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Implementation and System Requirements

The Data2Dynamics modeling environment is MATLAB-based, open source and freely
available. MATLAB R2012 or later is recommended, the MATLAB Optimization Tool-
box and the Symbolic Math Toolbox are required. Windows, Mac and Linux operating
systems are supported. For MATLAB mex-compilation under Windows systems, the
freely available Windows SDK 7.1 is required.

Availability, Documentation and Bug Reports

The Data2Dynamics modeling environment is available at http://www.data2dynamics.org.
The website contains full a documentation and a description of the example applications.
Code changes between versions can be tracked, bug reports can be issued and code im-
provement and additional functionality can be contributed. Participation is highly wel-
come!
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1 Efficient solution of the ODE system

The dynamics of biochemical reaction networks, i.e. the time evolution of the concen-
trations of the involved molecular compounds, can be modeled by a system of ordinary
differential equations (ODE)

d

dt
x(t,θ) = fx(x(t,θ),u(t,θ),θ). (1)

The variables x correspond to the dynamics of the concentration of n molecular com-
pounds such as hormones, proteins in different phosphorylation states, mRNA or com-
plexes thereof. A time-dependent experimental treatment that alters the dynamical be-
havior of the system can be incorporated by the function u(t,θ). To be able to handle
unknown quantities in these driving inputs, we consider the case where the function u
can also be parameter dependent. For instance, u can represented by a smoothing spline
as described in Schelker et al. (2012). The initial state of the system is described by

x(0,θ) = fx0(θ). (2)

The set of parameters θ = {θ1 . . . θl} determines the dynamics. Except for very small
systems the analytical solution to Equation (1) is not available any more. Therefore, the
dynamics have to be computed by a numerical ODE solver. For ODE systems describing
biochemical reactions, a reaction flux occurs multiple times in the right hand side of
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Equation (1). Therefore, the right hand side of Equation (1) can usually be decomposed
into a stoichiometry matrix N and rate equations v of the reaction fluxes of the molecular
interactions

fx(x(t,θ),u(t,θ),θ) = N · v(x(t,θ),u(t,θ),θ). (3)

The stoichiometry matrix N is sparse. For numerical efficiency it is advantageous to
precompute the reaction fluxes v and use Equation (3) as right hand side of the ODE
system.

The timescales of cellular processes can differ by orders of magnitude. As a conse-
quence, the resulting nonlinear ordinary differential equations can be stiff, for a general
introduction into this topic see Lambert (1977). Roughly speaking, stiffness is character-
ized by the presence of at least one rapidly damped mode whose time constant is small
compared to the timescale of the remaining dynamics. In the presented software package,
the CVODES solver (Hindmarsh et al., 2005) is used. CVODES solves both stiff and
non-stiff systems and, for reasons of efficiency, is implemented in C. The methods used
in CVODES are variable-order, variable-step multistep methods, based on the Adams-
Moulton formulas for non-stiff and on the Backward Differentiation Formulas for stiff
systems (Byrne and Hindmarsh, 1975). CVODES also allows for efficient simultaneous
solution of the sensitivity equations, see Section 5. For convenience the solver was im-
plemented in combination with a MATLAB mex-interface. For numerical efficiency it
is favorable to provide the Jacobian matrix J of the right hand side of Equation (1) with
respect to the dynamic variables x

J =
∂fx
∂x

= N · ∂v
∂x

(4)

to the ODE solver. Here, again, Equation (3) can be exploited to simplify computations.

2 Parallelization of computations

Experimental measurements are mathematically represented by functional mappings

y(t,θ) = fy(x(t,θ),u(t,θ),θ). (5)

For each experimental condition Equation (3) and (4) have to be modified according to
the treatment applied. This can for example be a different network structure represented
by N due to knock-out, knock-in, or inhibition experiments or different experimental
treatments incorporated by the function u(t,θ) or fx0(θ) . Consequently, there can be as
many variants of the ODE systems as experimental conditions, each having an individual
numerical solution for the dynamics. For comparing the whole model to the experimental
data, given a specific set of candidate parameters, all ODE variants have to be solved.

3



During parameter estimation many evaluations of the whole model are necessary. This
can be a numerically intensive task. All ODE variants can be solved independently, there-
fore this problem is ideal for parallel computing. Here, a multithreading technique was
employed that results in a significant acceleration on multi-core machines. For the model
of Bachmann et al. (2011), 24 ODE variants have to be solved consecutively. As dis-
played in Figure 1, the speed up increases as expected with increasing number of threads
used.

3 Maximum Likelihood estimation and
deterministic optimization algorithms

Numerical optimization algorithms try to find the argument θ̂ that minimizes the value
of an objective function L(θ). In the case of independently and normally distributed
measurement noise the objective function for maximum likelihood estimation is given by

L(θ) =
m∑
k=1

dk∑
j=1

2 log(
√

2π) + 2 log(σk(tj,θ)) +

(
y†kj − yk(tj,θ)

σk(tj,θ)

)2

(6)

where L(θ) = −2 · log(L(y†|θ)) of the likelihood L, y† is the experimental data and nor-
mally distributed measurement noise is assumed. The index k runs over all experimental
measurements, the index j over all time points for the measurements. For simplicity, the
sum over the different data sets is omitted here. The variance can be a parameterized
function σk(tj,θ)2, and the corresponding parameter can be estimated together with the
other parameters. In the following we will refer to both L and L simply as likelihood.
The minimum of L(θ) is called the best fit of the model to the experimental data and
the corresponding parameters θ̂ are the maximum likelihood estimates since they maxi-
mize L. Numerical algorithms have to be used to estimate the parameters because of the
non-linearity of the optimization problem. Deterministic optimization algorithms try to
take steps of ∆θ that successively decrease the value of L(θ) beginning from an initial
guess θ0 (Press et al., 1990). The parameters are updated by θi+1 = θi + ∆θ. To gen-
erate steps, deterministic optimization algorithms evaluate derivatives of the likelihood.
The Data2Dynamics software also implements stochastic optimization algorithms, such
as particle swarm optimization, differential evolution, simulated annealing, genetic al-
gorithm and others, see Kronfeld et al. (2010) for a detailed description of methods an
implementation, for a benchmark comparison, see Raue et al. (2013). The most efficient
and reliable algorithm for parameter estimation in our hands is a deterministic trust region
approach combined with multi-start strategy to map out local minima. Parameters can and
should be estimated on a logarithmic scale.
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Figure 1: Acceleration of numerical computations for the solution of ODE systems by multithreading. For
each bar, 24 variants of the ODE systems used for the model by Bachmann et al. (2011) were solved for
1000 randomly drawn sets of parameters using a Latin hypercube sampling strategy. The red line displays
the theoretically possible acceleration. A 12-core processor was used in this benchmark.
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Gradient descent method. The gradient descent method takes steps

∆θ = −γ · ∇L(θ) (7)

down the gradient of L. γ is chosen sufficiently small such that a decrease in the objective
function L(θi+1) < L(θi) can be guaranteed. It is well known that this simple method
exhibits only linear convergence rate (Stoer and Bulirsch, 2005). Furthermore, for non-
linear problems the method has convergence problems if the objective function contains
long and flat valleys (Rosenbrock, 1960). These structures are typical for likelihood func-
tions of ODE models describing biochemical reaction networks, sometimes referred to as
sloppiness (Gutenkunst et al., 2007).

Newton and quasi-Newton methods. To circumvent convergence problems of the
gradient descent method, the Newton method applies a second order Taylor expansion L̃
of the objective function

L̃(∆θ) = L(θ) + g ·∆θ +
1

2
∆θ> ·H ·∆θ, (8)

where g = ∇L(θ) is the gradient and H = ∇>∇L(θ) is the Hessian matrix of L(θ).
For the calculation of g and H for ODE models, see in the Section 4. The Newton step is
given by

∆θ = −H−1 · g (9)

and leads, if the approximation is good, to the optimal solution in a single step. Compared
to the gradient descent method, the Newton method exhibits quadratic convergence rate
(Stoer and Bulirsch, 2005). The performance decreases considerably as the goodness
of the approximation decreases. In this case and also for non-positive definite H, the
method can become unstable, i.e. decrease in the objective function is not guaranteed for
each step.

Instead of computing H directly from the model, quasi-Newton methods build up infor-
mation about H iteratively from sequential evaluations of g, see for example the Broyden-
Fletcher-Goldfarb-Shanno update (Shanno, 1970). Iterative approaches are especially
useful if computation of second order derivatives is not feasible. As explained in Sec-
tion 4, this is not necessary for ODE models.

Levenberg-Marquardt method. To circumvent stability problems of Newton meth-
ods the Levenberg-Marquardt method (Marquardt, 1963) uses

∆θ = −(H + λ · 1)−1 · g. (10)

For λ → 0 the Newton step of Equation (9) is obtained, for λ → ∞ the gradient descent
step direction of Equation (7) is obtained. With increasing λ, the step size is reduced.
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Consequently, L(θi+1) < L(θi) can be guaranteed but also efficient Newton steps can
be performed if the approximation is a good one. It can be shown that the quality of the
approximation (8) increases in the proximity of an optimum in the likelihood (Seber and
Wild, 2003).

Trust region methods. Closely related to the Levenberg-Marquardt method are trust
region methods (Coleman and Li, 1996). These methods minimize Equation (8) under the
constraint ||∆θ|| ≤ µ to generate the trial step. The parameter µ that defines the radius
of the trust region has a similar effect as λ in the Levenberg-Marquardt method, i.e. for
small enough µ, L(θi+1) < L(θi) can be guaranteed.

Here, the trust region algorithm LSQNONLIN implemented in MATLAB is used. To
reduce expensiveness of the constrained minimization of Equation (8), the LSQNON-
LIN algorithm formulates a two-dimensional approximation to Equation (8) by a plane
in parameter space. The gradient descent direction of Equation (7) and an approximate
Newton step of Equation (9) span the plane of this new approximation. Since the gradient
decent direction is contained L(θi+1) < L(θi) for small µ can be guaranteed again. The
approximate Newton step is obtained by preconditioned conjugated gradients methods
(Barrett et al., 1994) instead of using direct matrix inversion that is considerably slower
for large parameter space.

4 Derivative calculations for ODE models

For deterministic optimization algorithms, the gradient g = ∇L(θ) and Hessian matrix
H = ∇>∇L(θ) of the likelihood are required. The first term in Equation (6) is a constant.
The last term is the well-known weighted sum of squared residuals, sometimes denoted
by χ2(θ). Equation (6) can be reformulated

L(θ) = const+
m∑
k=1

dk∑
j=1

2 log(σk(tj,θ)) +

(
y†kj − yk(tj,θ)

σk(tj,θ)

)2

(11)

= const+
s∑
q=1

r̃q(θ)2 +
s∑
q=1

rq(θ)2 (12)

where the new sum index q runs over all k and j in (11) and s =
∑m

k=1 dk. The first sum
contains the elements

r̃q(θ) =
√

2 log(σk(tj,θ)). (13)

Since log(σk(tj,θ)) can be negative, in practice

r̃q(θ) =
√

2 log(σk(tj,θ)) + c (14)
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is used, where c is a large enough constant. The constant c adds another constant to
Equation (12) but does not change the shape of the likelihood function, hence, maximum
likelihood estimation and confidence intervals are not affected. The second sum contains
the normalized residuals

rq(θ) =
y†ki − yk(tj,θ)

σk(tj,θ)
. (15)

The gradient can then be obtained by

g =
dL

dθ
= 2

s∑
q=1

(
r̃q ·

dr̃q
dθ

+ rq ·
drq
dθ

)
(16)

and the Hessian matrix by

H =
d2L

dθ2 = 2
s∑
q=1

(
dr̃q
dθ
· dr̃q

dθ
+ r̃q ·

d2r̃q

dθ2 +
drq
dθ
· drq

dθ
+ rq ·

d2rq

dθ2

)
. (17)

For the following calculations we look at each component q individually and drop the
index for better readability. First and second order derivatives of r̃ can be evaluated by

dr̃

dθ
=

1

r̃σ

dσ

dθ
(18)

and
d2r̃

dθ2 =
1

r̃σ

d2σ

dθ2 −
1

r̃σ2

dσ

dθ
· dσ

dθ
− 1

r̃2σ

dσ

dθ
· dr̃

dθ
. (19)

First order derivatives of r can be calculated by

dr

dθ
=
−1

σ

dy

dθ
− r

σ

dσ

dθ.
(20)

Let fσ be the equation for the variance σk(tj,θ)2. We can then further obtain

dσ

dθ
=
∂fσ
∂y

dy

dθ
+
∂fσ
∂θ

(21)

and
d2σ

dθ2 = 2
∂2fσ
∂y∂θ

dy

dθ
+
∂fσ
∂y

d2y

dθ2 +
∂2fσ
∂y2

dy

dθ

dy

dθ
+

d2fσ

dθ2 . (22)

With the equation for the measurements fy we can resolve

dy

dθ
=
∂fy
∂x

dx

dθ
+
∂fy
∂u

du

dθ
+
∂fy
∂θ

. (23)

All expressions in Equations (18-23) can be calculated analytically except for terms in-
dicated in red. In Equation (23), the derivatives of the dynamic variables dx/dθ, the so
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called sensitivities, can be calculated numerically, as described in Section 5. The calcu-
lation of d2y/dθ2 involves second order sensitivities d2x/dθ2 of the dynamics that are
expensive to evaluate numerically.

The calculation of the last term in Equation (17), r · d2r/dθ2 is more complicated.
Following the argumentation in Press et al. (1990, Section 15.5 Nonlinear Models), in
the proximity of a good model fit, the normalized residuals r fluctuate in an uncorrelated
manner around zero. Therefore, the term tends to cancel out when summed over q and
quadratic convergence of optimization algorithms using Newton steps can be obtained
without calculating second order sensitivities.

However, if measurement noise parameters are estimated as well, the argumentation
is more involved. In the following, the parameters are collected in three groups: θy
are parameters that only affect the observables y, θs are parameters that only affect the
measurement noise σ and θb are parameters that affect both. Correspondingly, the last
term in Equation (17) can be reformulated to

r · d2r

dθ2 = r ·



d2r
dθ2

y

d2r
dθydθs

d2r
dθydθb

d2r
dθsdθy

d2r
dθ2

s

d2r
dθsdθb

d2r
dθbdθy

d2r
dθbdθs

d2r
dθ2

b

 .

With Equation (15) we can calculate

r · d2r

dθ2
y

=
−r
σ

d2y

dθ2
y

(24)

r · d2r

dθ2
s

=
r2

σ2

dσ

dθs

dσ

dθs
− r2

σ

d2σ

dθ2
s

(25)

r · d2r

dθ2
b

=
r

σ2

dy

dθb

dσ

dθb
− r

σ

dr

dθb

dσ

dθb
− r

σ

d2y

dθ2
b

+
r2

σ2

dσ

dθb

dσ

dθb
− r2

σ

d2σ

dθ2
b

(26)

r · d2r

dθydθs
=

r

σ2

dy

dθy

dσ

dθs
(27)

r · d2r

dθydθb
=

r

σ2

dy

dθy

dσ

dθb
− r

σ

d2y

dθydθb
(28)

r · d2r

dθsdθb
=

r2

σ2

dσ

dθs

dσ

dθb
− r

σ

dσ

dθs

dr

dθb
− r2

σ

d2σ

dθsdθb
. (29)

Indicated in red color are the before-mentioned second order derivatives that are prob-
lematic to evaluate numerically. The terms in Equations (24- 29) do contain either r or
r2. As discussed above, the terms containing r do cancel out when summed over q in
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the proximity of a good model fit whereas the terms containing r2 do not. Fortunately,
the problematic terms that contain second order derivatives d2y/dθ2, marked in red, are
amongst those that do cancel out when summed over q in Equations (24- 29). With the
remaining terms of Equation (17), an approximate Hessian matrix Ĥ can be calculated
without the second order derivatives d2y/dθ2. As the quality of the model fit improves,
the quality of Ĥ improves. For cases where the measurement noise function does not
explicitly depend on the observables, the missing term in Equation (22) vanishes as well
because ∂fσ/∂y = 0. In these cases, as the quality of the model fit improves, Ĥ → H,
and quadratic convergence of optimization algorithms can be obtained even if measure-
ment noise parameters are estimated.

The assumption ∂fσ/∂y = 0 holds true for many applications. To which extend more
general functions with ∂fσ/∂y 6= 0 for the measurement noise have to be considered for
applications, and to which extent this would impact on optimization performance, remains
to be clarified.

If, due to log-normal measurement noise, the observables and experimental data points
are compared on a logarithmic scale, e.g. using log10, an additional transformation

dylogk
dθ

=
1

log(10) · yk
dyk
dθ

(30)

has to be applied. If, for efficiency, parameter values are estimated on a logarithmic scale,
e.g. using log10, an additional transformation

d

dθlogj
= log(10) · θj ·

d

dθj
(31)

has to be used.

5 Efficient solution of the sensitivity equations

The derivatives dx(t,θ)/dθ, also called sensitivities, can be calculated accurately using
the sensitivity equations. The sensitivity equations represent an additional ODE system

d

dt

dx(t,θ)

dθ
=
∂fx
∂x

dx(t,θ)

dθ
+
∂fx
∂u

du(t,θ)

dθ
+
∂fx
∂θ

(32)

for the derivatives (Leis and Kramer, 1988) that is solved simultaneously with the original
ODE system, see Equation (1). Using the abbreviation sij = dxi/dθj with i = 1 . . . n and
j = 1 . . . l and Equation (4), we rewrite component-wise

d

dt
sij = J · sij +

∂fx
∂u

du(t,θ)

dθ
+
∂fx
∂θ

, (33)
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which are n×l additional ODEs. The initial conditions for Equation (33) can be calculated
by

s(t = 0,θ) =
dfx0
dθ,

(34)

see Equation (2). An efficient algorithm for solving the enlarged ODE system is the
CVODES solver. There are some numerical properties that allow to increase the per-
formance of solving the enlarged ODE system, see Hindmarsh et al. (2005) for details.
Similar to the calculation of the Jacobian matrix J, see Equation (4), of the right hand
side of Equation (1), it is favorable to provide analytically the Jacobian matrix Js of the
right hand side of Equation (33) with respect to the sensitivities. From Equation (33), we
see that Js is composed blockwise of J by

Js =


∂si1
∂si1

∂si2
∂si1

. . .

∂si1
∂si2

∂si2
∂si2

. . .

...
... . . .

 =


J 0 . . .

0 J . . .

...
... . . .

 .

Therefore, explicit calculation of Js can be omited. In addition, this feature leads to some
numerical properties that allow to further increase the performance of solving the enlarged
ODE system, see in Hindmarsh et al. (2005) for details. For instance, Equation (32)
inherits the stiffness properties of Equation (1). Consequently, the adaptive step size
control for the enlarged ODE system can be chosen equally to that of the original system.
Again, Equation (3) can be used to simplify computation of Equation (32) by

d

dt

dx(t,θ)

dθ
= N ·

(
∂v

∂x

dx(t,θ)

dθ
+
∂v

∂u

du(t,θ)

dθ
+
∂v

∂θ

)
. (35)

The matrices ∂v/∂x, ∂v/∂u and ∂v/∂θ can be calculated analytically.
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