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ABSTRACT Aggregated Markov models are a widely used tool to model patch clamp data measured from single ion
channels. These channels must obey the principle of detailed balance in thermodynamic equilibrium; otherwise, the channel
is driven by an external source of energy. We investigate the power of a likelihood ratio test for detailed balance for a number
of data points which is in the order of magnitude of patch clamp experiments. We show that for certain models with nearly
equal dwell times, a test for detailed balance suffers from a loss of power to detect violations of detailed balance which is due
to the non-identifiability of the transition rates for models with equal dwell times.

INTRODUCTION

The recording of single ion channel currents by the so-
called patch clamp technique has deepened the understand-
ing of the fundamental physiological mechanisms of a cell
in the last two decades (Neher and Sakmann, 1976; Hamill
et al., 1981; Sakmann and Neher, 1995). In steady state, ion
channels permanently perform transitions among a number
of unobserved states which are divided into two groups: the
open and closed states. (Some channels posses sub-conduc-
tance levels, i.e., open states with different conductivities.
All results in this paper generalize for this case.) In an open
and in a closed state, the measured currents fluctuate around
a certain conductance level which is the same for all open
and all closed states, respectively. Thus, the observed ion
current provides an aggregated image of the underlying
process.

Aggregated Markov models are a suitable model class to
describe the dynamics of the measured currents (Colquhoun
and Hawkes, 1977, 1982; Colquhoun and Sigworth, 1995;
Fredkin et al., 1983).

In thermodynamic equilibrium, the dynamics of the gat-
ing are subject to the principle of detailed balance. There-
fore, a violation of detailed balance would indicate the
presence of an external energy source. It has been observed
for Cl2 channels from Torpedo electroplax that a transmem-
brane electrochemical gradient can cause such a non-equi-
librium behavior of the Cl2 ion-channels (Richard and
Miller, 1990).

Often, aggregated Markov models used to model realistic
ion channels have one or more loops (Horn and Lange,
1983; Ball and Sansom, 1989; Bates et al., 1990; Vanden-
berg and Bezanilla, 1991). In these models the principle of
detailed balance is equivalent to the condition that the

products of the transition rates in clockwise and counter-
clockwise direction in each loop are the same (Kelly, 1979;
Kijima, 1997).

In the following, we investigate the power of likelihood
ratio tests to detect violations of detailed balance in two
different gating schemes each with one loop: the simplest
four-state model with one loop (see Fig. 1), which we refer
to as the “loop model”, and a six-state model in which the
open and closed state alternate and in which the states are
arranged in a circle (see Fig. 2). This model was used by
Song and Magleby (1994) to investigate their method to test
for microscopic reversibility based on visual inspection of
estimated two dimensional dwell time histograms. Below
we will refer to this model as the SM model.

Both models serve as simplified examples for investigat-
ing the difficulties in testing for detailed balance in more
realistic, but also more complicated aggregated Markov
models. This is not a severe restriction because any more
complicated aggregated Markov model with loops contains
these simple models as submodels and, therefore, the larger
model will exhibit an analogous behavior.

The loop model and the SM model have been chosen for
this paper because they differ in the identifiability of their
parameters. Whereas the transition rates in the SM model
are always identifiable, the transition rates in the loop model
loop are not identifiable if the open or the closed dwell
times are equal, that is, the time constants characterizing the
exponentially distributed dwell times in the open states or in
the closed states are the same. Moreover, this non-identifi-
ability severely influences the estimation of the transition
rates in the case of nearly equal dwell times; the standard
deviations of the estimated transition rates become extraor-
dinarily large even for the number of data points typically
recorded in experiments (Wagner et al., 1999). In the
present paper we will show that this non-identifiability
causes a drop in the power of tests for detailed balance if the
open or the closed dwell times are almost equal.

The following section describes the theory of the non-
identifiability for equal open times. Then we demonstrate in
the Simulation Studies Section the effect of the non-identi-
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fiability for equal open times on the power of a likelihood
ratio test by a simulation study. The number of data points
is chosen to be in the order of magnitude of the number
recorded in experiments.

THEORY

Parameter estimation

The aggregated Markov models used to describe ion channel gating are
parametrized by transition rates and not by transition probabilities. The
estimation of transition rates in aggregated Markov models is burdened by
the possibility that the transition rates might not be identifiable (Kienker,
1989). For instance, the maximum number of identifiable parameters in
aggregated Markov models with two output levels for open and closed
states is restricted to two times the number of open states times the number
of closed states (Fredkin et al., 1983; Fredkin and Rice, 1986). Moreover,
in aggregated Markov models, there is not only a maximum number of
parameters that can be estimated from the recorded data but, under certain
circumstances, the transition rates might not be identifiable, although the
upper limit of parameters is not exceeded. For example, the transition rates
in the loop model with equal open dwell times are not identifiable because
for a given loop model with equal open dwell times, certain arbitrary small
variations can be performed on the transition rates without changing the
probability distribution of the observed data (Wagner et al., 1999).

The restriction of equal open times would rarely be put on analyses of
experimental ion channel data. However, the non-identifiability for equal
open times in the loop model has an effect on the estimation of the
transition rates. The transition rates in aggregated Markov models are
typically estimated by the maximum likelihood method (Horn and Lange,
1983; Ball and Sansom, 1989; Bates et al., 1990; Fredkin and Rice, 1992;
Colquhoun et al., 1996; Qin et al., 1996, 1997; Ohno et al., 1996). For a

large sample size, the covariance matrix of the estimated transition rates is
given by the inverse Hessian matrix of the likelihood function evaluated at
the maximum likelihood parameters (Bickel et al., 1998). Assuming that
the maximum likelihood parameters correspond by chance to equal open
times, then the Hessian matrix would be singular due to the non-identifi-
ability for equal open times in the loop model, its condition number would
be infinity (Golub and VanLoan, 1996). Since the condition number of a
matrix depends continuously on its entries, the Hessian matrix is ill-
conditioned if the maximum likelihood parameters correspond to nearly
equal open times. Therefore, if the true model has almost equal open times
and the maximum likelihood estimators converge to the true parameters,
the estimated standard deviations of the parameters might become unex-
pectedly large even for a large amount of data (Wagner et al., 1999).

The transition rates in the SM model are always identifiable even if the
open times are equal. The reason for this difference between the loop
model and the SM model is given in the next section, in which a criterion
for the non-identifiability will be derived.

Criterion for non-identifiability

Indistinguishable aggregated Markov models for ion channel gating are
related by a so-called similarity transformation, i.e. the generator matrices
Q andQ9, respectively, of both models obeyQ9 5 S21 QSwhere the matrix
S is of the form

S Soo 0
0 Scc

D , (1)

and each row ofS sums to 1 (Kienker, 1989). LetnO andnC denote the
number of open and the number of closed states, respectively. The matrix
S in general can be parameterized withnO(nO 2 1) 1 nC(nC 2 1)
parameters because of the row normalization, e.g., fornO 5 nC 5 2, the
transformation matrixS has 4 degrees of freedom and a possible choice
parameterization ofS would be

SOO 5 S 1 2 e1
O e1

O

e2
O 1 2 e2

O D , SCC 5 S 1 2 e1
C e1

C

e2
C 1 2 e2

C D .

(2)

We combine these parameters to a vector denoted byeW, for the example of
Eq. 2eW is (e1

O, e2
O, e1

C, e2
C). In the following, we will investigate similarity

transformations that are near to the identity transformation. Therefore, we
adopt the convention thatS(eW) is the identity transformation foreW 5 0.
Under this assumption, the condition thatSneeds to be invertible does not
impose any further constraints on the maximal number of parameters of the
transformation matrixS if the magnitude ofeW is sufficiently small.

A given aggregated Markov model is described by its generator matrix
Q. The gating scheme of this model is determined by the vanishing entries
in the generator matrix. A similarity transformation leads to a new aggre-
gated Markov model which is both statistically indistinguishable from the
original one and compatible with the gating scheme of the original model
if the vanishing entries of the original generator matrixQ are preserved in
the transformed generator matrixQ9 and the off-diagonal non-zero entries
of Q9 are not negative. For similarity transformations sufficiently near to
the identity transformation, the requirement of non-negative entries is
always fulfilled due to the continuity of the transformation.

FIGURE 2 Gating scheme 4 from Song and Magleby
(1994).

FIGURE 1 Loop gating scheme: Identifiable gating scheme with one
loop and four states. O, open state; C, closed state.
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Under these conditions, the constraint, to be compatible with the gating
scheme of the original model, imposesm restrictions on the similarity
matrix Swherem is lower than or equal to the number of vanishing entries
in the original generator matrixQ. For example, in the loop gating scheme
with equal open times the submatrixQOO is proportional to the 23
2-identity matrix. Consequently, the requirement that the off-diagonal
elements ofQOO vanish is fulfilled by any similarity transformation. We
combine the m entries in the transformed generator matrixQ9 5
S(eW)21QS(eW) which are required to vanish, to a vector-valued functionFW (eW)
of dimensionm, in particularF(0W) 5 0W. In the loop model with equal open
times, a direct transition from open stateO2 to closed stateC1 and vice
versa is not allowed, i.e., the entriesq23 andq32 of the generator matrixQ
must also vanish in the transformed generator matrixQ9, and the function
FW (eW) is given byFW (eW) 5 (q923(eW), q932(eW)) in the example.

If the similarity transformationS(eW) preserves the gating scheme, the
function FW (eW) satisfiesFW (eW) 5 0W for all sufficiently smalleW.

If m is strictly smaller thannO(nO 2 1) 1 nC(nC 2 1), the theorem of
implicit functions can be applied toFW (eW). We split the parameter vectoreW
into a (nO(nO 2 1) 1 nC(nC 2 1) 2 m)-dimensional parthW and a
m-dimensional partdW: FW (eW) 5 FW (hW ,dW). Under mild regularity conditions
there exists a vector-valued functionfW(hW ) of dimensionm with FW (hW ,fW(hW )) 5
0 for hW of sufficiently small magnitude. Under these conditions the con-
tinuous family of transformation matricesS(hW ) 5 S(eW 5 (hW ,fW(hW ))) yields a
continuous family of aggregated Markov processes which are both statis-
tically indistinguishable from the original one and compatible with the
gating scheme of the original model.

Thus, the transition rates in a given aggregated Markov model are not
identifiable if the minimal number of restrictionsm needed to preserve its
gating scheme is smaller than the degrees of freedomnO(nO 2 1) 1
nC(nC 2 1) of the similarity transformation.

Theorem B of Fredkin and Rice (1986) derives an upper bound for the
maximum number of identifiable parameters. In contrast to this result, we
provide a checkable sufficient condition for non-identifiability which is
applicable in cases where this upper bound is not exceeded, e.g., in the loop
model with equal open times.

For equal open times in the SM model, the submatrixQOO is propor-
tional to the 33 3 identity matrix, but the submatricesQOC, QCO, andQCC

still contain 12 non-vanishing entries, which is equal to the number of
degrees of freedom of a similarity transformation for a gating scheme with
3 open and 3 closed states. Thus, the assumptions of the above criterion are
not fulfilled, and all transition rates are identifiable in the SM model for
equal open times.

As a further illustration of the non-identifiability criterion, we investi-
gate a slight variation of the loop gating scheme given in Fig. 3. According
to Theorem B of Fredkin and Rice (1986), this gating scheme exceeds the
maximum number of identifiable parameters. We can also derive the same
result with the non-identifiability criterion. The degrees of freedom of the
similarity transformation for this gating scheme are 23 1 1 2 3 1 5 4.
Each of the 23 2 submatricesQOC, QCO contains 2 vanishing entries,
however, these are not four independent restrictions to preserve the gating
scheme, but only two. A similarity transformation cannot change the rank
of the submatricesQOC, QCO; both have rank 1. Therefore, from the
restriction that one of the vanishing entries inQOC andQCO, respectively,
is preserved under similarity transformations, it follows that the other
vanishing entry must also vanish under similarity transformations, other-
wise the transformed submatricesQOC, QCO would have rank 2. Thus, the
degrees of freedom of the similarity transformation for this gating scheme
are 4 and the minimal number of restrictions to preserve the gating scheme
is only 2, i.e., this gating scheme is not identifiable.

This example indicates that, in general, the minimal number of restric-
tions m may not be trivial to determine because the ranks of the subma-
trices QCO and QOC are preserved by similarity transformations. We
suppose that the investigation of infinitesimal similarity transformations is
a successful strategy for determiningm. In particular, the first order
approximation of a similarity transformation is easy to compute even for
more complicated models, and the requirement that the first order approx-

imation of a similarity transformation is compatible with the given gating
scheme gives a good hint for the minimal number of restrictionsm.

Testing for detailed balance

The principle of detailed balance imposes one constraint on the transition
rates per loop, i.e., one transition rate per loop can be calculated from the
others by the law of detailed balance. In the case of the loop model, one
restriction is not sufficient to remove the non-identifiability in the loop
model with equal open times, because the family of indistinguishable
aggregated Markov models with the same equal open times has two
degrees of freedom and the constraint imposed by the law of detailed
balance lowers the degrees of freedom only by one. In particular, it follows
that a loop model with equal open times, which satisfies the principle of
detailed balance, is statistically not distinguishable from a model that
violates this principle. Detailed balance, therefore, is not determinable in
the loop model with equal open times. This does not apply for a loop model
with different open times but which follows the principle of detailed
balance. The transition rates in such a model are always identifiable.
However, as in the case of parameter estimation, tests for detailed balance
will be affected by the non-identifiability for equal open times if the true
underlying model has almost equal open times. This will be investigated
further in the following.

The hypotheses are as follows. Under the null hypothesis the principle
of detailed balance is fulfilled and under the alternative it is violated:

H0: Detailed balance is fulfilled (3)

H1: Detailed balance is not fulfilled (4)

We use the likelihood ratio as a test statistic because it has the following
favorable asymptotic property under the null hypothesis (Cox and Hinkley,
1974):

2~Ln~ĝ! 2 Ln
DB~û!! ,

n3`

x1
2 ~underH0! (5)

The asymptotic normality of the maximum likelihood estimators is a
prerequisite of this result. This was recently shown by Bickel et al. (1998).
Ln(.) denotes the log likelihood function as a function of the parameters
without the constraint of detailed balance, the parameters are all transition
rates, the parameter vectorĝ is the maximum likelihood estimator, and
Ln

DB(.) denotes the likelihood function with the constraint of detailed

FIGURE 3 Variation of the loop gating scheme which is not non-
identifiable.
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balance. In the case of the loop model and the SM model, the parameters
are all transition rates but one which is calculated from the principle of
detailed balance, the parameter vectorû is the maximum likelihood esti-
mator under the restriction of detailed balance. The subscriptn denotes the
number of data points. There are efficient algorithms to calculate the
maximum likelihood estimator from the measured data (Baum et al., 1970;
Horn and Lange, 1983; Fredkin and Rice, 1992; Albertsen and Hansen,
1994; Michalek and Timmer, 1999).

As indicated in Eq. 5, the twofold log likelihood ratio is asymptotically
x1

2-distributed under the null hypothesis. Thex2 distribution has one degree
of freedom because the law of detailed balance imposes one constraint on
the transition rates per loop.

In the following, the power of the likelihood ratio test to detect viola-
tions of the law of detailed balance will be investigated. The natural
logarithm lnK of the ratio of products of the transition rates in clockwise
and counterclockwise direction serves as a measure for the strength of the
violation of detailed balance. A biophysical justification for this measure is
given below. If the gating of an ion channel follows the principle of
detailed balance, lnK vanishes, and it is positive after possibly inverting
the ratio of transition rates for a gating, which violates the principle of
detailed balance.

The detection of violations of detailed balance requires a precise esti-
mation of ln K. For a loop model with almost equal open times, the
transition rates cannot be estimated reliably even for a large number of
data; consequently, this is also true for the estimation of lnK. So a loop
model with nearly equal open times that follows the law of detailed balance
is hardly distinguishable from a model which violates detailed balance.
Thus, the power of the test for detailed balance will depend not only on the
strength of violation of the null hypothesis expressed by lnK but also on
the ratio of open times denoted byt2/t1. The dependence of the power on
t2/t1 is the subject of the first simulation study in the next section.

SIMULATION STUDIES

The power of a likelihood ratio test approaches 1 for the
number of data points going to infinity (Cox and Hinkley,
1974). The purpose of the first simulation study described in
this section is to show that the power to detect violations of
detailed balance in the loop model is still quite low for a
number of data points in the order of magnitude available
from experiments if the ratio of the open timest2/t1 is only
small enough.

The data were simulated by the loop model with the
following generator matrix:

S Qoo Qoc

Qco Qcc
D

5 1
2100 0 25 75

0 21/t2 0 1/t2

24 0 244 20
q41 25 41 2662 q41

2 . (6)

All transition rates are given in Hz. We denote the entry of
a generator matrixQ in the ith row andjth column byqij .
The open dwell times are:t1 5 10 ms andt2. The shut
dwell times are given by the inverses of the eigenvalues of
the submatrixQcc. The ratio of the open timest2/t1 varied
from 2 to 14 and the natural logarithm lnK of the ratio of
products of the transition rates in clockwise and counter-
clockwise direction is varied independently from 0.22 to

3.0. For givent2/t1 and lnK the parameterst2 andq41 of the
generator matrix are calculated by the following formulas:

t2 5
t2/t1

q13 1 q14
, (7)

q41 5
q14q43q31

q13q34
z
1

K
. (8)

For eacht2/t1 and lnK, we simulate 500 recordings of
length 105 s with a sampling rate of 5 kHz (219 data points)
and estimate the transition rates by the maximum likelihood
method twice, namely with and without the restriction of
detailed balance, and calculate the twofold difference in the
log likelihood functions evaluated at the maximum likeli-
hood parameters according to Eq. 5. The maximization of
the likelihood function is performed numerically by the EM
algorithm (Michalek and Timmer, 1999) and a non-linear
maximization routine based on a quasi-newton method
(NAG, 1997). For the calculation of the first derivatives of
likelihood function, we use Fisher’s identity (Fisher, 1925;
Jamshidian and Jennrich, 1997) and the “sinch” algorithm
described by Najfeld and Havel (1995) to evaluate the
derivatives of the matrix exponential.

Fig. 4 summarizes the results of these simulations. The
probability of rejecting the null hypothesis of detailed bal-
ance against the ratio of open time constants for a test to the
5% level is shown for different values of lnK. Below a ratio
of 2 of the open time ratiot2/t1, a reliable numerical
estimation of the transition rates is not possible (see Wagner
et al., 1999, for the order of magnitude of the estimation
errors in the transition rates). The power of the likelihood
ratio test significantly drops for smaller values of the open
time ratio, as expected, whereas for increasing values of ln
K, that is for stronger violations of detailed balance, the
power of the likelihood ratio test increases.

FIGURE 4 Loop model: The probability to reject the null hypothesis of
detailed balance against the ratio of open time constants for a test to the 5%
level is shown for different values of lnK of the products of the transition
rates in clockwise and counterclockwise direction. The simulated data sets
have an approximate length of 105 s with a sampling rate of 5 kHz (524288
data points). The topmost line corresponds to lnK ' 3.00. The error bars
indicate the standard deviation of the estimated rejection probability.
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In the second simulation study, we demonstrate that de-
tailed balance is determinable in a SM model with equal
open times. We use the following generator matrix accord-
ing to Scheme 4 from Song and Magleby (1994):

S Qoo Qoc

Qco Qcc
D

5 1
21000 0 0 500 0 500

0 21000 0 500 500 0
0 0 21000 0 500 500

5000 5000 0 210000 0 0
0 250 250 0 2500 0
23 0 q63 0 0 2232 q63

2 . (9)

We investigate the distribution of the test statistic for the
following cases: The law of detailed balance holds (q63 5
23) and it is violated (q63 5 2) with a ln K ' 2.44. We
simulate 1000 recordings of length 105 s with a sampling
rate of 10 kHz (220 data points) and estimate the transition
rates and the twofold difference of the log likelihood func-
tions in same way as in the first simulation study. Fig. 5
shows the distribution of test statistic under the null hypoth-
esis. As expected it follows ax1

2 distribution. In Fig. 6 the
distribution of twofold log likelihood ratio under the alter-
native with a lnK ' 2.44 is shown. In the following section,
we will discuss that lnK ' 2.44 is already a strong violation
of detailed balance. Therefore, the power to detect viola-
tions is almost 1 for recordings of length 105 s. So in
contrast to the loop model, detailed balance is determinable
for equal open times in the SM model.

WHAT IS A SIGNIFICANT VIOLATION OF
DETAILED BALANCE?

If the gating of an ion channel violates the principle of
detailed balance in steady state, the ion channel must be

driven by an external energy source. The typical amount of
energy needed to influence the gating of an ion channel is
given by the amount of work for a change in the geometrical
conformation of the channel protein. Since subunits of a
channel protein are often either polarized or carry some
elementary charges, the work for a conformational change
of the channel protein, e.g., from statei to state j, is
associated with an activation energyEij . These energies are
roughly bounded by the amount of work needed to push an
elementary chargee0 against the membrane potential:

E0 5 e0 3 70 mV< 1.1 z 10220J (10)

with a membrane potential of 70 mV. Due to the law of
Arrhenius, the transition ratesqij are proportional to

expS2Eij

ktD .

We exemplify the calculations for the loop model. It is
analogous in the SM model. If the gating obeys the principle
of detailed balance, the total activation energy for one turn
in the loop model must be the same in the clockwise and
counterclockwise directions:

2~E14 1 E43 1 E31! 1 ~E41 1 E13 1 E34! 5 0 (11)

Assuming that the proportionality factor in the law of
Arrhenius is approximately the same for all transitions
between the states of the channel protein, Eq. 11 is equiv-
alent to the following condition on the transition rates:

ln K 5 lnSq14q43q31

q41q13q34
D 5 0 (12)

Thus, in the case of a violation of detailed balance,kT ln
K does not vanish any more, and it is a measure for the
difference in activation energies in clockwise and counter-

FIGURE 5 SM model. The probability distribution of the twofold log
likelihood ratio under the null hypothesis compared to the asymptoticx1

2

distribution. The simulated data sets have an approximate length of 105 s
with a sampling rate of 10 kHz (1,048,576 data points).

FIGURE 6 SM model. The probability distribution of the twofold log
likelihood ratio under the alternative with lnK 5 2.44. The simulated data
sets have an approximate length of 105 s with a sampling rate of 10 kHz
(1,048,576 data points).
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clockwise directions. Under the assumption thatE0 (Eq. 10)
approximately bounds the work needed to influence the
gating of an ion channel, a value of lnK in the order of
magnitude of 2 would indicate a significant violation of the
principle of detailed balance (at room temperature (T 5 300
K) and a membrane potential of 70 mV):

kT

E0
ln K < 1f ln K < 2.65 (13)

In the first simulation study in the previous section, we
investigated the power of the likelihood ratio test in the
given range of lnK for significant violations of the principle
of detailed balance in the loop model. The number of data
points in the simulation study is of the order of magnitude
typically available in experiments. The power drops to-
wards smaller ratios of the open times below any upper
bound for errors of second kind that is acceptable in prac-
tice. Therefore, we expect that violations of the principle of
detailed balance might only be detected reliably in experi-
ments where the dwell times are at least an order of mag-
nitude different or with a very large amount of data.

DISCUSSION

The SM model and the loop model differ in the identifiabil-
ity of their transition rates for equal open times. In partic-
ular, the loop model exemplifies that the power to detect
deviations from detailed balance depends not only on the
strength of the violation of detailed balance, but also on the
true transition rate itself, namely the ratio of the open times.
This property of the loop model is due to the non-identifi-
ability of its transition rates for equal open times. In contrast
to the loop model, the SM model does not suffer from this
non-identifiability because this model has many states, but
only a few allowed transition between in the states and all
states are part of the loop. Therefore, enough vanishing
entries in the generator matrix need to be preserved under
similarity transformations. In gating schemes for practical
purposes, however, typically only a few states form a loop,
so that these models have gating schemes like the loop
model as submodels (see Vandenberg and Bezanilla, 1991),
for some examples of physiologically relevant models with
loops. Thus, we expect that effects like a lack of power must
be taken into account for the analysis of measured ion
channel data with realistic gating schemes.

Song and Magleby (1994) present a method to detect
violations of the principle of detailed balance by comparing
the estimated two-dimensional distributions in forward and
backward direction of adjacent open and closed dwell time
distribution. This method is based mainly on the visual
inspection of estimated histograms of two-dimensional
dwell time distributions which requires very long observa-
tions and a good signal-to-noise ratio due to the missed
event problem (Blatz and Magleby, 1986; Ball et al., 1993).

Likelihood ratio testing, presented in this paper, provides a
statistically very reliable alternative approach for the fol-
lowing reasons: the asymptotic distribution of the log like-
lihood ratio under the null hypothesis is known to be exactly
a x1

2 distribution. The true finite sample size distribution of
the test statistic deviates from thex1

2 distribution, but the
magnitude of this deviation is already small for typical
sample sizes in patch clamp experiments as the magnitude is
determined by the deviation of the finite sample size distri-
bution of the maximum likelihood estimators for the tran-
sitions rates from normality. These maximum likelihood
estimators already follow a normal distribution for rather
small sample sizes (see Wagner et al., 1999, for a simulation
study). Moreover, likelihood ratio testing can easily be
extended to cases where the application of hidden Markov
models is more appropriate for the analysis of measured ion
channel data (Chung et al., 1990; Michalek et al., 1999).

We thank Dr. Steffen Michalek for fruitful discussions on the topic of this
paper.
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