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A comparative analysis of the bistability switch for
platelet aggregation by logic ODE based
dynamical modeling†
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Claudia Schütz,b Jens Timmerde and Thomas Dandekar*a

A kinetic description of the fragile equilibrium in thrombozytes regulating blood flow would be an important

basis for rational medical interventions. Challenges for such a model include regulation by a complex

bistability switch that determines the transition from reversible to irreversible aggregation and sparse data on

the kinetics. A so far scarcely applied technique is given by the derivation of ordinary differential equations

from Boolean expressions, which are called logic ODEs. We employ a combination of light-scattering based

thrombocyte aggregation data, western blot and calcium measurements to compare three different ODE

approaches regarding their suitability to achieve a data-consistent model of the switch. Our analysis reveals

the standardized qualitative dynamical system approach (SQUAD) to be a better choice than classical mass

action formalisms. Furthermore, we analyze the dynamical properties of the platelet aggregation threshold as

a basis for medical interventions such as novel platelet aggregation inhibitors.

Introduction
Platelet aggregation

Platelets play a key role in normal and pathological hemostasis
through their ability to rapidly adhere to activated or injured
endothelium, subendothelial matrix proteins and other activated
platelets thus forming stable aggregates.1 They combine major
roles in the development and progression of cardiovascular
diseases, and have emerged as one of the most important
cellular therapeutic targets since they are now considered key
mediators of thrombosis, inflammation, and atherosclerosis.
This is supported by a wealth of evidence from large clinical
trials, where established anti-platelet drugs have become para-
mount in the prevention and management of various diseases

involving the cardiovascular, cerebrovascular, and peripheral
arterial systems.2 This has triggered interest and efforts to
improve both the diagnostic and therapeutic aspects of platelet
function in disease.3,4

One of the most important physiological platelet activators
is adenosine diphosphate (ADP), which is secreted by activated
platelets representing a very important amplification mechanism
to recruit additional platelets to sites of vascular injury. ADP
has two G-protein-coupled receptors (P2Y1 and P2Y12) in the
platelet plasma membrane. Activation of the 7-transmembrane
domain receptor P2Y1 stimulates calcium mobilization,
platelet shape change, and rapid and reversible platelet aggre-
gation. Stimulation of the P2Y12 receptor coupled to both Gs
and Gi proteins enhances amplification of stable platelet
aggregation and secretion. The transition between reversible
and irreversible aggregation is thereby characterized by a bistable
threshold behaviour, that integrates the signals from all receptors
and generates an output, that manifests in the activation rate
of the fibrinogen receptor integrin a2bb3. Understanding the
dynamical properties of this threshold behaviour is a pivotal
aspect for the development of novel diagnostics and anti-
thrombotic therapies.

Mathematical modeling and parameter estimation in logic
ODEs

Mathematical modeling is a powerful tool to examine quantitative
features of complex systems, and we apply it here to the platelet
aggregation bistability switch. Classical ODE-based approaches
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use mass action or Michaelis–Menten kinetics to model bio-
chemical reactions. Regarding platelets, one challenge is that
detailed kinetic data on all components of the system are
difficult to come about. Hence, only Boolean discrete models
achieved a broader description of central platelet activatory and
inhibitory pathways so far.5 All more ambitious efforts lack
sufficient kinetic data and hence, other previous modeling papers
looked at other aspects of thrombosis and hemostasis.6–9 However,
there is an alternative available to model the complex switch in
platelet aggregation, given by logical ODEs: some effort has been
made to derive differential equations from Boolean expressions
(AND, OR, NOT), using the standardized qualitative dynamical
systems approach10 or HillCube equations.11 The resulting formulae
are called logic ODEs. They display transitions between the discrete
truth values 0 and 1 as continuous functions and abstain from
including detailed information about underlying reaction kinetics.
However, the application of parameter estimation methods to
calibrate the quantitative effects of activators or inhibitors on a
given node within these approaches is up to now scarce, it was
not clear which formalism would work best with our data.

For the analysis of platelet aggregation we therefore conducted
a comparison between models built by (a) the standardized
qualitative dynamical systems approach, (b) HillCube equations
and (c) mass action kinetics. All three models were subjected to
multi-experiment fitting along a combination of low angle light
scattering analysis (LASCA), western-blot and calcium measure-
ment data. The differential equations of all three models can be
found in the ESI.†

Model topology

The input layer of the models is built by the ADP receptors P2Y1
and P2Y12, and the thromboxan receptor (ThromR). ADP binding
to the P2Y1 receptor leads to an opening of intracellular calcium
channels and thereby to an increase of the cytosolic calcium
concentration, which results in the activation of the small GTPase
Rap1. Rap1 is a direct activator of the fibrinogen receptor integrin
a2bb3 (Int), whose activation is proportional to the aggregation
rate, thus representing the model’s output node. Nevertheless,
the activation of integrin has two important effects in our model:
It triggers the mobilization of Src-kinase associated to its
cytoplasmatic domain, and induces the synthesis and release
of autocrin thromboxan, which is then secreted and bound by
its own receptor ThromR. ThromR signals back to integrin,
establishing a positive feedback loop.

Ligand binding to P2Y12 on the other hand leads to engage-
ment of PI3-kinase, which in turn activates Akt-kinase via
phosphorylation. Akt embodies a third activator of integrin.

To capture the observed threshold properties of platelet
aggregation, we included a bistability switch consisting of
Src-kinase and a set of tyrosine phosphatases. Src is thereby
mobilized by integrin and capable of self-activation via auto-
phosphorylation at tyr-418, as well as inactivation of the tyrosine
phosphatases. Those in return activate themselves and inactivate
Src through dephosphorylation. The state of the bistability
switch represents an input for Akt-kinase, which forwards the
signal to integrin, building a second positive feedback-loop.

The dynamics established by the described Src-PTP interplay
constitute the focus of this modeling approach. Fig. 1 illustrates
the network topology valid for all three implemented models.
Additional information about the mathematical formalisms can
be found in the methods section.

Methods
In silico modeling

The models consist of a set of ordinary differential equations,
representing concentration changes over time. We analysed three
different implementations of the respective equations, being mass
action, HillCube, and the standardized qualitative dynamical
systems approach. All basal concentrations and parameter
values can be found in the ESI.†

Mass action. In the mass action approach, all concentration
changes over time are implemented as

dx

dt
¼
Yn
i¼1

ri �
Xm
j¼1

aj � kj
� �

with ri being the i-th reactant from which a node is built, aj the
j-th modifier catalyzing the reaction, and kj the j-th rate con-
stant belonging to each modifier. Fitted parameters include
the activation and deactivation constants of all incorporated
proteins, the calcium release and re-uptake rates, as well as the
basal concentrations of all active and inactive players, and
scaling factors for the observables integrin, Akt, calcium and
Rap1. To account for the quantitatively different ligand effects

Fig. 1 Network topology. The receptor layer consists of the two ADP
receptors P2Y1 and P2Y12 and the thromboxane receptor ThromR. Ligand
binding to P2Y1 leads via opening of intracellular calcium channels to the
activation of Rap1 and thus to an inside-out signaling that results in a
conformational change of integrin a2bb3 leading to aggregation. Engage-
ment of P2Y12 causes phosphorylation events that result in the activation
of Akt kinase, which also transmits the signal to integrin. A positive feed-
back loop including a bistability switch built of Src kinase and a set of
tyrosine phosphatases that is activated upon integrin outside-in signaling
determines the transition from reversible to irreversible aggregation (black
arrows: activation, blunt ends: inhibition, P: autophosphorylation, DP:
autodephosphorylation, Ca: calcium, Int: integrin a2bb3, Src: sarcoma
tyrosine kinase, PTP: tyrosine phosphatases, PI3K: phosphoinositide-3
kinase, Akt: protein kinase B, Throm: thromboxane A2, ThromR: throm-
boxane A2 receptor).
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in platelet rich plasma (PRP) and washed platelets, we estimated
the ADP input concentration for the calcium, Akt and Rap1
detections together with the other parameters.

SQUAD. In the standardized qualitative dynamical systems
approach the differential equations represent logistic functions
that guarantee a monotonic behaviour within the closed inter-
val [0,1] and have a shape according to

dxi

dt
¼ �e0:5h þ e�h oi�0:5ð Þ

1� e0:5hð Þ 1þ e�h oi�0:5ð Þð Þ � gixi

oi ¼

1þ
P

anP
an

� � P
anxan
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2
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0 � xi � 1

0 � oi � 1

h; an; bm; gi 4 0

xan
� �

is the set of activators of xi

xin
� �

is the set of inhibitors of xi

x is used if xi has activators and inhibitors

xx is used if xi has only activators

xxx is used if xi has only inhibitors

with an being the effect of the n-th activator and bm the m-th
inhibitor of node xi. Fitted parameters include all modifier
effects, the average Hill-coefficient of the system %h, the basal
concentrations of Src and PTP, as well as scaling factors for Akt,
calcium and Rap1 and inputs for ADP.

HillCube. In the HillCube approach, we assume the produc-
tion of Xi to be given by %Bi, and the degradation to be propor-
tional to %xi. Then the development of %xi over time is governed by
the ordinary differential equation (ODE)

_�Xi ¼
1

ti
�Bi

�Xi1; �Xi2; . . . ; �XiNið Þ � �Xið Þ;

where ti can be interpreted as the life-time of species Xi. Then
we define the functions

%BI
i( %Xi1, %Xi2,. . ., %XiNi

)

by linear interpolation of Boolean functions using the technique
of multivariate polynomial interpolation as explained in Wittmann
et al. (2009).11 These functions are called BooleCubes. The
functions %BI

i are affine multilinear, i.e. for each 1 r j r Ni and
fixed %xik, k a j, there exist constants a, b A R such that

%BI
i( %Xi1, %Xi2,. . ., %XiNi

) = a + b %Xij

Molecular interactions, however, are known to show a switch-
like behavior, which can be modeled using sigmoid shaped
Hill functions.

f ( %X) = %Xn/( %Xn + kn)

The Hill coefficient n determines the slope of the curve and is
a measure of the cooperativity of the interaction. The parameter
k corresponds to the threshold in the Boolean model, above
which one defines the state of a species as ‘on’. Mathematically
speaking, it is the value at which the activation is half maximal.
We now define a Hill function fij with parameters nij and kij for
every interaction and define new functions

%BH
i ( %Xi1, %Xi2,. . ., %XiNi

) := %BI
i(fi1( %Xi1),fi2( %Xi2),. . .,fiNi

( %XiNi
)),

which are called HillCubes.11 Fitted parameters for this
approach include all ti and kij as well as basal concentrations,
scaling parameters and inputs as stated for the SQUAD model.
The average Hill-coefficient was fixed to 1 for numerical
reasons.

Parameter estimation

Determining model parameters that optimize the w2-merit
function and set the model statistically compliant with the
available data is a fundamental problem. To fit the model

y = y(ti,
-
p)

to data, we optimize the w2-merit function

w2ð~pÞ ¼
X yi � yðti;~pÞ

s2

with yi representing data point i with standard deviation si. The
model value at time point i for a set of parameter values -

p is
given by y(ti,

-
p). Assuming normally distributed measurement

errors, this corresponds to a maximum likelihood estimation.
To optimize this function, we used the trust region algorithm in
logarithmic parameter space,12 a powerful deterministic least-
square optimizer. ODE-integration was thereby performed by
means of SVODES.13

The models were optimized by fitting them 1000 times
simultaneously to LASCA-based aggregation, western-blot and
calcium measurements after various stimuli, each time varying
all parameters by latin hypercube sampling. The magnitude of
the measurement error for each observable was estimated
along with the remaining parameters. Therefore, a parameter-
ized error model of the form

s(t,y) = s(y(t,y),y)

describing the measurement noise for each model output was
assumed. The additional parameters accounting for the mag-
nitude of the measurement noise were estimated simulta-
neously with the remaining model parameters.

Corresponding differential equations were implemented and
further analyzed using the MATLAB toolbox PottersWheel.14
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Profile likelihood

The idea of profile likelihood is to explore the parameter space
for each parameter in the direction of the least increase in w2. It
is calculated for each parameter individually by

wPL
2ðpiÞ ¼

min
pjai

w2ðpÞ
� 	

meaning re-optimization of w2(p) with respect to all parameters
pjai, for each value of parameter pi. Hence, the profile likelihood
keeps w2 as small as possible alongside pi. Structural non-identifiable
parameters are characterized by a flat profile likelihood. The
profile likelihood of a practically non-identifiable parameter has
a minimum, but is not excessing a threshold a for increasing
and/or decreasing values of pi. In contrast, the profile likelihood
of an identifiable parameter exceeds a for both increasing and
decreasing values of pi. The points of passover represent likelihood-
based confidence intervals.15

Experimental procedures

Platelets were used as washed platelets (WP) resuspended in
phosphate buffered saline (PBS, 137 mM NaCl, 2.7 mM KCl,
10 mM Na2HPO4, 2 mM KH2PO4, pH = 7.4), depending on the
assay applied, and prepared from whole human blood.

Whole human blood was obtained from healthy volunteers
who had not taken any medication affecting platelet function
within 2 weeks prior to the experiment after informed consent
according to the declaration of Helsinki and our institutional
guidelines and as approved by the local ethics committee. Our
studies with human platelets were approved and reconfirmed
(September 24, 2008) by the local ethics committee of the
University of Würzburg (studies 67/92 and 114/04). The blood
was drawn by venipuncture and collected in 1/5 volume of
HEPES–citrate buffer (120 mM NaCl, 20 mM sodium citrate,
4 mM KCl, 1.5 mM citric acid, 30 mM D-glucose, 8 mM HEPES,
pH = 6.5) and centrifuged at 300 � g for 20 minutes at 20 1C to
obtain platelet rich plasma (PRP). For the preparation of
washed platelets the PRP was diluted 1 : 1 with HEPES–citrate
buffer, apyrase (1 U ml�1) added and centrifuged again at 100 g
for 10 min at 20 1C. The pellet was discarded and the supernatant
was centrifuged at 380 g for 10 minutes. The resulting pellet was
resuspended in HEPES/citrate, left resting for 5 minutes and
centrifuged again at 380 g for 10 minutes. The platelet pellet
was resuspended in PBS buffer to a cell density of 3� 105 platelets
per ml and apyrase (0.1 U ml�1) added. Washed platelets were
used in 200 ml portions. The samples were incubated with the
reagents in the water bath at 37 1C as indicated, stopped and
treated appropriately for the respective analyte. The reagents were
solved in PBS unless otherwise stated.

The experiments described in this manuscript can only be
carried out ex vivo. The experimental conditions used are as close
to the physiological situation as possible, however disregarding
interaction with blood cells, vascular cells and vascular factors,
fluid mechanics and other physiological variables. In fact any
processing of primary cells affects the properties and behavior of
these cells fundamentally. Consequently an authentic physiological

setting is unachievable. Together with other well-respected
researchers in the field (J. Heemskerk, S. Watson, U. Walter)
of thrombosis research we have agreed on standard protocols,
based on the procedures above. The methods enable reprodu-
cible and comparable analysis of platelet function and furnish
meaningful data as closely related to the physiological situation
as possible (see ref. 9 for further details).

Intracellular calcium regulation was determined fluorome-
trically with the fluorescent indicator Fura-2. Briefly, platelet
rich plasma was incubated with 4 mM Fura-2/AM (di-methyl
sulfoxide (DMSO) 1% v/v) for 45 minutes, centrifuged at 350 g
and the resulting platelet pellet resuspended in HEPES buffer
(150 mM NaCl, 5 mM KCl, 1 mM MgCl2, 10 mM D-glucose,
10 mM HEPES, pH 7.4). The calcium transients were observed
in a Perkin-Elmer LS50 luminescence spectrophotometer at an
excitation wavelength of 340 nm and an emission wavelength of
510 nm. Data were recorded as relative changes in the Fura-2
fluorescence signal. An absolute quantification of intracellular
ion concentrations by fluorometric measurement is, though
frequently claimed, virtually impossible. The numerous variables
impacting fluorescence quantum efficiency and disturbances in
the setting seriously distort the measurement. For this reason
we refrain here from calculating dubious absolute calcium
concentrations and rather provide data on the relative change
of free intracellular calcium concentration.

Western-blot and GTP-pulldown assays were performed as
stated in Subramanian et al. (2013).16

Light scattering experiments were carried out as described
in Mindukshev et al. (2012).17

The data were collected from 3–7 individuals and replicated
at least 3 times each. For each individual the mean of the
replicates for each time point was calculated. The means of all
experiments were pooled.

Results and discussion
Logic vs. classic ODEs

We applied three different approaches to model the available
experimental data and compared the respective w2-values after
parameter estimation. In the first and second approach logic
ODEs were employed by utilizing the standardized qualitative
dynamical systems approach (model 1) and HillCube equations
(model 2). Model 3 was implemented by commonly used mass
action kinetics for all reactions. For the first two cases we
applied self-written Matlab scripts that convert a given network
topology into a set of differential equations of the respective
form and produce model definition files that can directly be
loaded into the Matlab toolbox PottersWheel14 for parameter
estimation and further analyses. Both scripts can be found in
the ESI† and are available for download. For large networks the
concatenated form of the equations derived from the logical
connectivity of the different network layers may become
complex and numerically demanding and their biochemical
parameters may become difficult to interpret. However, none of
these potential limitations applied in our case of platelet
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threshold behaviour. The unknown model parameters were
estimated by a combination of aggregation measurements by
light scattering, calcium detection and quantitative western-
blot data. In order to account for the difference between platelet
rich plasma (PRP) and washed platelets as well as the slightly
distinct effects of a certain input concentration in different
methods, we included for each experimental procedure a scaling
factor for the applied ADP concentration which was scaled to be
between 0.1 and 1. The inputs were implemented as step-
functions jumping at t = 0 to the value of the experimental
condition and at t = 20 back to zero, in order to simulate receptor
internalisation and to avoid oscillations. Both SQUAD and
HillCube formalisms include Hill-coefficients which represent
the cooperativity behaviour of the respective interaction. For the
sake of parameter reduction, we included in both cases only one
Hill-coefficient into parameter estimation, which is valid for all
reactions and can be interpreted as the average cooperativity of

the whole system. More information about the mathematical
formalisms and the applied parameters can be found in the
methods section.

Fig. 2 shows the measured data together with the respective
trajectories of all three models.

A comprehensive time-resolved detection of aggregation by
light scattering after stimulation with different concentrations of
ADP was applied to capture the aggregation dynamics (Fig. 2A–C).
The analysis reveals a clear threshold behaviour dependent on the
concentration of ADP. At low concentrations the system exhibits a
transient activation and quickly regresses to the ground state.
High concentrations of ADP lead to threshold transgression and a
sustained aggregation. At medium concentrations the measure-
ments show an initial reversibility. Here, the on/off decision is
dependent on the complementary effect of autocrine thromboxan
signaling, which acts as a delayed positive feedback loop. Model 1
(Fig. 2A) describes the whole dataset in an adequate manner.

Fig. 2 Experimental data and model trajectories. All three models are compared (SQUAD model: three left panels) using the same set of experimental data.
(A–C) LASCA-based aggregation measurement after ADP stimulation (A: SQUAD, B: HillCube, C: mass-action, yellow: 5 mM, light green: 1 mM, green: 0.8 mM,
light blue: 0.6 mM, blue: 0.4 mM, black: 0.2 mM) (D and F) Akt measurement after ADP stimulation (red) and ADP stimulation in the presence of 10 nM ARC
(purple) (D: SQUAD, E: HillCube, F: mass-action) (G—I): calcium measurement after ADP stimulation (G: SQUAD, H: HillCube, I: mass-action).
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Model 2 (Fig. 2B) is able to reproduce the threshold behaviour,
but performs worse in the medium and low concentration
range compared to the SQUAD approach. Model 3 (Fig. 2C)
fails to fit the data.

Fig. 2D–F shows a western-blot detection of phosphorylated
Akt kinase (blot scanned and quantified) after ADP stimulation
either in the presence or absence of 10 mM ARC.

In both logic ODE models the trajectory of Akt kinase shows
a strong followed by a weaker increase. In the SQUAD model,
this transition is interrupted by a slight drop which is not
resolved by the experimental data. This behaviour results from
a decreasing PI3 kinase activity as ADP-bound P2Y12 becomes
internalised. The second increase is due to the activation of Src
kinase and the bistability switch, which takes integrin outside-in
signaling as input and is well visible in the experimental data.
The observed dynamics in the presence of the P2Y12 antagonist
ARC are comparable to those without ARC, but on a lower scale.
Model 1 (Fig. 2D) displays a clear separation of the two trajec-
tories, whereas in model 2 (Fig. 2E) both conditions end up in
the same steady state after 8 minutes, which is not consistent
with the data. Also in this case the mass action model fails to
deliver an appropriate description of the data.

The Fig. 2G–I show a measurement of cytosolic calcium that
displays a transient rise with a peak at the 8-fold basal concen-
tration. All three models are able to fit this data.

Table 1 assigns the three models to their corresponding
w2-values. Parameter estimation was conducted with respect to
all experimental conditions simultaneously. We found that
model 1 displays the smallest model-to-data distance (w2/N = 0.82),
followed by model 2 (w2/N = 1.74) and model 3 (w2/N = 11.63),
after 1000 fits with N = 106 in all three cases. This result
becomes even more convincing when the number of fitted
parameters is taken into account, which is 35 for the SQUAD
model, 41 for the HillCube model and 52 for the mass-action
model. In the latter case we experimented with the model
structure and the number of fitted parameters, but came to
the conclusion, that even in an overparameterized shape, a
mass-action formalism does not seem to capture the measured
dynamics in an appropriate manner. The result suggests logic
ODEs, in particular the standardized qualitative dynamical
systems approach, in combination with parameter estimation
to be a better choice to model platelet bistability than mass
action approaches. One explanation could be, that both SQUAD
and HillCube approaches descent from Boolean modeling,
which is based on discrete alternations between the values
0 and 1. Thus, bistability holds for each individual node. In our
platelet model, the overall system-state is dependent on the
activation of either Src or PTP, that means a local bistability is

directly transferred to a global one. This may represent a
convenient scenario for a Boolean-derived approach. Another
explanation may result from the generalized form of the
differential equations. The exact kinetics, by which a group of
Src kinases interacts with a group of tyrosine phosphatases are
unkown and may be too complex to be described by a simple
mass action or Michaelis–Menten mechanism. Regarding the
better performance of the SQUAD model then the HillCube
approach we directly observe that the interpolation function
works better in the example studied. e-functions are quite
generic and deliver a good fit under many tasks including this
one. However, this of course also depends on the specific
problem modelled. Thus, the inherent threshold behaviour
was analyzed using the SQUAD-based ODE-modeling approach.
Profile likelihood analysis revealed all parameters of this model
to be identifiable using point-wise confidence intervals. How-
ever, in its generality the question for the best modeling
approach can not be answered as it is always dependent on
the precise problem structure. Thus, several approaches should
be compared in order to describe the respective system with
least model-to-data distance.

Dynamical properties of the Src-PTP bistability switch

The interplay between Src-kinase and its deactivating tyrosine
phosphatases represents the key element of platelet bistability.

In order to switch from reversible to irreversible aggregation,
a substantial amount of Src molecules in the platelet cytoplasm
needs to be phosphorylated to outcompete the inhibitory effect
of the phosphatases. This is achieved by prolonged outside-in
signaling from the activated integrin and subsequent auto-
phosphorylation of tyr-416. Activated Src in turn phosphorylates
the phosphatases in an inhibitory manner. The kinetic rates of this
phosphorylation–dephosphorylation cycles were determined by
parameter estimation and subjected to identifiability analysis.
Table 2 shows the fitted parameters of model 1 along with their
point-wise confidence intervals. All parameters can be interpreted as
biochemical turn-over numbers and thus have the dimension s�1. It
shows that the self-activation rate of Src (Src_Src) is with its value of
3.51 significantly higher than that of PTP (PTP_PTP), which is 0.002.
On the other hand, Src deactivates PTP (PTP_Src) with a much
lower strength, than vice versa (Src_PTP) (2.19 compared to
29 479). The model also includes a stability parameter for
each node, which represents the quotient of degradation and
synthesis. This parameter is for PTP by a factor of 17 higher

Table 1 Model-to-data distances of the three implementations with
N = 106 data points

Model Chi2/N Free parameters

1 (SQUAD) 0.82 35
2 (HillCube) 1.74 41
3 (Mass-action) 11.63 55

Table 2 Bistability parameters and their respective confidence intervals of
model 1

Parameter Value Lower border Upper border

Src_Src 3.51 2.11 4.87
Src_PTP 29 479 28 752 36 643
Srcstab 0.47 0.039 4.17
PTP_PTP 0.002 0.00016 0.0099
PTP_Src 2.19 1.02 8.56
PTPstab 5.9 3.13 6.99
Srceff 16.3 Not fitted Not fitted
PTPeff 9.99 Not fitted Not fitted
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than for Src. The factors Srceff and PTPeff stand for the overall
effectiveness of Src and PTP and are calculated using the
following formula:

keff ¼
kaut � kinh

ksta

kaut represents the self-activation rate, kinh the strength of the
inhibition effect on the other node and ksta the stability para-
meter. The effectiveness merges the dynamical properties of Src
and PTP and is for both nodes in the same order of magnitude
(16.35 and 9.99), even though the individual parameters differ
within a very broad range. However, Src displays a slightly
higher effectiveness than PTP, indicating the system’s architec-
ture to guarantee a fast and reliable response in the presence of a
sufficiently high stimulus.

Validation

We validated our model by two additional datasets that had not
been used in any of the steps before. The first dataset comprises
a western-blot measurement of activated Rap1 after stimulation
with ADP. Rap1 represents a downstream effector of calcium
signaling and directly transmits the signal to integrin a2bb3.

The dynamics of Rap1 activation were measured by GTP-
pulldown assay combined with western-blotting. They display a fast
increase followed by successive deactivation (Fig. 3A). The SQUAD
and HillCube models accurately reproduce these data on Rap1
activation (red and black). However, there are differences in the
predicted dynamics. In the HillCube model the trajectory of acti-
vated Rap1 displays a very fast increase followed by a short plateau
where the activation level stays constant and a subsequent steep
drop, leading to complete inactivation after 100 seconds. The
SQUAD model on the other hand shows a less fast increase followed
by a clear peak lying 0.2 arbitrary units higher than the HillCube
plateau. Here, the deactivation progresses slower, a complete loss of
Rap1 engagement can be observed after 250 seconds. Both trajec-
tories fall within the predicted error bars, a final rating can not be
made on the basis of the measured data. Though the mass action
model shows comparable Rap1 dynamics, its trajectory displays
both a weaker increase and decrease, and is thus not able to describe
the data accurately.

The second dataset represents a time-resolved LASCA-based
aggregation detection after ADP stimulation in the presence of
MRS, which is a selective P2Y1 antagonist. In this scenario, the
system becomes partially activated and assumes an in-between
steady-state. This indicates, that for threshold formation a
coordinated signaling through both ADP receptors is necessary
(Fig. 3B). In this scenario, the SQUAD model predicts a slightly
stronger increase compared to the data, followed by a decent
drop, and thus does not reproduce the measurements perfectly.
However, it accurately depicts the threshold disruption embo-
died by the in-between steady-state. Here, both HillCube and
mass action models fail to fit the data. Another possibility for
validation would have been to split the training dataset and use
one steady-state for parameter estimation and the other for
verification. Since the occurrence of bistability as a model
property is not only dependent on the shape of the equations,

but also on the applied parameters, we needed data about both
steady states in order to calibrate the model to a region of the
parameter space that allows for bistability. Furthermore, using
only one steady-state for optimization instead of two would
have severely enlarged the parameters’ confidence intervals.
Thus, we decided to validate the model as shown in Fig. 3.

Model implications and applications

Existing models of platelet function comprise calcium and
phosphoinositide dynamics,13 PAR1 signaling,8 prostaglandin
signaling,6 cAMP/cGMP turnover9 and Boolean logic for subnet-
work activation.5 Regarding platelet aggregation, many studies
appeared (reviewed in 1, 2). The system’s inherent bistability,
however, has never been elucidated by means of data-based
modeling so far. Using our models, we provide a quantitative
analysis of the threshold representing the transition from
reversible to irreversible aggregation, assess the identifiability
of the estimated parameters and validate our results with
additional datasets. Though of course simplified, the model
suggests also future targets for further antithrombotic research:
Src kinase as pivotal engine in signal transmission is difficult to
modify as kinase inhibitors (including Akt inhibition for instance)

Fig. 3 Validation. (A) Rap1 measurement after ADP stimulation (0.6 mM).
(B) LASCA-based aggregation measurement after ADP stimulation in the
presence of MRS (50 mM). Colours distinguish model trajectories of
different model approaches.
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are not so specific and side-effects in other cell types containing Src
or Akt are high. However, we show that a set of protein tyrosine
phosphatases (PTPs) is instrumental in platelets to regulate the
response avalanche and here a pharmacological intervention
should be considered and targeted in a platelet-specific way.
Furthermore, our model helps to better understand dosage effects
of platelet inhibitors already in use such as P2Y12 antagonists
(such as Clopidogrel and Prasugrel) and this again alone or in
combination with other platelet agonists and antagonists.

Conclusion

Ordinary differential equations model dynamical properties of
biological systems, provided detailed information on underlying
reaction kinetics is available. To model the complex bistability
switch in platelets with a limited amount of experimental data
we introduce here logic ODEs derived from Boolean expressions
and exploit datasets on high sensitive LASCA measurements on
aggregation. Logic ODEs abstain from including detailed reac-
tion kinetics, but focus on the information given by the network
topology. We show how corresponding equations can automati-
cally be inferred by suitable scripts, this simplifies and shortens
model-based hypothesis testing. Our Boolean ODE formalism on
platelet activation shows how key platelet components combine
to achieve a bistability switch, and points out involved pathways
and potential targets for medical intervention. Obtained detailed
kinetics of platelet aggregation allows to simulate modulation by
clinical important aggregation antagonists such as Clopidogrel
and Prasugrel. Future models will also include the inhibitory
cAMP/PKA pathway to gain a more comprehensive view of the
network dynamics.
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