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Complex sentence processing is supported by a left-lateralized neural network including inferior frontal
cortex and posterior superior temporal cortex. This study investigates the pattern of connectivity and
information flow within this network. We used fMRI BOLD data derived from 12 healthy participants reported
in an earlier study (Thompson, C. K., Den Ouden, D. B., Bonakdarpour, B., Garibaldi, K., & Parrish, T. B. (2010b).
Neural plasticity and treatment-induced recovery of sentence processing in agrammatism. Neuropsychologia,
48(11), 3211-3227) to identify activation peaks associated with object-cleft over syntactically less complex
subject-cleft processing. Directed Partial Correlation Analysis was conducted on time series extracted from
participant-specific activation peaks and showed evidence of functional connectivity between four regions,
linearly between premotor cortex, inferior frontal gyrus, posterior superior temporal sulcus and anterior
middle temporal gyrus. This pattern served as the basis for Dynamic Causal Modeling of networks with a
driving input to posterior superior temporal cortex, which likely supports thematic role assignment, and
networks with a driving input to inferior frontal cortex, a core region associated with syntactic computation.
The optimal model was determined through both frequentist and Bayesian Model Selection and turned out to
reflect a network with a primary drive from inferior frontal cortex and modulation of the connection between
inferior frontal cortex and posterior superior temporal cortex by complex sentence processing. The winning
model also showed a substantive role for a feedback mechanism from posterior superior temporal cortex back
to inferior frontal cortex. We suggest that complex syntactic processing is driven by word-order analysis,
supported by inferior frontal cortex, in an interactive relation with posterior superior temporal cortex, which
supports verb argument structure processing.

© 2011 Elsevier Inc. All rights reserved.

Introduction

building or linearization operations (Bornkessel-Schlesewsky et al.,
2009; Grodzinsky & Friederici, 2006) to those relying on more general

Processing of complex syntactic structures demands more cognitive
resources than the processing of relatively simple constructions, and this
is associated with locally increased neuronal activation (Just et al., 1996;
Stromswold et al,, 1996; Caplan et al., 1998). Although reported patterns
of activation foci modulated by experimental factors vary between
studies, it appears that an important role in sentence processing is
played by left-hemisphere inferior frontal cortex, in particular Broca's
area (for a comprehensive and critical overview, see Rogalsky & Hickok
(2011)). Debate on the precise functional role of (different parts of) this
area is ongoing and hypotheses range from relying on specific structure-
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cognitive processes of representational conflict resolution (Novick et al.,
2005) or the integration/unification of different types of information
into the sentence context (Hagoort, 2005). It has also been claimed that
Broca's area supports a working memory component that may underlie
any of the above-named processes (Fiebach et al., 2005; Kaan & Swaab,
2002), though this appears to be specifically plausible for the pars
opercularis (Rogalsky & Hickok, 2011). Whatever its precise functional
role(s), inferior frontal cortex does not operate in isolation, but is part of
a larger network involved in sentence processing (Keller et al., 2001).
The form of this network, as well as its modulation through syntactic
complexity, is still under investigation (see Friederici (2009)).

In addition to inferior frontal cortex, another important role in
syntactic processing is played by left-hemisphere posterior superior
temporal cortex, where activation has also been shown to increase with
syntactic complexity in sentence processing, from early functional
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imaging studies onwards (e.g. Just et al., 1996; Ben-Shachar et al., 2003).
Itis quite possible that the specific contribution of the posterior superior
temporal cortex to syntactic parsing is in thematic role assignment,
based on verb argument structure, the extraction of ‘actorhood’, and/or
order preferences with respect to the animacy of potential arguments
(Bornkessel et al., 2005; Grewe et al., 2007; Shetreet et al., 2007). This is
in line with effects of verb argument structure complexity observed in
this area (Den Ouden et al., 2009; Thompson, et al., 2007; Thompson
et al,, 2010a). It has been suggested that Broca's area and posterior
superior temporal gyrus together form a network that is responsible
for thematic role assignment, a crucial aspect of complex sentence
processing which, in English, relies on both the processing of word order
and verb argument structure (Friederici 2009; Friederici et al., 2006).
In an fMRI study examining the neural correlates of syntactic
processing and recovery from aphasia, Thompson et al. (2010b) showed
a pattern of left-hemisphere activation associated with processing of
complex syntactic structures, viz. object-cleft constructions (OC; 1a)
compared to subject-cleft constructions (SC; 1b). Using an auditory
verification task, in which auditory sentences and visual scenes were
presented simultaneously, participants indicated by button-press (yes/
no) whether or not the two matched. Sentence types included OC, SC,
and simple actives (ACT) (60 trials per condition), pseudorandomly
distributed over 4 runs (see Thompson et al. (2010b) for details).

1. a. It was the groom that the bride carried. (OC)
b. It was the bride that carried the groom. (SC)

Unlike subject clefts, object-cleft constructions have a noncanoni-
cal word order (in English, an order other than subject-verb-object),
and are deemed to be more complex based on formal syntactic theory
(e.g. Chomsky, 1977, 1995; Bresnan, 2001), as well as on more general
cognitive theories in which object clefts make greater demands on
working memory (e.g. King and Just, 1991; Caplan & Waters, 1999;
Gibson, 1998; Gordon et al., 2002). Whereas the contrast subtracting
object-cleft activation levels from subject-cleft activation only
revealed a small cluster of voxels in the left posterior insula, the
opposite contrast revealed robust differential activation in a number
of perisylvian left-hemisphere areas, including the inferior frontal,
middle frontal and precentral gyri, the anterior insula, as well as the
middle temporal, posterior superior temporal and angular gyri.

The areas identified by Thompson et al. (2010b) to be involved in
processing complex sentences were similar to those reported in other
studies (Just et al., 1996; Stromswold et al., 1996; Caplan et al., 1998,
2001; Caplan, 2001; Cooke et al, 2002; Ben-Shachar et al, 2003).
However, the BOLD signal subtraction analyses performed in this and
similar studies do not provide insights about connectivity and
information flow between these areas. Functional and effective
connectivity analyses are required to map the network structure
between activated areas, that is, to ascertain which network nodes
interact during complex syntactic processing. One particular purpose of
the current investigation was to determine which of two cortical areas is
a better candidate to provide the driving input to the ‘syntactic network’:
(i) posterior superior temporal cortex, likely involved in verb argument
structure processing, or (ii) inferior frontal cortex, with its suggested
prime role in supporting sequential processing, complex structure
building and decomposition, either directly or indirectly through a
working memory component. If activation throughout the network
turns out to be principally driven by posterior superior temporal cortex,
this corroborates the view that sentence processing occurs bottom-up,
starting with the lexico-syntactic analysis of prime components, viz.,
verbs. On the other hand, if the network is driven primarily by inferior
frontal activation, this suggests that sentence processing starts from the
analysis of the linear order of its lexical components into a hierarchical
structure. Ultimately, these processes have to team up, in order to
achieve a correct parse for complex sentences.

In this paper we reanalyzed the raw data from Thompson et al.
(2010b) by performing a two-stage connectivity analysis: we first

used directed partial correlation (dPC) analysis as a hypothesis-free
method to limit the model space and we then applied Dynamic Causal
Modeling (DCM) to look at driving inputs and modulatory influences
on the connections within the preselected models. dPC is a method
that in principle allows for detecting effective connectivity, as discussed
in Mader et al. (2008). This method has been used successfully by Saur
et al. (2010), to investigate the networks underlying different aspects
of auditory comprehension. Due to the comparably low temporal
resolution of fMRI data the information about the connectivity structure
has to be assumed to be contained in the instantaneous interactions. dPC
does not depend on prior knowledge about the underlying network
structure. It can be applied without assumptions about the network
topology under investigation. The statistics that come with dPC analyses
“decide” about the presence or absence of interactions, which can be
used for the formulation of hypotheses about the network structure, as
in the present study.

As a second step in our reanalysis of the Thompson et al. (2010b)
data, we used Dynamic Causal Modeling (DCM,; Friston et al., 2003) to
further specify the preselected models. Through inference from local
activation levels, DCM provides parameter estimates that reflect the
effective strength and context-dependent modulation of connections
between clusters of neurons (Stephan et al., 2010). The method has
been used to investigate effective connectivity in areas such as task-
related modulations of the network supporting speech comprehen-
sion (Leff et al., 2008), developmental changes within the phonolog-
ical processing network (Booth et al., 2008), modulations of inferior
frontal gyrus connectivity associated with lexical and phonological
processing (Heim et al., 2009a) and altered connectivity in patients
with primary progressive aphasia (Sonty et al., 2007).

One major concern in DCM is the a priori selection of models to be
tested. The primary challenge is to reduce the number of relevant
models that will be compared, based on theoretical, practical or other
data-external considerations, beforehand. Without such a reduction,
the number of possibilities is essentially unlimited, due to boundless
combinations of different driving inputs, self-modulating nodes and
multiple modulations on different connections. For this reason, we
raised the cluster size threshold in the subtraction reanalysis of the
Thompson et al. (2010b) data, in order to select only the most strongly
activated peaks in the potential network, and we let our competing
models be constrained by the outcome of the dPC functional connectivity
analysis. Further restrictions on the model shape are discussed in
Material and methods.

Through serial application of these three methods of data analysis
(BOLD subtraction, dPC and DCM), we investigated (i) which of two
competing hypotheses about the driving input to the network
provided a better fit to the data, viz.,, models with driving input
from posterior superior temporal cortex or from inferior frontal
cortex, and (ii) which of the directional connections in the syntactic
network is crucially modulated by the processing of complex syntactic
structures.

Material and methods
Time series

The background to the fMRI experiment, as well as the participant,
task and imaging information, have been published in detail in Thompson
et al. (2010b). For further background, we refer the reader to that
publication. The data of twelve right-handed volunteers ranging in age
from 32 to 79 years (7 females, mean age 54), presented in Thompson
et al. (2010b), were used to identify participant-specific activation peaks
within a sphere of a 9 mm radius of the group activation peaks (based on
the elevated cluster threshold). All second-level statistics were evaluated
at a voxelwise significance threshold of p<.05, corrected for multiple
comparisons per false discovery rate (FDR: Benjamini & Hochberg, 1995;
Genovese et al., 2002). We used a cluster size threshold of 15 contiguous
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voxels (405 mm?), which was higher than the threshold used in the
original analysis of the data, reported in Thompson et al. (2010b) (viz., 3
contiguous voxels (81 mm?)). Time series from these peaks were
extracted and served as input for the dPC and DCM analyses. Importantly,
for the network analyses, we created new models in which we (i)
concatenated the scans from the four separate runs and (ii) modeled the
main effect of TASK (all three conditions, collapsing over matched and
mismatched trials), parametrically modulated by the conditions OC and
SC. In addition, main effects of the different runs were covaried out
through the addition of three session regressors, including explicit
modeling of the transitions between runs.' From these models, time
series were extracted within a volume of interest of 6 mm radius from the
participant-specific activation peaks and averaged over voxels.

dPC analyses

For computational details on the dPC method we refer to recent
publications by Mader et al. (2008) and Saur et al. (2010). In short,
dPC is an approach in the time domain quantifying Granger-causality,
which enables a hypothesis-free exploration of networks in the sense
that once the network nodes are defined, no further prior assump-
tions about the functional network structure are necessary (Eichler,
2005). Granger introduced the concept of instantaneous causality or
instantaneous interaction. These interactions are bidirectional as the
cause cannot be distinguished from the effect based on predictability.
Owing to the temporal characteristics of the fMRI time series, with the
dPC method we investigate such instantaneous interactions by using
vector autoregressive processes. To eliminate scanner drift, a 3rd
degree polynomial was fitted to each of the averaged time series. To
allow comparison across the group of participants, resultant dPC values
were divided by their levels of significance resulting in normalized dPC
(dPCporm) values. Group networks were computed by averaging these
dPCyorm Values across participants (mean dPC,q,). An interaction on
group level was considered significant if the following condition was
fulfilled: (mean dPCyorm — 2+ Stdv[mean])>1.

Dynamic Causal Modeling

The result of the dPC analysis served as the basis for the models
that were tested with DCM. That is, the intrinsic connections in our
DCM models were defined by the results of the dPC analysis. We
limited our comparisons to models with equal basic complexity, i.e.
with equal bidirectional connectivity within the dPC output network,
one driving input and one modulation of a unidirectional condition
per model.

Based on earlier findings with respect to the different cortical areas
involved in syntactic processing and the results from Thompson et al.
(2010b), we tested two sets of models (in the same comparison):
(1) those with a driving input onto posterior superior temporal cortex
(posterior superior temporal sulcus (pSTS)) and (2) those with a driving
input onto inferior frontal cortex (IFG). Our research interest was
specifically aimed at the network modulation involved in the processing
of syntactically complex sentences, hence we modeled modulations by
the object-cleft condition only. Together, these considerations left us
with 12 models that could be directly compared as to their model
goodness (see Fig. 2).

For model selection, we used two methods that are often contrasted
with each other (Stephan et al., 2009), but which each have their own
merits. First, we performed a classic frequentist repeated measures
ANOVA, with a 12-level factor model, using the subject-specific negative
free energy (F) as log-evidence ratio approximations for each model. In

1 One participant only completed three of the four fMRI runs. For the analysis of this
participant's results, we adapted the statistical model, as well as the computation of
time series for dPC and DCM, to include the correct number of runs (3) and regressors

).

order to directly investigate the effect of the driving input node, we also
conducted a 2x6 repeated measures ANOVA, with factors input and
modulation.

Second, we used variational Bayesian Model Selection (BMS), a recent
version of BMS currently implemented in SPMS, to present the ‘winner’
among our twelve competitors. The output of this comparison is a value
for the exceedance probability and the posterior model probability of
each model, each summing to 1 (or 100%). The exceedance probability
value for a model k reflects the probability that k is a better fit to the data
than any other model, of those tested. The posterior probability for a
model k stands for the expected likelihood of obtaining model k, for any
randomly selected subject. Because we basically compared two groups of
models, with driving inputs onto two different network nodes, we also
performed a family-level inference based on model space partitioning,
using the SPM routine spm_compare_families (Stephan, et al., 2010).

Though both the frequentist (classical) and the Bayesian are based
on the same single-subject model evidence approximation, i.e. the F
value (negative free energy, F), they consider the problem of model
selection from two different analytical points of view. In the frequentist
approach we used an analysis of variance to test for differences in log-
evidences over models relative to intersubject differences. In contrast,
the Bayesian approach describes a hierarchical model, which is
optimized to furnish a probability density on the models themselves
by treating the model as a random variable. The frequentist approach
tries to reject the null hypothesis that there are no differences in model
evidence across models, whereas the Baysian approach estimates the
models' probabilities and enables inference in terms of exceedance
probabilities. Consequently, results between these methods might
differ. On the other hand, if both methods converge in the same
winning model, this may further underline the significance of the result.

Subject-specific estimates for the 8 parameters in the winning
model were entered into eight one-sample t-tests, to test difference
from zero. These parameters were the driving input, the strengths of
the intrinsic connections between the nodes and the impact of the
modulation onto the relevant connection.

We also performed post-hoc investigations into the relation
between parameter estimates and our individual participants'
preference for the group's winning model (G). In a first analysis, we
calculated difference scores between each individual's negative free
energy (F) values for G and for either that participant's winning model
(if other than G), or the second-best model (in case G was optimal).
The resulting F-difference scores are positive for individuals for whom
model G is better than any other, and negative for those who have an
alternative winner, i.e. it reflects the strength of that individual's
preference for group's winning model G. We then performed Pearson
correlations separately for each parameter estimate, as well as a
regression analysis, between parameter estimates and F-difference
scores. Secondly, we split up the participants into those for whom G
was the optimal fit, versus those for whom one of the other 11 models
was the winner. We then performed Mann-Whitney U-tests to see if
these groups differed in the parameter values for each of the eight
model variables.

Results

fMRI

The factorial re-analysis of Thompson et al.'s (2010b) fMRI data,
with an elevated cluster size threshold (k= 15), revealed a significant
main effect of sentence type, with no main effect of sentence-picture
matching and no interaction of sentence type and sentence-picture
matching. In further analyses, therefore, matched and mismatched
stimulus trials were collapsed. The effect of sentence type was solely
driven by the contrast of OC>SC, yielding four clusters of differential
activation. Plotting of the data confirmed that for all these clusters, the
effect was driven by OC sentences showing increased activation
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Table 1
Activation peaks and cluster extent for the contrast OC>SC, based on the factorial group
analysis (N=12; p<.05, FDR corrected, k>15).

Cluster t-Max
size

LH inferior frontal  IFG 9,44, —54 18 18 44 491
gyrus, triangular 45, 46

part

LH middle frontal PM
gyrus (premotor

Contrast Activation peak  Seed BAs X y z

0C>SC

6,89 —39 6 45 52 5.79

cortex)

LH posterior pSTS 21,22 —57 —45 6 42 5.16
superior temporal

sulcus

LH anterior middle aMTG 21,22, —48 3 =21 15 5.16
temporal gyrus 38

Note: LH = left hemisphere; OC = object-cleft sentences; SC = subject-cleft sentences.

relative to SC sentences, rather than by decreases of activation in the
SC condition relative to baseline (see Table 1 and Fig. 1A). The four
clusters were centered around peak activations in the triangular part of
the IFG, the posterior superior temporal sulcus (pSTS), premotor cortex
(PM) and the anterior middle temporal gyrus (aMTG). The opposite
contrast of SC>O0C yielded no significant differential activation.

dPC

Within a 9 mm radius of the four group activation peaks for the
contrast OC>SC, we determined participant-specific peaks for the
same contrast (see Table 2). Although the activation peak in IFG for
the group analysis was located in the pars triangularis (BA 45), it must
be noted that in five of the twelve participants the individual IFG
peaks within a 9 mm radius of these coordinates were located in the
pars opercularis (BA 44). Likewise, the activation cluster with a peak in
pSTS extended into the superior and to a lesser extent the middle
temporal gyrus, while for five participants, the peak closest to the
anterior MTG group peak was actually located in the temporal pole
(BA 38). The raw data were extracted from these individual peaks,
averaged over voxels within a 6 mm radius, and entered into the dPC
analysis. Fig. 1B shows the results, with significant connectivity between
aMTG-pSTS, pSTS-IFG and IFG-PM. These significant interactions
defined the intrinsic connections in the 12 models that were compared
using Dynamic Causal Modeling.

A

DCM

For each participant, the twelve models given in Fig. 2 were
estimated. The average negative free energy (F) values for each model
are plotted in Fig. 3. A repeated measures ANOVA, comparing these
values across models, failed to meet the assumption of sphericity,
as assessed with Mauchly's test (X?>=672.3; p<.05). Therefore, the
degrees of freedom were corrected using Greenhouse-Geisser estimates
of sphericity (€ =.143). The ANOVA (corrected for degrees of freedom)
revealed a trend towards a main effect of model (F(1.57,17.27) =3.111;
p =.08). Follow-up pairwise comparisons show that the model with the
highest (i.e.less negative) F value, model #12, differed significantly from
models #2, #3, #7, #8 and #9 (all p<.05).

In the 2 x 6 ANOVA on the F values, the 6-level factor modulation and
the interaction between input and modulation failed to meet the
assumption of sphericity as well (X*>=186.4 and X>=173.1; p<.05),
so degrees of freedom were again corrected using Greenhouse-Geisser
estimates of sphericity for these effects (€ =.207 and €=.208,
respectively). Results showed a trend towards a main effect of input
(F(1,11)=3.816; p=.077), driven by higher F values for the models
with driving input onto IFG.

Variational Bayesian Model Selection showed model #12 to be the
winner, with an exceedance probability of 84.8% (see Fig. 4) and a
posterior model probability of 30% (see Fig. 5). The Bayesian
comparison between the two groups of models with different driving
inputs showed that the models with driving input onto IFG generally
fit better to the data, with a group exceedance probability of 86.7% and
a posterior model probability of 64%.

In summary, from the models that were tested, model #12, with
driving input onto the IFG and modulation by object-cleft processing
of the connection between IFG and the pSTS, is the model that best fit
our data. Also, between models with different modulations, those
with driving input onto IFG provide the better fits to the data, as
compared to models with pSTS driving input.

Fig. 6 shows the winning model with the mean parameter estimates
alongside the connections. The only parameter values that differed
significantly from zero were for the connections from pSTS to IFG
(+0.13; p<.05) and from pSTS to aMTG (+0.35; p<.05). Under an
alpha level that is corrected for multiple comparisons (o =0.00625),
none of the connections are significantly different from zero (see also
Table 3).

Visual observation of the subject-specific estimates for the various
parameters revealed variation between subjects, not merely in the size
of parameter estimates, but more crucially in the signs of the estimates.

Fig. 1. (A) Rendering of the four clusters of voxels showing increased activation associated with processing of object-cleft sentences, relative to subject-cleft sentences (N=12;
p<.05, FDR corrected, k>15). (B) Functional connectivity between four activation peaks, based on directed partial correlation (dPC) analysis. Mean dPC values are given for each
significant interaction; two standard deviations of the mean (SDM) are given in brackets. An interaction was defined significant if the mean dPC value minus two SDM were larger
than 1. Note: PM = premotor cortex; IFG = inferior frontal gyrus; aMTG = anterior middle temporal gyrus; pSTS = posterior superior temporal sulcus.
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Table 2
Peak MNI coordinates for the four seed regions in the individual participants.
Region
aMTG PM pSTS IFG
participants X y z X y z X y z X y z
1 -51 9 -152 -42 6 45 -54 -48 6 -54 18 15
2 -48 3 -152 -30 9 39 -63 —-45 12 -48 15 24
3 -51 12 -182 -33 6 54 -63 -39 3 -51 21 24
4 -51 -3 -18 -33 6 45 -54 -39 3 -57 18 15
5 -54 3 -18 -33 6 39 —-48 -45 9 -48 18 12b
6 -51 -3 -15 -36 0 45 =51 -39 3 -57 15 24P
7 -51 0 -21 -36 6 39 -57 -48 0 -54 18 9
8 -51 -3 -24 -30 6 54 -48 -45 9 -48 15 24
9 -54 9 -212 -36 9 39 -54 -36 3 -54 21 18
10 -54 3 -18 -39 3 51 -51 -48 9 -51 18 9b
1 -45 0 -212 -30 6 54 -60 -39 3 -54 12 18>
12 -54 6 -21 -36 6 42 -57 -39 9 -48 15 18P

Where a particular connection between nodes was excitatory for some
participants, it was inhibitory for others. The different ‘directions’,
reflected in different estimate signs, lead to a mean that is relatively
close to zero. In order to probe further into what may drive this variance
between subjects, we investigated the relation between parameter
estimates and our individual participants’ preference for model #12, as
expressed by difference scores in F values between individual's winning
model and their ‘runner up’. In all, #12 emerges as the optimal model for
six of our twelve participants, with three showing an optimal data-fit
with model #3, and another three showing preferences for models #6,
#9 and #11, respectively (for models, see Fig. 2). Separate Pearson
correlations show significant positive correlations between preference
strength for model #12 and the parameter estimates for IFG-pSTS
(r(10)=.66, p=.01), modulation of IFG-pSTS by OC (r(10)=.42,
p=.009) and driving input onto IFG (r(10)=.66, p=.009), but a
regression analysis shows that model preference for #12 is primarily
driven by the parameter estimates reflecting the driving input onto IFG,
without the other variables adding significant explanatory power.
Driving input significantly predicted preference for model #12,
(B=.664,t(10)=2.81,p<.05), and it explained a significant proportion
of the variance in the strength of this preference (R*>=.44, F(1, 10)=
7.88, p<.05).

Mann-Whitney U-tests were used to compare parameter values
between the subjects for whom #12 was optimal and the subjects that
had alternative winners. There was a significant positive effect for the
parameter estimates reflecting the strength of the connections IFG-
PM (p=.037), IFG-pSTS (p=.037), modulation of IFG-pSTS by the
object-cleft sentence condition (p =.004), and the driving input onto
IFG (p =.01). Only the positive effect of modulation of IFG-pSTS by OC
survives correction for multiple comparisons (ot =0.00625).

Discussion

As reported by Thompson et al. (2010b), conventional fMRI analysis
contrasting object-cleft and subject-cleft sentence processing revealed a
left-lateralized group of perisylvian regions that showed increased
activation associated with complex syntactic processing. Refined
analyses of these data revealed four regions of significant activation
located in the inferior frontal gyrus (IFG), premotor cortex (PM),
posterior superior temporal sulcus (pSTS) and anterior middle temporal
gyrus (aMTG), largely replicating results from earlier studies on the
neural correlates of syntactic processing (Just et al., 1996; Stromswold
et al., 1996; Caplan et al., 1998, 2001; Caplan, 2001; Cooke et al., 2002;
Ben-Shachar et al., 2003).

It should be noted that, although the individual participants' seed
points in IFG were centered around the group activation peak in the pars
triangularis (BA 45), the group activation cluster extended to and
included the pars opercularis (roughly, BA 44) and for some participants,

the local activation peak was indeed in the pars opercularis. We therefore
refrain from making specific claims about the functional roles of the
triangular versus the opercular part of Broca's area in complex sentence
processing here. For the same reason, we exercise restraint with respect
to specific claims about our posterior superior temporal sulcus seed
point; this focal point was also part of a larger activation cluster, which
extended over the posterior superior temporal cortex. As such, these
seed points should perhaps better be considered as ‘representative’ of
their larger regions, which is why we have continued to refer to these
larger regions as inferior frontal cortex and posterior superior temporal
cortex in the interpretation of our modeling results.

Subsequent dPC analysis of participant-specific time series showed a
pattern of functional connectivity along the route aMTG-pSTS-IFG-PM,
without specifying the direction of information flow, nor its locus of
origin, in this network. We postulated bidirectional intrinsic connectivity
throughout the network, while with respect to the locus of origin, we
compared models in which the driving input of activation to the network
was located in pSTS with models that had their driving input onto IFG. As
noted in the introduction, the posterior superior temporal cortex shows
activation associated with verb argument structure complexity and
thematic role assignment, making this region a viable candidate for
serving as a gateway to the complex syntactic processing network.
Alternatively, activation in such a specialized network might be driven
principally from inferior frontal cortex, which appears to support either
the computation of complex/hierarchical syntactic constructions or at
least the syntactic working memory component this involves. The
models with IFG as the origin of driving input indeed turned out to fit
better to the data than their rival models.

The model that best fit the data was the model that allowed for
object-cleft processing to modulate the flow of information from the
inferior frontal gyrus to the posterior superior temporal cortex,
reflecting the importance of this connection in the parsing of complex
syntactic structures. Within that model, group parameter estimates
showed that the only connections with an independently significantly
strong flow of activation both originated in the posterior superior
temporal cortex (although these did not survive correction for
multiple comparisons). With respect to the connection from pSTS to
IFG, this likely reflects the interactive nature of the parsing process,
with information flowing first from IFG to pSTS (based on the
Bayesian identification of model #12 as optimal among its compet-
itors), and on to anterior middle temporal gyrus from there, but
certainly also flowing back to IFG, even resulting in strengthened
effective connectivity. Connections between the IFG and premotor
cortex appear to be inhibitory more than anything else, based on the
negative mean parameter estimates in the winning model. With one
of the smallest mean parameter estimate values, there is only very
weak evidence for information flow from the PM region (back) to the
IFG.
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Fig. 2. The 12 DCMs that were compared. All have bidirectional connectivity between PM-IFG, IFG-pSTS and pSTS-aMTG. Models 1-6 have driving input on pSTS, while models 7-12
have driving input on IFG. Modulation by object clefts (OC) is tested on all connections. Note: PM = premotor cortex; IFG = inferior frontal gyrus; aMTG = anterior middle temporal

gyrus; pSTS = posterior superior temporal sulcus.

These data, then, suggest that the driving force in the complex
syntactic processing network is the syntactic computation that is
supported by inferior frontal cortex. In this scenario, the sequence of
lexical items, primarily asyntactic in nature, is fed to inferior frontal
cortex and it is there that structure is assigned and syntactic complexity
starts to be analyzed. The full parsing process is interactive between
syntactic deconstruction and lexico-semantic operations (Tanenhaus &
Trueswell, 1995; Ferreira, 2003; Kim & Osterhout, 2005). Crucially,
sentence-structural information is conveyed to posterior temporal areas
that support retrieval of verb argument structure information, so that
thematic roles can be assigned on the basis of both these sources of
information (Keller et al. 2001). At the same time, there is interaction
between posterior temporal cortex and anterior temporal cortex, which
has been associated with a role in morphosyntactic comprehension and
the analysis of syntactic structure in sentence processing in lesion as well
as functional neuroimaging studies (Dronkers et al., 1994; Humphries

et al., 2005; Newman et al., 2010). By contrast, there is some reason to
assume that the premotor cortical activation observed in this network
is perhaps less specific to syntactic complexity analysis. Hanakawa et al.
(2002) report premotor cortex activation associated with tasks that
involve general rule-based manipulations, similar to those likely involved
in the parsing of complex syntactic stimuli (Christensen, 2010), or to
those involved in “incongruency detection”, as suggested by Heim et al.
(2009b). It is therefore conceivable that the premotor activation reported
here, though functional within the network particularly involved in
object-cleft processing, is more task-related than the activation in other
parts of the network.

Both dPC and DCM are multivariate methods, so both methods
might indeed be expected to provide identical results. The fact that
the dPC analysis detects connections that are not detected by DCM is
most likely due to the fact that DCM makes more assumptions about
the system under investigation. Particularly, DCM discriminates
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Fig. 3. Mean negative free energy (F) values, with standard errors (SE), for the 12
models. The left six models are those with driving input from posterior superior
temporal sulcus (pSTS). The right six models have driving input from the inferior
frontal gyrus (IFG).
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Fig. 4. Exceedance probabilities for the 12 models compared with variational Bayesian
Model Selection.

between the directions of information flow. If this direction differs
between subjects, as is the case in the present study, it is possible that
a connection cancels out by averaging over the subjects.

Note that there are potential issues with respect to the sequential
application of dPC and DCM on the same dataset. Kriegeskorte et al.
(2009) addresses various pitfalls in systems neuroscience, related to
using the same dataset for selection and testing of hypotheses and the
danger of presenting circular results.> We have been careful to use
dPC only as a means of constricting the number and type of possible
models based on the four activation clusters. Crucially, all DCMs are
equally in line with the output of the dPC analysis, so none of the
models inherently fits the dPC outcome better than any of the others.
The internal competition between the models is thus fought on an
equal basis and the resulting winner is simply the one that forms the
best fit to the data, better than any of the competitors we tested.
Nevertheless, the models' actual parameter estimates are statistically
correlated with the statistics used in the selection process, because
the noise is correlated between the two analyses (since it is the same
data). Although the exact magnitude of this effect is not known, it
should ideally be corrected for in the DCM statistics, as also suggested
by Kriegeskorte et al. (2009). Again, such a correction would not lead
to a different winner from among the 12 models we tested, as they

2 We are grateful to an anonymous reviewer for bringing this reference to our
attention.
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Fig. 5. Posterior model probabilities for the 12 models compared with variational
Bayesian Model Selection.

were all equally correlated with the dPC outcome, but it would raise
the statistical threshold for acceptance of the parameter values. This
further accentuates that our winning model is not perfect or complete.

Considerable between-subject variation was found in the ‘direc-
tionality’ of information flow between the model connections. In any
case, the interpretation of ‘directionality’ based on these parameter
estimate signs is controversial, as the connections themselves are
already specified in terms of a specific directionality. In the present
case, we only tested models that have full interactivity between the
connected nodes, but the picture that emerges is one in which this
interactivity varies between individuals. Follow-up investigations into
the relation between individual participant's model preference and
parameter estimates for the variables in model #12 show positive
effects of the parameter estimates for the driving input onto IFG, the
connection IFG-pSTS and for the modulation of this connection by the
complex OC sentences.

One related issue that needs to be addressed is the overall
relatively weak evidence for the individual winning model compared
to its closest competitors, as revealed by the absence of a strong main
effect of the factor model in the frequentist analysis and by the low
posterior probability value obtained through the Bayesian Model

-"\L‘"—Q,_,/ 'y -~ __’///

N

-

Fig. 6. The winning model #12, with driving input on the IFG node and modulation of
the connection between IFG and pSTS by object-cleft processing. Mean parameter
estimates are given alongside the connections and the modulation. Values that exceed
the statistical threshold (p<.05, uncorrected) are listed in bold print. Note: PM =
premotor cortex; IFG = inferior frontal gyrus; aMTG = anterior middle temporal gyrus;
pSTS = posterior superior temporal sulcus.
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Table 3
Mean parameter estimates and their probability of being different from zero for model
12.

Connection/parameter Parameter estimates

Mean p
PM_trilFG —0.078 .302
pSTS_aMTG 0.349 .024
pSTS_trilFG 0.131 .027
aMTG_pSTS 0.182 152
trilFG_PM —-0.113 .365
trilFG_pSTS 0.012 947
Modulation OC trilFG-pSTS 0.093 .199
Driving_input 1.235 .060

Selection, as well as by the considerable variance shown with respect
to connection strengths in this group of participants. It should be clear
that the DCM approach we have adopted in this study only reveals the
best model from among a group of similar models that are inherently
all imperfect. For example, the models of the network supporting
complex syntactic processing tested here do not include associations
with subcortical structures, while there is much evidence that such
areas also play a functional role in the computation of sentence
meaning, particularly in inhibitory and excitatory control of cortical
networks (Ullman, 2001; Kotz et al., 2003; Snijders et al., 2010; David
etal, 2011).

At this point, no paper model can truly reflect the highly extensive,
complex and interactive neural network that underlies a higher
cognitive function such as syntactic processing in the human brain.
What one can do, however, is to limit the search space for the models and
test specific hypotheses. We have done the first by limiting ourselves to
strong activation peaks for a crucial syntactic fMRI contrast and by using
a functional connectivity analysis to map the most likely basic network
infrastructure between these peaks. We have done the second by testing
whether the driving input to the resulting network was in one of two
logically possible locations, based on previous activation studies and
theoretical models of syntactic processing. As to which connection is
primarily modulated by the processing of relatively complex sentences,
we did not have an a priori hypothesis, hence we tested all possibilities
within the infrastructure of our basic model. The reader should note that
there is no mathematical or logical end to the degree of complexity that
can be postulated in the models that are compared in a DCM analysis and
we are fully aware that the network we present as the winning model is
far from complete. In the present paper, we have chosen to be restrictive,
rather than expansive, with respect to the model space investigated.

Conclusions

Successive application of three methods of neuroimaging data
analysis was used to investigate the infrastructure of a neural network
supporting complex syntactic processing, as well as the information
flow within this network. A conventional BOLD fMRI subtraction
paradigm investigating increased activation associated with the
processing of object-cleft sentences relative to subject-cleft sentences
revealed four major left-hemisphere peaks of activation, viz. in the
inferior frontal gyrus, the premotor cortex, posterior superior temporal
sulcus and anterior middle temporal gyrus. Directed partial correlation
modeling showed evidence of functional connectivity between these
four regions, such that the inferior frontal gyrus connected to premotor
cortex and the posterior superior temporal sulcus, which in turn
connected to the anterior middle temporal gyrus. Finally, using dynamic
causal modeling, with both frequentist and Bayesian Model Selection,
the driving input to this network was found to be located in the inferior
frontal gyrus, rather than in the posterior superior temporal sulcus,
while the primary modulation by complex sentence processing was on
the connection between inferior frontal to posterior superior temporal
cortex.

With no pretension to being either conclusive or exhaustive, these
results add to current insights into the nature of the neural system
that underlies complex sentence processing. The primary drive to this
interactive system now appears to come from inferior frontal cortex,
with a substantive role for its connection with posterior superior
temporal cortex and a feedback mechanism from posterior superior
temporal cortex back to inferior frontal cortex. In line with earlier
research into the respective roles for these separate areas in syntactic
processing, we suggest that syntactic structure-building and decom-
position operations are supported primarily by the inferior frontal
cortex, in an interactive relation with posterior superior temporal
cortex, which supports thematic role assignment. Sentence proces-
sing does not start from analysis of pivotal verbs and their argument
structure subcategorizations, but with structure building based on
word order.
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