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ABSTRACT Several methods are currently in use to estimate the rate of depolarization-induced calcium release in muscle
cells from measured calcium transients. One approach first characterizes calcium removal of the cell. This is done by
determining parameters of a reaction scheme from a fit to the decay of elevated calcium after the depolarizing stimulus. In
a second step, the release rate during depolarization is estimated based on the fitted model. Using simulated calcium
transients with known underlying release rates, we tested the fidelity of this analysis in determining the time course of calcium
release under different conditions. The analysis reproduced in a satisfactory way the characteristics of the input release rate,
even when the assumption that release had ended before the start of the fitting interval was severely violated. Equally good
reconstructions of the release rate time course could be obtained when the model used for the analysis differed in structure
from the one used for simulating the data. We tested the application of a new strategy (multiple shooting) for fitting parameters
in nonlinear differential equation systems. This procedure rendered the analysis less sensitive to ill-chosen initial guesses of
the parameters and to noise. A locally adaptive kernel estimator for calculating numerical derivatives allowed good recon-
structions of the original release rate time course from noisy calcium transients when other methods failed.

INTRODUCTION

In muscle cells, force development is controlled by Ca21

ions, which are rapidly released from the sarcoplasmic
reticulum during sarcolemmal depolarization (Rı´os and
Pizarro, 1991; Schneider, 1994; Melzer et al., 1995). The
calcium concentration change resulting from this release
can be measured by using optical indicators, whereas there
is no direct way to measure the actual release flux. Various
methods have been applied to derive the time course and
magnitude of the Ca21 release rate from the measured Ca21

transient (Baylor et al., 1983; Melzer et al., 1984, 1987;
Schneider et al., 1985; Brum et al., 1988b; Sipido and Wier,
1991; Garcı´a and Schneider, 1993; Gonza´les and Rı´os,
1993; Pape et al., 1993; Delbono and Meissner, 1996;
Shirokova et al., 1996). In these methods, it has to be taken
into account that released Ca21 flows to various myoplas-
mic compartments whose time-dependent Ca21 contents
have to be quantified.

Two principally different approaches for estimating cal-
cium release have been described. Both start from kinetic
models with binding and transport sites for Ca21. This leads
to a system of nonlinear differential equations. Only the
compartment comprised by the indicator is observable.
From the indicator signal the concentration of free calcium
can be estimated. One approach uses tabulated kinetic pa-
rameters of the model and calculates all of the occupancies
by using the measured free calcium transient, assuming that

the literature values apply approximately to the experimen-
tal situation (Baylor et al., 1983; Sipido and Wier, 1991;
Pape et al., 1993). The other approach tries to determine at
least some of the kinetic parameters of the compartment
model by analyzing the measured Ca21 signals themselves
(Melzer et al., 1984, 1987; Brum et al., 1988b; Garcı´a and
Schneider, 1993; Gonza´les and Rı´os, 1993; Delbono and
Meissner, 1996; Shirokova et al., 1996). Thereby it is as-
sumed that Ca21 release, which is induced by depolariza-
tion, is completely and rapidly stopped after repolarization
of the membrane. During the time after repolarization, Ca21

is redistributed among the model compartments. The relax-
ation time course of free calcium can be predicted with the
model equations and compared with the measured time
course. This comparison allows us to optimize the param-
eters in such a way that the calculated relaxation deviates
minimally from the measured one. The best fit parameters
together with measured Ca21 transients are then used to
calculate the total release as the sum of all Ca21 occupan-
cies at each point in time. The rate of Ca21 release is
computed as the time derivative of this sum. Different
varieties of this removal fit procedure have been used for
analyzing Ca21 measurements from skeletal muscle fibers
(Melzer et al., 1986, 1987; Brum et al., 1988a; Gonza´les and
Rı́os, 1993).

For routine application, this approach requires numerical
algorithms that safely lead to a best fit, even when the initial
parameter guesses are far from the best ones, and which can
handle a certain degree of noise in the experimental data,
particularly because derivatives have to be estimated by
some smoothing procedure. For this purpose we tested
several numerical methods that had been developed for
other fields in recent years. For the tests, a simple Ca21

compartment model and constructed Ca21 release rate
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waveforms were used to simulate free calcium transients
similar to those that can be measured in muscle fibers
during voltage clamp depolarization (Melzer et al., 1987;
Brum et al., 1988b; Feldmeyer et al., 1990). The numerical
methods are judged by their ability to reliably determine the
input model parameters and release rate time course. We
show that the more refined strategies for fitting and smooth-
ing improve the procedure for Ca21 release calculation, and
we describe how noise and a violation of the model assump-
tions can affect the result. Finally, we show that simulation
studies can help to decide if a simplified model is still able
to yield reliable release rate estimates.

METHODS

Simulation

The model system of ordinary differential equations (ODEs)
chosen for this investigation is nonstiff and can be solved
numerically by virtually any ODE integrator. For the com-
putations presented here, the routines ODEINT and
BSSTEP (Press et al., 1992) were used. Normally distrib-
uted random numbers, generated by the routine GASDEV
(Press et al., 1992), were added to the simulated transients
to produce noisy synthetic data sets.

Parameter estimation

The parameters of the Ca21 dynamics model were estimated
from the simulated data by using the method of least
squares. The functionf(t, p) is the solution at timet of the
observable part of the model ODE system with the param-
eter vectorp. Given measurementsyi with error variances
si

2 at timesti, 1 # i # N, the objective function

x2~p! 5 O
i51

N Syi 2 f ~ti , p!

si
D2

(1)

was minimized with respect top, giving a maximum like-
lihood estimate forp.

Fitting parameters in a system of nonlinear ODEs is
cumbersome. As the model functionf (t, p) depends non-
linearly on the parameters, the fitting routine has to proceed
iteratively, starting from some given initial guess for the
parameters. In each iteration, an update step for the esti-
mated parameters has to be computed that will decrease the
discrepancy between the model and the given data. The
update step is usually computed from the gradient (steepest
descent method) or the Hesse matrix (Newton, resp. Gauss-
Newton method) of the objective function, or from a com-
bination of both (Levenberg-Marquardt algorithm). The
steepest descent method uses a linear approximation of the
objective function, whereas the other methods use a qua-
dratic approximation.

In contrast to nonlinear parameter estimation in regres-
sion, in ODE systems, no analytical derivatives of the

objective function can be supplied. The derivatives can be
computed only numerically through finite differences,

f ~ti , p!

pj
<

f ~ti , p1, . . . ,pj 1 h, . . . ,pn! 2 f ~ti , p!

h
. (2)

The high computational effort of evaluatingf (t, p) usually
does not allow for a higher order approximation. Therefore,
the choice ofh can be rather influential. Generally,h should
be taken as some fractional part, 0.001 say, ofpj, with
appropriate modifications ifpj ' 0. The use of internal
differentiation can reduce the computational effort substan-
tially (Hairer et al., 1987).

It is well known that ill-chosen initial estimates of the
parameters can preclude most routines from yielding any
solution at all because the trial trajectory diverges. In an
interactive laboratory environment, this poses no principal
problems, as the routine can be started again with new initial
parameters until convergence is reached. For routine data
analysis, however, robust algorithms should be employed.

Becausex2(p) shows a nonlinear dependence on the
parametersp, x2(p) will usually have several local minima
apart from the true global one that corresponds to the true
parameters. Most parameter estimation routines signal con-
vergence of their minimizing iteration if they cannot reduce
x2(p) in a small neighborhood of the actual parameter
values any further. Thus they might return estimates ofp
that are far from the desired true values. If the routine used
does not include a strategy for circumventing this problem,
every fit has to be inspected by eye to find out whether the
desired global minimum has been reached.

Two methods for minimizingx2(p) are compared in this
paper.

Initial value approach

If the problem of parameter identification in ODE systems
is treated in the same way as other problems of nonlinear
regression, one is led to the so-called initial value approach:
starting from some initial values for the trial trajectory, the
model equations are solved over the whole fitting interval,
andx2(p) is calculated. Derivatives are computed by finite
differences. Then the parameters are adjusted in such a way
as to bring the solution closer to the data.

Quite often, the measurement at the beginning of the
fitting interval is taken as a fixed initial value for the
solution of the model equations, whereas estimates for the
unobserved components are taken from a solution of the
ODE system with given parameters along the measurement
curve.

For computing the update step, several strategies have
been proposed, e.g., the Gauss-Newton method (Schitt-
kowski, 1995) or the Levenberg-Marquardt algorithm (Stor-
telder, 1996).
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Multiple shooting

The technique of multiple shooting has been used for solv-
ing boundary value problems in ODE systems (Stoer and
Bulirsch, 1993). In the context of parameter estimation, the
method was introduced by van Domselaar and Hemker
(1975) and, in a much more general context, by Bock (1981,
1983). The observation motivating the use of multiple
shooting for parameter estimation is that with the initial
value approach, one is effectively neglecting information on
the dynamics of the system present in the measurements.
Even though the time course of at least one component of
the ODE system is known relatively accurately, the initial
value approach does not take advantage of any but the very
first observation in the fitting interval. If the initial param-
eters are far from the correct ones, the trial trajectory can
deviate arbitrarily far from the measurements.

With Bock’s elegant approach, one partitions the fitting
interval into many subintervals. The ODE system is solved
separately on each of these intervals, using as starting
guesses for the initial values the measurements at the be-
ginning of these intervals. None of these initial values are
fixed to the observations during the iteration. The initial
values at these points have thus become new parameters of
the model.

This approach leads to an initially discontinuous trajec-
tory, which is, however, close to the measurements. The
final trajectory must of course be continuous, i.e., the com-
puted solution at the end of one subinterval must finally
equal the initial value at the beginning of the next subinter-
val. To enforce this condition, continuity constraints are
imposed on the solution. In each iteration, the method has to
choose an update step that will not only lead to a minimum
of the objective functionx2(p), but will also satisfy the
continuity constraints in a linearized form. In this way, the
newly introduced additional parameters, viz., the initial
values at the mesh points, are eliminated from the linearized
problem that has to be solved to compute the update step.

Because only the linearized continuity constraints are
imposed on the update step, the iteration is allowed to
proceed to the final continuous solution through “forbidden
ground”: the iterates will generally be discontinuous trajec-
tories. This freedom allows the method to stay close to the
observed data, prevents divergence of the numerical solu-
tion, and reduces the problem of local minima.

As constraints on the parameters or trajectories (e.g.,
nonnegativity constraints on all rate constants and concen-
trations in the calcium model) are frequently helpful for
further stabilization of the fit, general constraints can be
allowed for by taking their linearizations into account when
computing the update step. To this end, a method for linear
systems with constraints has to be used (Stoer, 1971).

For the reduction ofx2(p), a Gauss-Newton method is
employed that effectively uses a second-order approxima-
tion to x2(p), even though only first derivatives are in-
volved. It can be further stabilized by an appropriate damp-
ing strategy that reduces the step size if the problem is

highly nonlinear. The rank-deficient case, e.g., when param-
eters or combinations of parameters cannot be identified
reliably, can be treated elegantly by an appropriately chosen
rank decision criterion.

Details of the mathematical and implementational aspects
of the method are given in Bock (1981, 1983).

Data smoothing and the computation of
derivatives of noisy data

To extract the release flux from given Ca21 transients and
model parameters, the intracellular Ca21 dynamics has to be
reconstructed from the data. This procedure involves inte-
grating the ODE system along the noisy Ca21 measure-
ments and computing the derivative of the measurement
curve.

In the present context, the data are interpreted as

yi 5 f ~ti! 1 ei , (3)

wheref (t) is the model function andei is the measurement
error at timeti, assumed to be normally distributed. When
the parameters are known or have been estimated from the
data, the smooth curvef (t) underlying the measurementsyi

can be identified.
Given datayi, 1 # i # N, sampled at a resolution ofDt,

which are noisy observations of the underlying smooth
curve f (t), the derivativef 9(ti) can be estimated by one-
sided finite differences as

f̂ 9~ti! 5
yi1h 2 yi

hDt
(4)

or by symmetrical differences as

f̂ 9~ti! 5
yi1h 2 yi2h

2hDt
, (5)

which is equivalent to exploiting the local Taylor series of
f (t) to first or second order, respectively. Generalizing this
idea, one can try to fit polynomials of a fixed degreek to
intervals of the observed data. If the intervals are such that
the Taylor series tokth order is a good approximation for
f (t), one can take the 0th and first coefficient of the fitted
polynomial as an estimate forf (t) and its derivative, respec-
tively. The choice of the correct interval width is essential
for the reliability of this method.

With evenly spaced data, such as usually obtained by
sampling, this technique can be realized efficiently as a
weighted moving average. This method is known as the
Savitzky-Golay smoothing filter (Savitzky and Golay,
1964; Press et al., 1992) or as polynomial least-squares
convolution (PLSC) (Ratzlaff, 1987). In the context of
estimating Ca21 release from Ca21 transients, it has been
proposed by Klein et al. (1988).

The Savitzky-Golay smoothing filter is, in fact, a special
case of a more general class of methods known as kernel
estimators. The basic idea of kernel estimation is to con-
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volve the measurement with a so-called kernel functionK(u)
to obtain estimatesf̂(ti) for the underlying functionf (ti):

f̂ ~ti! 5 O
j52b

b

y~ti1j!K~j!. (6)

Kernel estimators can also be used to estimate deriva-
tives. Kernel functions for derivatives have to satisfy certain
moment conditions. Gasser et al. (1985) introduced a family
of so-called optimal kernels that is known to have good
analytical and practical properties. These kernels were used
for the computations in the present paper.

As already noted for the Savitzky-Golay smoothing filter,
the choice of the interval that is used to obtain an estimate
for f (t) is crucial for the performance of the method. In the
context of kernel estimation, the width of this interval, equal
to 2b 1 1 (cf. Eq. 6), is called the bandwidth.

If b is chosen to be too small, random variations in the
data due to observational noise will be “interpreted” as
belonging to the signal, thus yielding unsatisfactory results
that tend to fluctuate around the true curve. This phenom-
enon is known as undersmoothing. If, on the other hand,b
is chosen to be too large, the curve will be oversmoothed,
resulting in the depression of peaks in the data and therefore
in a bias of the estimate.

As peaks and even their amplitudes are extremely impor-
tant in the physiological interpretation of the release rate,
oversmoothing can hardly be tolerated. Undersmoothing, on
the other hand, can amplify spurious effects in the data to
such an extent that their amplitude is of the same size as that
of the relevant physiological features.

There are several techniques for choosing the bandwidth
b adaptively from the given data (Mu¨ller and Stadtmu¨ller,
1987; Seather, 1992). The resulting bandwidth will still lead
inevitably to oversmoothing in some parts of the data,
whereas other parts will be undersmoothed. One can there-
fore think of locally adaptingb to the structure of the data,
decreasing it at peaks and increasing it in flat sections.

Quantitatively, the locally optimal bandwidth of a kernel
estimator for thenth derivative off (t) is inversely propor-
tional to the square of the (n 1 2)th derivative off (t), e.g.,
of the third derivative off (t) if one wants to estimatef9(t).
To take these variations into account, one has to estimate the
third derivative of the data. This can be done with an
appropriate kernel estimator for which, because of the large
variance of the estimate, a rather large bandwidth should be
chosen. Mathematical as well as implementational details of
this method are given by Mu¨ller (1988), whose paper also
contains further references to the literature. For the problem
discussed here, a fixed bandwidth of 50 ms was chosen to
estimate the third derivative.

Boundary effects were treated by generating pseudodata
outside the measurement interval as described by Hall and
Wehrly (1991), as the behavior of the measured curve long
before and long after the depolarization is well known.

Statistics

Confidence intervals for the parameters were obtained from
the Hesse matrix,

Hij 5
2x2~p!

pipj
(7)

of the model equations at the best-fit parameters. It has to be
assumed that the model is specified correctly and that the
quadratic approximation ofx2(p) holds in a large enough
region around the solution point. Then the matrixC 5 (1/2
H)21 is the covariance matrix of the standard errors of the
parameters, and the errors of the parameters are multivari-
ately normally distributed with variancescii (Honerkamp,
1994). Independent 95% confidence intervals forpi are
given by p̂i 6 1.96 z (cii )

1/2.
In some of the simulations presented below we use noise-

less data. In these cases, instead of Eq. 1, we minimize the
sum over the squared differences between the data and the
model predictions. Consequently, no confidence intervals
for the parameters can be given.

Hardware and software

The code written for this paper is part of an interdisciplinary
project. Because of the different computer platforms in-
volved, portability was a crucial issue. The programs were
written in C/C11 and run on IBM RS/6000 workstations,
PCs with MS-DOS, and PCs with the LINUX operating
system.

Model simulations

For the simulation of artificial Ca21 records, we constructed
rate-of-release waveforms, which were used as input flux
functions in a simplified Ca21 distribution model.

The calcium release rate in skeletal muscle has been
shown to reach a maximum value within a few milliseconds
after the onset of a strong depolarization (Baylor et al.,
1983; Melzer et al., 1984, 1987; Simon and Schneider,
1988). It then falls to a considerably lower value, probably
resulting from a Ca21-dependent inactivation (Schneider
and Simon, 1988; Simon et al., 1991; Jong et al., 1993,
1995; Chandler et al., 1995), and finally declines to zero
with a very slow time course, because of the combined
action of SR depletion (Schneider et al., 1987) and voltage
sensor inactivation (Brum et al., 1988b). Even though pub-
lished release rates vary considerably, the fundamental char-
acteristics, i.e., an early peak followed by a more or less
steady level, seem to be conserved in different preparations
(Melzer et al., 1987; Garcı´a and Schneider, 1993; Delbono
et al., 1995; Delbono and Meissner, 1996; Shirokova et al.,
1996). We constructed release rate records that exhibited a
fixed ratio of peak amplitude to a steady level of 2:1 by
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using Eq. 8:

r~t! 5 H 0 for t # 0,
s2 ae2t/t1 1 ~a 2 s!e2t/t2 for 0 , t # T,
2ae2t/t1 1 ~a 2 s!e2t/t2 1 se2(t2T)/tr for t . T.

(8)

Heret1 andt2 are the time constants for the rise and decline
of the initial peak, respectively. The constanta defines an
overall scaling of the curve, whereass defines the steady
level. The values used for our calculations are given in the
legend of Fig. 1.

By varying the depolarization timeT, release records of
different duration were constructed (see Fig. 1A). The
decline of the release after repolarization is determined by
the time constanttr, which was set to a low value of 3 ms
in all simulations, except the one described in connection
with Figs. 9 and 10.

Fig. 1 B shows the calcium distribution model that was
used for the simulations. It is virtually identical with the one
used by Melzer et al. (1986, 1987) to analyze Ca21 removal

and release in voltage-clamped frog muscle fibers, apart
from the fact that the Ca21 indicator is not included as a
separate compartment in the present model. It was chosen to
illustrate the use of the analysis algorithms because it has a
small number of parameters and still exhibits the main
characteristics of calcium distribution in muscle cells, i.e.,
fast and slow binding and slow uptake.

The model contains an instantaneously equilibrating non-
saturating compartment CaF, the occupancy of which is a
multiple (factorF) of the free calcium concentration (Eq. 9),
a saturable slow compartment CaS, described by rate con-
stantskon and koff and total concentration of binding sites
Stotal (Eq. 10), and a slow, nonsaturable uptake Caup with
associated fixed rate constantkns (Eq. 11):

CȧF 5 F z Ċafree (9)

CȧS5 kon z Cafree z ~Stotal 2 CaS! 2 koff z CaS (10)

Ċaup 5 kns z Cafree. (11)

The time derivatives of the concentrations obey a conser-
vation law:

Ċarel~t! 5 Ċafree~t! 1 CȧF~t! 1 CȧS~t! 1 Ċaup~t!, (12)

where Ċarel(t) is the rate of calcium release.
The parameters were chosen to be close to those deter-

mined by Melzer et al. (1986) to fit calcium transients
measured in frog muscle fibers (see legend of Fig. 1). A
peak amplitude of the input calcium release rate of 2mM/ms
was chosen to generate transients with characteristics sim-
ilar to those measured in muscle cells (Fig. 1C). A series of
five simulations obtained with release durationsT of 20, 50,
100, 150, and 200 ms was used for the various analyses of
this investigation. Fig. 1 shows the release rates (A) and the
occupancies of the calcium compartments Cafree (C), Caup

(D), and CaS, the latter one at two different time scales
(E, F).

For the chosen range of release rates, the slow saturable
compartment reached saturation levels between 21% and
91%. This leads to a progressive slowing of the relaxation
phases in the five free calcium records with increasing
release duration. The saturation of this slow compartment
reduces its participation in the removal of Ca21 from com-
partments Cafree and CaF. It is necessary to include in the
analysis records with low and with large saturation of CaS,
if one wants to precisely identify the parameterskon, koff,
andStotal.

Determining the release rate

The first step in determining release from given Ca21 tran-
sients is a characterization of Ca21 removal. For this pur-
pose, a Ca21 distribution model is used to fit the relaxation
phases of measured Ca21 transients. The fit returns a set of
kinetic model parameters to describe removal. The only a
priori assumption on release is that it is turned off after

FIGURE 1 Construction of synthetic calcium transients. (A) Ca21 re-
lease rates calculated with Eq. 8. Parameters:a 5 4.6, s 5 1, t1 5 2 ms,
t2 5 5 ms. Amplitude 2mM/ms. Off time constant,tr 5 3 ms.T had values
of 20, 50, 100, 150, and 200 ms to simulate different durations of depo-
larization. (B) Ca21 distribution model used for the calculations in this
paper. (C) Synthetic free calcium transients simulated with the model (B),
Eqs. 9–12, and synthetic release rates (A). Model parameters were as
follows: Slow sites:kon 5 10 mM21s21; koff 5 0.3 s21; Stotal 5 100 mM.
Uptake:kns 5 400 s21. Expansion due to intrinsic fast sites,F 5 30. (D)
Reuptake of Ca21 into the SR. (E) Occupancy of slow sites. (F) Occupancy
of slow sites on a larger time scale.
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repolarization. Therefore, it is assumed that the relaxation
phases of the free calcium transients reflect redistribution of
calcium in and removal from the myoplasmic space involv-
ing fluxes between compartments Cafree, CaF, CaS, and
Caup. In general, the model used will at best be a good
approximation to the real situation in the cell. In the present
case, however, the model structure used for analyzing the
simulated calcium transients is identical with the model
used for simulation. Therefore, we expect that the values of
the four free parameterskon, koff, Stotal, and kns can be
determined precisely from the information contained in the
different calcium relaxation phases (F was set to the true
value of 30).

Fig. 2 shows that this is indeed the case. Stages 1 and 2
of the figure show the start and end of the iterative process
in which a 150-ms interval of each relaxation phase of the
five simulated calcium records was fitted with the numerical
solution of Eqs. 9–11 with respect to Cafree. Starting values
for the fit were as follows:kon 5 5 mM21s21, koff 5 0.15
s21, Stotal 5 50 mM, kns 5 200 s21.

The fitting procedure works in two steps. First, the given
calcium transients and initial suggestions for the parameters
are used to calculate the occupancies of the nonobservable
Ca21 compartments (CaF, CaS, and Caup). At 15 ms after
the start of the release turn-off, the mode of calculation is

changed. Now Eqs. 9–11 are used to calculate free calcium,
using the values at the end of the first calculation as initial
values for the integration. Because the parameter values are
different from the true ones, the calculated curves (bold
lines) deviate from the simulated calcium records (Fig. 2,
stage 1). A least-squares minimization algorithm that
searches for a minimum of the objective functionx2(p)
modifies the parameters until the Euclidean norm of the
update step is less than some fractional amount, e.g., 1023,
of the norm of the parameter vector. We do not use relative
change ofx2(p) as a criterion because numerical experience
shows that this may lead to premature signaling of conver-
gence in some cases (Gill et al., 1981).

In the example shown in Fig. 2, it took three iterations for
the fitting algorithm to converge (stage 2). As noted in the
figure legend, the parameters found by the fit approximated
the true parameters with deviations of less than 1%. Con-
vergence to the absolute minimum of the objective function
depends on the choice of the parameter starting values. If
these starting values are too far from the true values, the
algorithms might proceed to a local minimum comprising
considerably worse fits or might even diverge. A substantial
improvement can be obtained by using the so-called multi-
ple shooting approach introduced by Bock (1981).

Based on the best-fit parameters, the occupancies of all
compartments are calculated. Their sum yields the released
calcium (Fig. 2, stage 3). Finally, the rate of release is given
by the derivative of the released calcium (Fig. 2, stage 4).

RESULTS

In this section we first compare the initial value and the
multiple shooting approach for parameter estimation in dif-
ferential equations. Then we investigate the different
smoothing algorithms to estimate derivatives of noisy data.
Finally, we examine how violations of the model assump-
tions influence the estimated rate of release.

Comparison of two fit algorithms

We first compare the two algorithms with respect to their
convergence behavior if the starting guesses for the param-
eters are varied.

Application of the multiple shooting procedure is exem-
plified in Fig. 3. For this figure, the starting values were
chosen to be substantially off the true parameter values:
kon 5 1 mM21s21, koff 5 1 s21, Stotal 5 1 mM, kns 5 1 s21.

Given these starting guesses for the parameters, the initial
value approach (left) was unable to return estimates for the
parameters, as the trajectory of one of the unobserved com-
partments in the model diverged during the iteration. The
multiple shooting algorithm (right), however, succeeded
after 11 iterations (Fig. 3F) and estimated the parameter
values with the same precision as in the case of Fig. 2.

As expected, this algorithm proved its superiority when
the deviation of the starting values from the true parameter

FIGURE 2 Removal fit and release calculation. Initial parameters were
kon 5 5 mM21s21, koff 5 0.15 s21, Stotal 5 50 mM, kns 5 200 s21. All five
transients were fitted simultaneously. (1) Thin lines: Synthetic transients.
Bold lines: Initial trajectories produced by the fitting routine. (2) Thin
lines: Synthetic transients. Bold lines: Trajectories of the fitting routine
upon convergence. Best-fit parameters:kon 5 9.95mM21s21, koff 5 0.297
s21, Stotal 5 100.6 mM, kns 5 399.7 s21. True parameters used for
simulation:kon 5 10 mM21s21, koff 5 0.3 s21, Stotal 5 100mM, kns 5 400
s21. (3) Occupancy of the model compartments, computed from the tran-
sients of (1) using best-fit parameters (shown for the longest depolarization
only). (A) Cafree 1 CaF, (B) CaS, (C) Caup, (D) Carel, equal to the sum of
(A), (B), and (C). (4) Release rates computed as the numerical derivative of
Carel (3D).
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values was large. Table 1 summarizes the results of a
number of runs with the two algorithms in which different
sets of starting values were tried. Furthermore, we com-
pared the performance of the algorithms with respect to
positivity constraints on the parameters and investigated the
effect of fixing the first point of the trial trajectory to the
observation. The entries denote the numbers of iterations
until convergence. In several cases, the procedure stopped
because the trial trajectories diverged (D). In one instance,
no convergence was obtained within 100 iterations (N). A
local minimum in parameter space was reached twice (L).
When no constraints were imposed on the parameters, both
routines failed to converge in a large number of cases.
Furthermore, fixing the first fitting point (FIX) to the ob-
servation proved to be destabilizing. Thus positivity con-
straints and a freely varying first point (FREE) should be
included in any strategy. As can be seen from the fifth
column of Table 1, the multiple shooting approach was able
to handle much larger deviations of the starting values from
the true parameters than the initial value approach. In the
one case in which the multiple shooting algorithm failed, the
introduction of small positive (instead of zero) lower
bounds on the parameters led to convergence, whereas the
initial value approach still diverged.

The multiple shooting algorithm proved to be especially
helpful when noisy records were analyzed. Here the fact that
the initial values of the trajectory are also optimized was of

considerable advantage. The five artificial Ca21 records of
Fig. 1 were subjected to noise by adding normally distrib-
uted random numbers with standard deviationss ranging
from 0.005 to 0.2mM, and the largest amplitude reached in
the calcium transients was 1.5mM. Fig. 4 shows examples

FIGURE 3 Comparison of initial value approach and multiple shooting
approach. Fit of the synthetic transients of Fig. 1, using the ill-chosen initial
parameterskon 5 1 mM21s21, koff 5 1 s21, Stotal 5 1 mM, kns 5 1 s21. All
five transients were fitted simultaneously. Thin lines: Synthetic transients.
Bold lines: Trajectory produced by the fitting routine.Left: Initial value
approach. The figure shows iterations 1 (A), 2 (C), and 3 (E). After the third
iteration, the program stopped because of the divergence of one of the
trajectories of the unobserved compartments.Right: Multiple shooting
approach with five subintervals. The figure shows iterations 1 (B), 3 (D),
and 11 (F). The program signaled convergence after the eleventh iteration.
Note that the trajectory is discontinuous during iterations 1 and 3.

TABLE 1 Comparison of initial value and multiple shooting
approaches for different starting guesses of the parameters

Starting parameters

No constraints
Positivity

constr.

MethodFIX FREE FIX FREE

2 2 2 2 IV
10, 0.3, 100, 400 5 5 5 5 MS3

5 5 5 5 MS5
3 3 7 7 IV

20, 0.6, 200, 800 6 6 9 8 MS3
6 6 8 8 MS5
3 3 8 13 IV

5, 0.15, 50, 200 6 6 5 6 MS3
6 6 5 5 MS5
D D D D IV

0.1, 0.1, 100, 100 D D 8 13 MS3
D D D D MS5
D D 12 D IV

1, 1, 1000, 1000 D D 8 9 MS3
D D 11 11 MS5
D D D D IV

1, 1, 100, 100 9 6 8 6 MS3
9 D 7 7 MS5
D D N L IV

1, 1, 10, 10 D D 10 7 MS3
D D 9 9 MS5
D D D L IV

1, 1, 1, 1 D D D 12 MS3
D D D 11 MS5

True values:kon 5 10mM21s21, koff 5 0.3 s21, Stotal 5 100mM, kns5 400
s21. The parameterF was fixed at 30. MS3 and MS5 denote multiple
shooting with three and five subintervals, respectively. The table gives the
number of iterations needed for convergence. L: Convergence to a local
minimum in parameter space; D: divergent behavior; N: no convergence
within 100 iterations. Results are shown for either no constraints or
positivity constraints on the parameters. Furthermore, the first fitting point
was either fixed (FIX) or treated as an additional free parameter (FREE).
IV, Initial value; MS, multiple shooting.

FIGURE 4 Synthetic Ca21 transients with different noise levels. Differ-
ently scaled identical realizations of normally distributed random numbers
were added to the smooth transients shown in Fig. 1C. (A) s 5 0.01mM.
(B) s 5 0.05 mM. (C) s 5 0.1 mM. (D) s 5 0.2 mM.

1700 Biophysical Journal Volume 74 April 1998



with four different noise levels. Fits were carried out with
each set of records. An example is shown in Fig. 5. It
demonstrates the result of the removal fit with three selected
records from the total number of five calcium transients
(s 5 0.2 mM). The true records (dashed lines) and fitted
trajectories (bold lines) are superimposed on the noisy
records.

Fig. 5 A shows the effect of fixing the first point of the
fitted trajectory to the observation at the beginning of the
fitting interval. As this value deviates far from the under-
lying true curve, the final trajectory could not reproduce the
data adequately. In the example shown, the release rates
computed with the parameters obtained from this fit were
unsatisfactory. If the initial value was allowed to vary freely
(Fig. 5 B), the fit reproduced the data adequately, and the
true parameters could be identified within the predicted
error margins.

Table 2 summarizes the result of fits to the same original
records but subjected to different levels of noise, and com-
pares the results for the two algorithms considered. In each
case, three different variants were investigated (for details,
see table legend). The multiple shooting algorithm was
superior to the conventional initial value approach, in that it
produced convergence more reliably at larger noise levels.

Smoothing algorithms and numerical derivatives

The second stage in the rate of release recalculation in-
volves the following step. The model equations, now sup-

plied with the best-fit values of the free parameters, are used
to calculate the Ca21 occupancies of CaF, Caup, and CaS by
using as the input function a given calcium transient (i.e.,
the observed function representing Cafree). All four com-
partment concentrations are summed (Fig. 2, stage 3). As-
suming that no Ca21 was present initially, this yields the
estimated time course of the total calcium released. To
derive the rate of release, a function reflecting the gating of
the release channels, the summed total calcium has to be
differentiated numerically (Fig. 2, stage 4). This can easily
be done by using a difference approximation (Eq. 5, Meth-
ods) if the records are smooth. However, as soon as noise is
involved, the numerical derivative poses severe problems.
To a certain degree this can be overcome by means of signal
averaging. Yet, because not all preparations allow for time-
consuming signal averaging, one has to look for optimal
procedures to carry out the analysis with noisy records. In
the following, we compare the quality of three different
ways of estimating numerical derivatives and describe the
errors in the calculated rate of release introduced by each
one. The first procedure is the conventional difference ap-
proximation (Eq. 5). The second method (kernel estimation
with globally chosen bandwidth) smoothes the noisy record
by a weighted moving average, which is equivalent to fitting
polynomials locally. This has the advantage that the deriv-
ative can be calculated analytically from the fitted parame-
ters. The choice of the interval length over which each local

FIGURE 5 Removal fit of noisy synthetic calcium transients. All five
records of Fig. 4D (s 5 0.2 mM) were fitted simultaneously; only three
records are shown. Thin lines, Simulated noisy transient. Dashed lines,
Underlying noise-free transient. Bold lines, Best-fit trajectory. (A) The
initial value of the ODE system was fixed to the measurement at the
beginning of the fitting interval. Best-fit parameters (6 standard errors):
kon 5 5 6 6 mM21s21, koff 5 0 6 0.004 s21, Stotal 5 2666 447mM, kns5
0 6 761 s21. (B) The initial value of the ODE system was allowed to vary
freely. Best-fit parameters:kon 5 136 4 mM21s21, koff 5 0.046 0.18 s21,
Stotal 5 144 6 32 mM, kns 5 350 6 77 s21.

TABLE 2 Convergence behavior of initial value and multiple
shooting approaches at six different noise levels s

s (mM) IVa IVb IVc MS3 MS5 MS9

A: Parameter starting values: 5, 0.15, 50, 200
0.005 8 D 9 5 5 6
0.01 8 8 8 5 5 7
0.02 8 10 9 5 5 9
0.05 D 9 L 6 6 7
0.1 D 10 8 8 7 10
0.2 D D 12 41 11 15

B: Parameter starting values: 20, 0.6, 200, 800
0.005 7 8 7 10 9 7
0.01 8 8 7 10 9 7
0.02 9 9 7 10 9 8
0.05 D D 8 22 8 8
0.1 D D N 9 7 7
0.2 D D L 8 7 8

Two different sets of parameter starting values were chosen for the itera-
tion (A, B). True model parameters:kon 5 10 mM21s21, koff 5 0.3 s21,
Stotal 5 100mM, kns 5 400 s21, F fixed at 30. Starting values for the four
free parameters are given in the same sequence with the same units.
IVa, No constraints on the parameters, first point fixed to observed value;
IVb: as IVa, but first point as additional free parameter; IVc: as IVb, but
with positivity constraints on all parameters.
MS3, MS5, and MS9 denote multiple shooting with positivity constraints
on all parameters and with three, five, and nine subintervals, respectively.
The table gives the number of iterations needed for convergence. L:
Convergence to a local minimum in parameter space; D: divergent behav-
ior; N: no convergence within 100 iterations.
IV, Initial value; MS, multiple shooting.
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fit is carried out results from an analysis of the noise
variances2.

A more refined method (local adaptive algorithm; see
Müller, 1988) adjusts the interval length by estimating the
local curvature of the signal by means of a crude estimate of
the third derivative of the record. This reduces oversmooth-
ing at locations where the signal changes steeply and uses
larger smoothing intervals in regions where the curvature is
small.

The details of the procedure are demonstrated in Fig. 6.
Here, the numerical derivative of a simulated free calcium
transient with Gaussian noise (s 5 0.1mM, comp. Fig. 4C)
is calculated. The original record (with and without noise) is
shown in Fig. 6A. Fig. 6 B shows the estimated third
derivative used in the kernel estimator, calculated with a
fixed bandwidth of 50 ms (see Methods), and Fig. 6C
shows the resulting kernel bandwidth for each point in time
chosen by the algorithm. The continuous line in Fig. 6D
shows the first time derivative of the noisy calcium transient
determined with the locally varying kernel bandwidth of
Fig. 6 C. For comparison, the dashed line shows the true
derivative of the noise-free transient. The positive peak at
the beginning of the time course is underestimated by 23%.
This difference results from the trade-off between bias and
variance of the estimator. Choosing a smaller bandwidth in
this region would decrease the bias but increase the vari-
ance. The chosen bandwidth minimizes the expected mean-
square error, which combines bias and variance.

Fig. 7 compares a number of methods for calculating the
numerical derivative in the determination of the rate of
calcium release. Three different noise levels in the simu-
lated calcium records were applied (see legend). To exclude
effects due to different realizations of the noise, we used
identical realizations scaled to different amplitudes (Fig. 7

A). In each case, the true values of the model parameter
were used for the calculation of the compartment occupan-
cies to exclude variability due to different quality of the
removal model fit. Fig. 7B shows the application of the
locally adaptive approach outlined in Fig. 6. It produces a
rather smooth record and yet gives a relatively good recon-
struction of the rapid components of the original rate of
release curve (dashed line), even for the highest level of
noise. From left to right, the calculated peak amplitudes
were 98%, 83%, and 86% of the original one. In contrast, a
kernel estimator with optimal global bandwidth (Fig. 7C)
considerably underestimated the initial peak rate for the
larger levels of noise (99%, 67%, 66%). Lowering the
global bandwidth in an attempt to get better peak restoration
also considerably increased the noise (Fig. 7D). This was

FIGURE 6 Computation of the numerical derivative of a noisy free Ca21

transient by locally adaptive kernel estimation. (A) Synthetic noisy Ca21

transient (s 5 0.1 mM, cf. Fig. 4 C). (B) Estimate of third derivative (in
mM/ms3). (C) Locally chosen kernel bandwidth (solid line). The globally
optimal bandwidth (dashed line) is 36 ms. (D) First derivative of the
transient shown inA. Solid line: Derivative computed by locally adaptive
kernel estimator (inmM/ms). Dashed line: Analytical derivative of the
noise-free transient.

FIGURE 7 Comparison of numerical derivative procedures for the cal-
culation of the rate of calcium release from calcium transients subjected to
different levels of noise. The true values of the model parameters were used
in each case; therefore, the variability results exclusively from the different
ways of calculating the derivatives. (A) Noisy synthetic transients. From
left to right: s 5 0.005, 0.05, and 0.1mM. (B–G) Original (dashed line)
and recalculated (continuous line) rate of release using the following
methods of carrying out numerical derivatives of summed total calcium
concentration (see Fig. 2): (B) Local adaptive kernel estimator. (C) Kernel
estimator with optimal global bandwidth (left, 8 ms;middle, 27 ms;right,
36 ms). (D) Kernel estimator with fixed bandwidth of 10 ms. (E) Kernel
estimator with fixed bandwidth of 50 ms. (F) Finite differences,h 5 4 (see
Eq. 5). (G) Finite differences,h 5 10.
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even more the case when a difference approximation of the
numerical derivative was used. A choice of the bandwidth
(h 5 4) that gave good peak restoration completely failed at
the higher noise levels (Fig. 7F), and increasing the band-
width to lower the noise (h 5 10) strongly suppressed the
peak (Fig. 7G).

Fig. 8 demonstrates the outcome of the complete analysis
procedure in the presence of noise. It compares the standard
analysis used in the original description of the procedure
(Melzer et al., 1987), i.e., the initial value method for
parameter estimation by removal fit and finite differences
for derivatives on one hand (left column), with the multiple
shooting method combined with the adaptive kernel estima-
tor on the other hand (right column). Apart from the major
problems regarding the numerical derivatives, the standard
procedure introduced further deviations in the release cal-
culation due to the unreliability in estimating the model
parameters and failed to calculate a tolerable estimate of the
rate of release time course. The new methods, however, led
to a result that stayed close to the original record, even
under these unfavorable conditions.

In summary, whereas for relatively clean records (left
column of Fig. 7) even a difference approximation with
small bandwidth (Fig. 7F) gives good results, the only
method that could cope with the higher noise levels was the
locally adaptive kernel estimator (Fig. 7B).

The latter method offers a more reliable estimation of the
release rate. This holds for the reconstruction of the peak at
the beginning of the depolarization, as well as for the flat
parts of the release rate time course.

Violation of the model assumptions

A crucial assumption for the removal model fit analysis is
that release can be turned off rapidly by repolarization. Only
this enables an independent characterization of removal by
inspecting the decay of free calcium. If release is still
present during the decay, one can expect that removal will
be underestimated, and the calculated release time course
during the depolarization will be in error. To assess this
possible error, we increased the turn-off time constanttr of
the input calcium release signals (Eq. 8) and analyzed the
resulting free calcium transients in the same way as before.
Fig. 9 shows the result of this analysis for four different
turn-off time constants. Although the peak of the release
rate was not affected, increasingtr produced an increasingly
stronger, slowly decaying undershoot below the actual pla-
teau level. Therefore, delayed closure of the release chan-
nels would cause an apparent increase in the ratio of peak to
steady level of the determined rate of release.

Fig. 10 explains this result. The figure compares the
contribution of the different calcium compartments to the
total release rates derived with the removal model fit in two
different cases. On the left a rapid (tr 5 3 ms) and on the
right a slow (tr 5 25 ms) turn-off of the release had been
used for the calcium transient simulation. For the slowly
ceasing release, 55% of the steady-state level of release was
still active at the time the fit started.

As the model used for fitting assumes that release has
turned off completely 15 ms after repolarization, this con-
dition is forced upon the estimated release rate, thereby
distorting its shape. The slow saturable component in par-
ticular is too small (Fig. 10,right).

Inspecting the best-fit parameter values (Fig. 10 legend)
shows that this is mainly due to a significant underestima-
tion of Stotal (43 versus 101mM). An additional underesti-
mation of the nonsaturable removal parameterkns (330

FIGURE 8 Comparison of two analysis procedures for determining the
rate of Ca21 release from the noisy set of free calcium data of Fig. 4C
(s 5 0.1 mM). Left: Canonically applied method.Right: Improved meth-
ods. (A) Result of removal fit with the initial value approach with no
constraints on the parameters and with the first point at the beginning of the
fitting interval fixed to the observation. Best fit parameters:kon 5 3.4 6
2.0 mM21s21, koff 5 20.01 6 0.06 s21, Stotal 5 342 6 289 mM, kns 5
283 6 381 s21. (B) Release rate computed by symmetrical finite differ-
ences,h 5 10 (Eq. 5). (C) Final trajectory of the multiple shooting
approach (five subintervals) with positivity constraints on the parameters
and with the first point at the beginning of each fitting interval as an
additional free parameter. Best fit parameters:kon 5 11 6 2 mM21s21,
koff 5 0.146 0.11 s21, Stotal 5 118 6 17 mM, kns 5 376 6 43 s21. (D)
Release rate computed by the locally adaptive kernel estimator.

FIGURE 9 Consequences of delayed turn-off of release for the analysis
result. Free calcium transients were simulated with release rates with
different tr (cf. Eq. 8). These transients were then fitted with the removal
model, assuming that the release had turned off completely 15 ms after
repolarization. Solid lines, release rates computed from the transients using
best-fit parameters. Dashed lines, original release rates. The fractions of
release still present at 15 ms after repolarization, as a percentage of the
steady level (1mM/ms), were as follows (tr in parentheses): (A) 3% (3 ms);
(B) 12% (7 ms); (C) 37% (15 ms); (D) 55% (25 ms).
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versus 400 s21) contributes little to the underestimation of
the removal rate (Fig. 10D, right).

Effects of misspecified removal models on the
estimated release

In the preceding paragraphs we investigated how the quality
of the release rate estimate obtained from the removal
model fit approach depends on factors like the level of noise
in the data, the numerical procedure used for calculating
derivatives, and the degree to which the assumption that
release stops immediately after repolarization is fulfilled.

To ensure that the model used for the fit could reproduce
the characteristics of Ca21 removal in the system underly-
ing the calculated free calcium data, we used exactly the
same model for generating the data. When measured data

are analyzed, however, the model used for the fit will at best
be an approximation to the real system. In general, the
models will be misspecified. This misspecification might
show up in different ways:

1. The model does not contain as many compartments as
the real system.

2. Some parameters of the model are fixed to values that are
not equal to the true ones.

3. The kinetic scheme of the model does not correspond to
the real system.

There is no straightforward way to decide if the model used
for the fit can sufficiently reproduce the main characteristics
of Ca21 release in the experimental system. The criterion
generally used to decide if a given model suffices for the
analysis is the quality of the removal fit. A model that does
not lead to a good fit of the relaxation time course can be
assumed to be insufficient for the release calculation. On the
other hand, it is assumed, even though not unambiguously
proved, that a model which leads to a good fit of the Ca21

relaxation time course after repolarization under different
conditions will correctly describe the overall removal prop-
erties of the cell and will, therefore, lead to a good approx-
imation of the release rate time course. We believe that this
criterion needs further evaluation in future investigations.

It seems more straightforward to decide if a given re-
moval model (which fits the real data well) can be replaced
by a simpler model. Here, too, the simulation approach
offers a valuable tool. Free calcium data resembling real
ones can be simulated by using a detailed model and can
then be analyzed with models comprising fewer parameters
or even a different kinetic structure. If release rates obtained
from the analysis are close to the known ones used for the
simulation, it seems justified to substitute the simpler model
for the more complex one. In applications this may offer the
possibility of using a model in which all parameters are
identifiable from the given data.

We demonstrate this approach with two examples shown
in Fig. 11. As before, we used the release rates of Fig. 2A
and generated free calcium transients with the model dis-
played in Fig. 2B.

For the model used in the removal fit analysis, we used a
different structure. The rate constantkns was changed to a
function that decreased with the amount of released cal-
cium. For this purpose the fractional saturationf of the site
Swas calculated (Eq. 13, obtained from Eq. 10 after divid-
ing by Stotal) and was assumed to modify the uptake rate
according to Eq. 14, which replaces Eq. 11:

ḟ 5 kon z Cafree z ~1 2 f ! 2 koff z f (13)

Ċaup 5 ~a 2 f !kns
0 z Cafree, (14)

i.e., akns
0 is the effective uptake rate constant at zero satu-

ration ofS, whereas (a 2 1)kns
0 is the value at full saturation.

The new model reproduced the slowing of relaxation of
the calcium transients, which in the original scheme resulted

FIGURE 10 Result of release rate calculation for Ca21 transients simu-
lated with fast and slow turn-off of release. Five calcium transients were
generated from synthetic release rates with differenttr (cf. Eq. 8). These
transients were then fitted with the removal model, and release rates were
computed with the resulting best-fit parameters.F was fixed at 30 in each
case.Left: tr 5 3 ms, i.e., fast release turn-off. Best-fit parameters:kon 5
9.95mM21s21; koff 5 0.29 s21; Stotal 5 100.6mM; kns5 399.7 s21. Right:
tr 5 25 ms, i.e., slow release turn-off. Best-fit parameters:kon 5 10.4
mM21s21; koff 5 0 s21; Stotal 5 43.4 mM; kns 5 330 s21. (A) Simulated
transients (thin lines) and trajectory from the removal fit (bold lines). (B)
Total release rates. (C) Rates of change for total fast calcium, i.e., C˙ afree 1
ĊaF. (D) Rates of Ca21 uptake, Ċaup. (E) Rates of change for slow calcium,
CȧS. In B–E: Solid lines: Computed. Dashed lines: Original.
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from the progressive filling of the slow buffer S. In the new
scheme, S was eliminated as a buffer by assuming thatStotal

had a negligibly small value. Thus calcium bound to the
slow system S does not influence the calcium distribution
directly. The uptake in the new scheme can be envisaged to
become partially inactivated by a calcium-dependent mech-
anism that contributes a negligible number of calcium-
binding sites. For a further simplification, we set the pa-
rameterkoff to zero. Thus the resulting model (model I)
contained one parameter less than the model used for gen-
erating the data.

Fig. 11A displays the calcium transients and the removal
fits. Fig. 11B compares the synthetic release rates (dashed
lines) and those calculated based on the simpler model
(solid lines). Apart from a slight underestimation of the
plateau, the time courses are in good agreement. Fig. 11C
shows the removal fits for the case that the parametera in
Eq. 14 is fixed to 1 (model II), which means that uptake is
completely suppressed when S is fully saturated. The qual-
ity of the fit is only slightly worse than that in Fig. 11A, but
the estimated release rates in Fig. 11D differ qualitatively
from the original ones in showing an increase instead of a
steady level and negative going phases at the end of the
shorter depolarizations.

DISCUSSION

The determination of the Ca21 release rate from the sarco-
plasmic reticulum has been used frequently to characterize
excitation-contraction coupling in muscle cells (Baylor et
al., 1983; Melzer et al., 1984, 1987; Schneider et al., 1985;
Brum et al., 1988b; Sipido and Wier, 1991; Jacquemond
and Schneider, 1992; Garcı´a and Schneider, 1993; Gonza´les
and Rı´os, 1993; Pape et al., 1993, 1995; Delbono, 1995;

Delbono et al., 1995; Delbono and Meissner, 1996; Shi-
rokova et al., 1996; Jong et al., 1996). An empirical deter-
mination requires several steps of analysis, including the fit
of a removal model to experimental calcium transients
(Melzer et al., 1986, 1987; Brum et al., 1988a; Gonza´les and
Rı́os, 1993; Shirokova et al., 1996).

In the present work we examined, under defined condi-
tions, the degree to which the analysis gives correct results.
For this purpose, we applied known release rate waveforms
to a known, completely identifiable calcium turnover
model, so that the result of the analysis could easily be
compared with the true data, and the influence of various
disturbing factors on the analysis result could be studied.
We described several mathematical tools that can help to
improve the method.

The main questions studied were the following: 1) How
can the nonlinear removal fit be optimized? 2) To what
degree can the release determination cope with observa-
tional noise in the calcium records? 3) How sensitive are the
results to a violation of the main assumption of the removal
fit analysis, namely, that release is completely turned off
after repolarization? 4) Is it possible to use simplified re-
moval models comprising fewer parameters?

There is no general procedure that prevents divergence of
the removal model fit or convergence to a local minimum of
the parameter space. Compared with the classical initial
value approach, the multiple shooting algorithm that divides
the fit interval into smaller subintervals showed clear ad-
vantages. It reduces the inherent numerical instability of the
initial value approach, which results from its high sensitiv-
ity to the initial choice of the parameter values. The multiple
shooting procedure requires less effort to search for a suit-
able set of initial parameter guesses, because it converges to
the correct values for a larger range of initial guesses than
the initial value approach. It seems particularly useful when
noisy records are to be analyzed. By including the measured
concentration values at several points of time during the free
calcium decay as initial values for a discontinuous initial
trajectory, the multiple shooting fit uses the available dy-
namic information of the system more efficiently. The re-
formulation of the initial value problem into a multipoint
boundary value problem forces the trajectory to stay close to
the measured data, and therefore reduces the chance of
divergence, even for ill-chosen starting values. Because the
actual linearized problem that has to be solved has the same
dimension as the initial value problem, the multiple shoot-
ing algorithm does not require significantly more calcula-
tion time. We think that this method will be of advantage in
applications where short lifetimes of the preparation (e.g.,
patch-clamp experiments on isolated myocytes or neurons)
prohibit time-consuming signal averaging.

The physics underlying the Ca21 compartment model
imposes certain constraints on the parameters. Most nota-
bly, rate constants and concentrations must be nonnegative.
Numerical experience shows that fitting algorithms tend to
diverge if these constraints are violated. Therefore, it seems
natural to implement them as part of the fitting procedure.

FIGURE 11 Effects of misspecified removal models on the estimated
release (A) Synthetic free calcium transients (Fig. 1C) and removal fit of
the misspecified model I (bold lines). Best-fit parameters:kns

0 5 944.5,kon

5 10.88,a 5 1.40. (B) True release rate (dashed lines) (Fig. 1 A) and
estimation based on the misspecified model I (solid lines). (C) Synthetic
free calcium transients (Fig. 1C) and removal fit of the misspecified model
II (bold lines). Best-fit parameters:kns

0 5 990.5, kon 5 3.21. (D) True
release rate (dashed lines) (Fig. 1A) and estimation based on the misspeci-
fied model II (solid lines).
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Our simulation studies showed that positivity constraints on
the parameters do indeed stabilize the fitting procedure
substantially.

In the presence of noise, convergence to a local minimum
was not a serious problem with the multiple shooting ap-
proach, whereas this could easily occur in the initial value
approach. With regard to the latter, one additional point
should be noted. It has been common practice in previous
work with the removal fit method to fix the first point of the
fitted trajectory to the observation at the beginning of the
fitting interval. However, there is no real justification for
this procedure. Instead, the initial value should be treated as
an additional free parameter to be fitted. Indeed, our simu-
lations showed that fixing the first point destabilized the
procedure, both in the absence and even more in the pres-
ence of noise.

Noise is even more of a problem when numerical deriv-
atives have to be calculated. This is required in all available
methods of determining the release rate, be they deductive
(Baylor et al., 1983) or inductive (Melzer et al., 1987; Brum
et al., 1988b). Furthermore, it is necessary when kinetic
limitations of indicator dyes have to be corrected for (Klein
et al., 1988). There are definitely limits to off-line analysis
as a corrective for noise, and experiments should be de-
signed to reduce it as much as possible beforehand. Among
the algorithms we compared, the kernel estimator with
locally adaptive optimization of the filter bandwidth showed
the best results in preserving fast changes and flat sections
of the release rate. Difference approximations of the time
derivative should only be used when the records have a high
signal-to-noise ratio.

The quality of the estimated release rate time course
depends not only on the numerical methods applied, but also
on the validity of the central assumption that there is no
residual release during the decay phase of the calcium signal
that is used for the removal model fit.

We investigated the effect of a violation of this assump-
tion by allowing increasing overlap between the analysis
interval and slowly decaying release. The calculated release
rate underestimated the true one and was temporally dis-
torted. This showed up in an increased ratio of peak to
steady level and in a shallow minimum of the release rate
right after the peak (Fig. 9D). From an analysis of the
temporal behavior of the model compartments, this effect
could be explained by an underestimation of the slow sat-
urable removal component. Overall, however, the main
temporal characteristics were rather well preserved, even in
cases where the overlap was large.

Larger models including more details of the calcium
turnover kinetics than the one used here have been applied
to semiempirically derive the rate of release in muscle fibers
(Brum et al., 1988b; Gonza´les and Rı´os, 1993). In these
models, not all of the kinetic parameters can be simulta-
neously identified, and therefore only a subset of parameters
can be obtained by the fit, whereas others have to be fixed
beforehand. Moreover, models realistically describing the
intracellular situation during Ca release will also have to

include diffusion of both Ca and some of its target site
populations, and will have to appreciate the fact that the
myoplasm is not uniform in terms of Ca release (Rı´os and
Stern, 1997). Ca is released from distinct regions within the
sarcomere, which can create substantial local concentration
gradients.

For the purpose of this paper, i.e., for demonstrating the
advantages of improved numerical methods, we chose the
present, relatively unsophisticated calcium distribution
model, simply because of the small number of model pa-
rameters involved. However, the general conclusions re-
garding the benefits of the multiple shooting algorithm
combined with an adaptive kernel estimator for deriving the
rate of release also hold for more complicated reaction
schemes introduced in previous publications.

The problem of actually selecting a minimal kinetic
scheme for the removal model fit appropriate for given
experimental results was not the scope of this study. How-
ever, with the example of Fig. 11, we demonstrate that the
approach of analyzing artificial free calcium transients sim-
ulated with known release rates may be applied for the
purpose of model reduction, i.e., to decide if a given model
can be replaced by a simpler one. A simpler model can be
trusted to fulfill its task equally well if it reliably returns the
known release rates used for the simulation. Conclusions
exclusively based on the apparent fit quality, however, may
be misleading. The result of Fig. 11,C andD, indicates that
a satisfactory fit does not necessarily guarantee perfect
reconstruction of the underlying release rate waveform. We
therefore feel that one should be cautious in overinterpreting
small kinetic details of the release rates determined from
muscle cells, and that the general issue of optimal model
selection requires further mathematical investigation.

In summary, we showed that advanced methods of data
analysis for fitting ODEs as well as for estimating deriva-
tives from noisy data allow for a more reliable reconstruc-
tion of the release rate time course than the commonly
applied methods. Because the methods investigated here
showed their full power in the presence of noise, they will
be particularly useful when the time-resolved transmem-
brane calcium flux is to be determined from calcium tran-
sients of smaller cells (cultured myocytes, neurons, etc.) that
produce signals with lower signal-to-noise ratios than skel-
etal muscle fibers.
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