.44. The simulated data

simulate 1000 recordings of length 105 s with a sampIing?ft§4ga;’$6a3a?§%r;f{2)ate length of 105 s with a sampling rate of 10 kHz
rate of 10 kHz (2° data points) and estimate the transition =

rates and the twofold difference of the log likelihood func-

tions in same way as in the first simulation study. Fig. Sdriven by an external energy source. The typical amount of
shows the distribution of test statistic under the null hypoth-energy needed to influence the gating of an ion channel is
esis. As expected it follows g distribution. In Fig. 6 the  given by the amount of work for a change in the geometrical
distribution of twofold Iog likelihood ratio under the alter- conformation of the channel protein_ Since subunits of a
native with a InK ~ 2.44 is shown. In the following section, channel protein are often either polarized or carry some
we will discuss that IFK ~ 2.44 is already a strong violation elementary charges, the work for a conformational change
of detailed balance. Therefore, the power to detect violaof the channel protein, e.g., from stateto statej, is
tions is almost 1 for recordings of length 105 s. So inassociated with an activation enerfy. These energies are
contrast to the loop model, detailed balance is determinablgyughly bounded by the amount of work needed to push an
for equal open times in the SM model. elementary charge, against the membrane potential:

E,=gX70mV=1.1-10%] (10)
WHAT IS A SIGNIFICANT VIOLATION OF
DETAILED BALANCE? with a membrane potential of 70 mV. Due to the law of

] ) ) o Arrhenius, the transition rateg are proportional to
If the gating of an ion channel violates the principle of

detailed balance in steady state, the ion channel must be E;
e ki)
1 . .
2 - log likelihood ratig —— We exemplify the calculations for the loop model. It is
os | Xy ] analogous in the SM model. If the gating obeys the principle
‘ of detailed balance, the total activation energy for one turn
in the loop model must be the same in the clockwise and
< 087 counterclockwise directions:
v
x
& 04 | —(Euq+ Esst Es) + (En+ Eis+ Eg9 =0 (11)
InK =0 Assuming that the proportionality factor in the law of
0.2 ] Arrhenius is approximately the same for all transitions

between the states of the channel protein, Eq. 11 is equiv-
alent to the following condition on the transition rates:

Q14Q43Q31) ~0

041013034
FIGURE 5 SM model. The probability distribution of the twofold log . . . .
likelihood ratio under the null hypothesis compared to the asympjgtic Thus, in the case of a violation of detailed balaricein

distribution. The simulated data sets have an approximate length of 105 K do€s not vanish any more, and it is a measure for the
with a sampling rate of 10 kHz (1,048,576 data points). difference in activation energies in clockwise and counter-

0 2 4 6 8 10 12
x = 2 - log likelihood ratio InK = In< (12)
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clockwise directions. Under the assumption tBgfEq. 10)  Likelihood ratio testing, presented in this paper, provides a
approximately bounds the work needed to influence thestatistically very reliable alternative approach for the fol-
gating of an ion channel, a value of K in the order of lowing reasons: the asymptotic distribution of the log like-
magnitude of 2 would indicate a significant violation of the lihood ratio under the null hypothesis is known to be exactly
principle of detailed balance (at room temperatdre=(300  a x3 distribution. The true finite sample size distribution of
K) and a membrane potential of 70 mV): the test statistic deviates from thg distribution, but the
magnitude of this deviation is already small for typical
kj sample sizes in patch clamp experiments as the magnitude is
= determined by the deviation of the finite sample size distri-
] ) ) ) ) ] bution of the maximum likelihood estimators for the tran-
~ In the first simulation study in the previous section, We gjtions rates from normality. These maximum likelihood
investigated the power of the likelihood ratio test in the ggtimators already follow a normal distribution for rather
given range of IrK for significant violations of the principle g4l sample sizes (see Wagner et al., 1999, for a simulation
of detailed balance in the loop model. The number of datay,qy). Moreover, likelihood ratio testing can easily be
points in the simulation study is of the order of magnitudegytended to cases where the application of hidden Markov
typically available in experiments. The power drops t0-qqels is more appropriate for the analysis of measured ion

wards smaller ratios of the open times below any uppegnhannel data (Chung et al., 1990; Michalek et al., 1999).
bound for errors of second kind that is acceptable in prac-

tice. Therefore, we expect that violations of the principle of

detailed balance might only be detected reliably in experiwe thank Dr. Steffen Michalek for fruitful discussions on the topic of this
ments where the dwell times are at least an order of magsaper.

nitude different or with a very large amount of data.

INnK=1=>InK=2.65 (13)
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