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Numerical Methods to Determine Calcium Release Flux from Calcium
Transients in Muscle Cells
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ABSTRACT Several methods are currently in use to estimate the rate of depolarization-induced calcium release in muscle
cells from measured calcium transients. One approach first characterizes calcium removal of the cell. This is done by
determining parameters of a reaction scheme from a fit to the decay of elevated calcium after the depolarizing stimulus. In
a second step, the release rate during depolarization is estimated based on the fitted model. Using simulated calcium
transients with known underlying release rates, we tested the fidelity of this analysis in determining the time course of calcium
release under different conditions. The analysis reproduced in a satisfactory way the characteristics of the input release rate,
even when the assumption that release had ended before the start of the fitting interval was severely violated. Equally good
reconstructions of the release rate time course could be obtained when the model used for the analysis differed in structure
from the one used for simulating the data. We tested the application of a new strategy (multiple shooting) for fitting parameters
in nonlinear differential equation systems. This procedure rendered the analysis less sensitive to ill-chosen initial guesses of
the parameters and to noise. A locally adaptive kernel estimator for calculating numerical derivatives allowed good recon-
structions of the original release rate time course from noisy calcium transients when other methods failed.

INTRODUCTION

In muscle cells, force development is controlled by*Ca the literature values apply approximately to the experimen-
ions, which are rapidly released from the sarcoplasmidal situation (Baylor et al., 1983; Sipido and Wier, 1991;
reticulum during sarcolemmal depolarization '¢Riand Pape et al., 1993). The other approach tries to determine at
Pizarro, 1991; Schneider, 1994; Melzer et al., 1995). Thdeast some of the kinetic parameters of the compartment
calcium concentration change resulting from this releasenodel by analyzing the measured®Caignals themselves
can be measured by using optical indicators, whereas the(®/lelzer et al., 1984, 1987; Brum et al., 1988b; Garand
is no direct way to measure the actual release flux. VariouSchneider, 1993; Gonles and Ros, 1993; Delbono and
methods have been applied to derive the time course andeissner, 1996; Shirokova et al., 1996). Thereby it is as-
magnitude of the Cd release rate from the measuredCa  sumed that C& release, which is induced by depolariza-
transient (Baylor et al., 1983; Melzer et al., 1984, 1987;tion, is completely and rapidly stopped after repolarization
Schneider et al., 1985; Brum et al., 1988b; Sipido and Wierof the membrane. During the time after repolarizatior? Ca
1991; Garta and Schneider, 1993; Gotes and Ros, s redistributed among the model compartments. The relax-
1993; Pape et al., 1993; Delbono and Meissner, 19964tion time course of free calcium can be predicted with the
Shirokova et al., 1996). In these methods, it has to be takemodel equations and compared with the measured time
into account that released Taflows to various myoplas- course. This comparison allows us to optimize the param-
mic compartments whose time-dependent Caontents  eters in such a way that the calculated relaxation deviates
have to be quantified. minimally from the measured one. The best fit parameters
Two principally different approaches for estimating cal- (ogether with measured €4 transients are then used to

cium release have been described. Both start from kinetigg|culate the total release as the sum of aff‘Caccupan-
models with binding and transport sites for’CaThis leads cies at each point in time. The rate of Tarelease is
to a system of nonlinear differential equations. Only thecomputed as the time derivative of this sum. Different

compartment comprised by the indicator is observableygigiies of this removal fit procedure have been used for

From the indicator signal the concentration of free Calc'“manalyzing C&" measurements from skeletal muscle fibers

can be estimated. One approach uses tabulated kinetic P@vielzer et al., 1986, 1987; Brum et al., 1988a; Gdegand
rameters of the model and calculates all of the occupanciegios ' 1993). ' ' ’ ’ ’

by using the measured free calcium transient, assuming that For routine application, this approach requires numerical

algorithms that safely lead to a best fit, even when the initial
Received | lcat 1997 and in final form 7 L parameter guesses are far from the best ones, and which can
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waveforms were used to simulate free calcium transientsbjective function can be supplied. The derivatives can be
similar to those that can be measured in muscle fibereomputed only numerically through finite differences,
during voltage clamp depolarization (Melzer et al., 1987;
Brum et al., 1'988b; Feldmtlayer.e't al., 1990). The numericabf(ti, p) flt,pu....p+h....p)—ft,p)
methods are judged by their ability to reliably determine the h . 2)
input model parameters and release rate time course. We
§hoyv that the more refined strategies for fitting an.d smooth:l_he high computational effort of evaluatirit, p) usually
ing improve the procedure for €arelease calculation, and : oo

. X o does not allow for a higher order approximation. Therefore,
we describe how noise and a violation of the model assum Yhe choice oh can be rather influential Generallyshould
tions can affect the result. Finally, we show that simulation : s

studies can help to decide if a simplified model is still ablebe take_n as some fr.actlonal part, 0.001 say,pjgfwnh
to yield reliable release rate estimates. appropriate modifications iy ~ 0. The use of internal

differentiation can reduce the computational effort substan-
tially (Hairer et al., 1987).
METHODS It is well known that ill-chosen initial estimates of the
parameters can preclude most routines from yielding any
solution at all because the trial trajectory diverges. In an
The model system of ordinary differential equations (ODEs)nteractive laboratory environment, this poses no principal
chosen for this investigation is nonstiff and can be solveddroblems, as the routine can be started again with new initial
numerically by virtually any ODE integrator. For the com- parameters until convergence is reached. For routine data
putations presented here, the routines ODEINT andinalysis, however, robust algorithms should be employed.
BSSTEP (Press et al., 1992) were used. Normally distrib- Becausey?(p) shows a nonlinear dependence on the
uted random numbers, generated by the routine GASDE\parameter, x*(p) will usually have several local minima
(Press et al., 1992), were added to the simulated transienégpart from the true global one that corresponds to the true
to produce noisy synthetic data sets. parameters. Most parameter estimation routines signal con-
vergence of their minimizing iteration if they cannot reduce
x?(p) in a small neighborhood of the actual parameter
Parameter estimation values any further. Thus they might return estimatep of

The parameters of the €adynamics model were estimated that are far from the desired true values. If the routine used
from the simulated data by using the method of leasdoes notinclude a strategy for circumventing this problem,
squares. The functioft, p) is the solution at time of the  every fit has to be inspected by eye to find out whether the
observable part of the model ODE system with the paramdesired global minimum has been reached.

eter vectorp. Given measurements with error variances Two methods for minimizing®(p) are compared in this

{

Simulation

o” at timest,, 1 = i = N, the objective function paper.
N 2
yi - f(tiv p))
p)=2|——— 1
X E( Oi @) Initial value approach

i=1
If the problem of parameter identification in ODE systems
is treated in the same way as other problems of nonlinear
regression, one is led to the so-called initial value approach:
cumbersome. As the model functidtt, p) depends non- starting from.some initial values for the trial tr.aj_ect(.er, the
linearly on the parameters, the fitting routine has to proceeﬁn()de"zI eqyatlons are solveq over the whole fitting mte_r\_/al,
and y“(p) is calculated. Derivatives are computed by finite

iteratively, starting from some given initial guess for the . : .
parameters. In each iteration, an update step for the eslqj_lfferences. Then the parameters are adjusted in such a way

mated parameters has to be computed that will decrease tAg 1© bring the solution closer to the data.
discrepancy between the model and the given data. The Quite often, the measurement at the beginning of the
update step is usually computed from the gradient (steepegﬁtlng interval is taken as a fixed initial value for the
descent method) or the Hesse matrix (Newton, resp. Gaussolution of the model equations, whereas estimates for the
Newton method) of the objective function, or from a com- unobserved components are taken from a solution of the
bination of both (Levenberg-Marquardt algorithm). The ODE system with given parameters along the measurement
steepest descent method uses a linear approximation of tig&rve.
objective function, whereas the other methods use a qua- For computing the update step, several strategies have
dratic approximation. been proposed, e.g., the Gauss-Newton method (Schitt-
In contrast to nonlinear parameter estimation in regreskowski, 1995) or the Levenberg-Marquardt algorithm (Stor-
sion, in ODE systems, no analytical derivatives of thetelder, 1996).

was minimized with respect tp, giving a maximum like-
lihood estimate foip.
Fitting parameters in a system of nonlinear ODEs is
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Multiple shooting highly nonlinear. The rank-deficient case, e.g., when param-
. . . eters or combinations of parameters cannot be identified
The technique of multiple shooting has been used for solv-_ .
. . reliably, can be treated elegantly by an appropriately chosen
ing boundary value problems in ODE systems (Stoer anc@lank decision criterion
riﬂ;:wssorll’viigsi)ﬁtlrzdtziecdonkfsxtlgg pg:)anrrseet; rz;\(ras;rr:llat;-?gr,ntli]:r Details of the mathematical and implementational aspects

. f the meth re given in Bock (1981, 1983).
(1975) and, in a much more general context, by Bock (1981(,) the method are g ( )
1983). The observation motivating the use of multiple
shooting for parameter estimation is that with the initial pata smoothing and the computation of
value approach, one is effectively neglecting information orgeriyatives of noisy data

the dynamics of the system present in the measurements. ) )
Even though the time course of at least one component ofo extract the release flux from given €atransients and

the ODE system is known relatively accurately, the initial Model parameters, the intracellular®Calynamics has to be
value approach does not take advantage of any but the Vefﬁcqnstructed from the data. This proce_dure involves inte-
first observation in the fitting interval. If the initial param- 9rating the ODE system along the noisy “Cameasure-
eters are far from the correct ones, the trial trajectory cafents and computing the derivative of the measurement
deviate arbitrarily far from the measurements. curve. _

With Bock’s elegant approach, one partitions the fitting " the present context, the data are interpreted as
interval into many subintervals. The ODE system is solved y=f(t) + ¢ 3)
separately on each of these intervals, using as starting ' ' v
guesses for the initial values the measurements at the besheref (t) is the model function ané, is the measurement
ginning of these intervals. None of these initial values areerror at timet;, assumed to be normally distributed. When
fixed to the observations during the iteration. The initial the parameters are known or have been estimated from the
values at these points have thus become new parametersdsta, the smooth curvgt) underlying the measurements
the model. can be identified.

This approach leads to an initially discontinuous trajec- Given datay;, 1 =i = N, sampled at a resolution dft,
tory, which is, however, close to the measurements. Thevhich are noisy observations of the underlying smooth
final trajectory must of course be continuous, i.e., the com<curve f(t), the derivativef'(}) can be estimated by one-
puted solution at the end of one subinterval must finallysided finite differences as
equal the initial value at the beginning of the next subinter-
val. To enforce this condition, continuity constraints are ?"(t-) _ YT Y (4)
imposed on the solution. In each iteration, the method has to ' hAt
choose an update step that will not only lead to a minimum . .
of the objective functiomy®(p), but will also satisfy the or by symmetrical differences as
continuity constraints in a linearized form. In this way, the Vien — Vi

. . . P z i+h ylfh
newly introduced additional parameters, viz., the initial fr(t) =" oAt (5)
values at the mesh points, are eliminated from the linearized
problem that has to be solved to compute the update stepyhich is equivalent to exploiting the local Taylor series of

Because only the linearized continuity constraints are (t) to first or second order, respectively. Generalizing this
imposed on the update step, the iteration is allowed tqdea, one can try to fit polynomials of a fixed degre¢o
proceed to the final continuous solution through “forbiddenintervals of the observed data. If the intervals are such that
ground”: the iterates will generally be discontinuous trajec-the Taylor series td&th order is a good approximation for
tories. This freedom allows the method to stay close to thé(t), one can take the Oth and first coefficient of the fitted
observed data, prevents divergence of the numerical solgolynomial as an estimate fé(t) and its derivative, respec-
tion, and reduces the problem of local minima. tively. The choice of the correct interval width is essential

As constraints on the parameters or trajectories (e.gfor the reliability of this method.
nonnegativity constraints on all rate constants and concen- With evenly spaced data, such as usually obtained by
trations in the calcium model) are frequently helpful for sampling, this technique can be realized efficiently as a
further stabilization of the fit, general constraints can beweighted moving average. This method is known as the
allowed for by taking their linearizations into account when Savitzky-Golay smoothing filter (Savitzky and Golay,
computing the update step. To this end, a method for lineat964; Press et al., 1992) or as polynomial least-squares
systems with constraints has to be used (Stoer, 1971). convolution (PLSC) (Ratzlaff, 1987). In the context of

For the reduction ofy*(p), a Gauss-Newton method is estimating C&" release from C& transients, it has been
employed that effectively uses a second-order approximgproposed by Klein et al. (1988).
tion to x(p), even though only first derivatives are in-  The Savitzky-Golay smoothing filter is, in fact, a special
volved. It can be further stabilized by an appropriate damp€ase of a more general class of methods known as kernel
ing strategy that reduces the step size if the problem igstimators. The basic idea of kernel estimation is to con-
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volve the measurement with a so-called kernel funcii¢f) Statistics

to obtain estimateft) for the underlying functiorf (t,): ) . .
&) ying (®) Confidence intervals for the parameters were obtained from

) the Hesse matrix,
ft) = 2 ylt)KG). (6) D)
Fib i PP

)

Kernel estimators can also be used to estimate deriva- . .
tives. Kernel functions for derivatives have to satisfy certain®f the model equations at Fhe bes’_c-_ﬂt parameters. It has to be
moment conditions. Gasser et al. (1985) introduced afam”@ssume_d that thg quel |szspe0|f|ed c_:orrectly and that the
of so-called optimal kernels that is known to have goodquadr""tIC approximation of"(p) holds in a large enough

analytical and practical properties. These kernels were useﬁg,'?n around the_ solution p_omt. Then the matx= (1/2
for the computations in the present paper. is the covariance matrix of the standard errors of the

As already noted for the Savitzky-Golay smoothing filter, parameters, and the errors of the parameters are multivari-
the choice of the interval that is used to obtain an estimat ;egi nc};r:j]z”)(/anddlztr:ltbgt;; Vgg:ﬁ\(’jaerir:ﬁtézg?serk?;nrz’
for f(t) is crucial for the performance of the method. In the ): b ) w

; A+ . ()12
context of kernel estimation, the width of this interval, equalg“ﬁlgz@ o_f tﬁfgirrgﬁllle)xtio.ns presented below we use noise-
to 2b + 1 (cf. Eq. 6), is called the bandwidth.

If b is chosen to be too small. random variations in theless data. In these cases, instead of Eq. 1, we minimize the
. S . __sum over the squared differences between the data and the
data due to observational noise will be “interpreted” as

. . o ) model predictions. Consequently, no confidence intervals
belonging to the signal, thus yielding unsatisfactory result

or the parameters can be given.
that tend to fluctuate around the true curve. This phenom- P g

enon is known as undersmoothing. If, on the other héand,
is chosen to be too large, the curve will be oversmoothed,
resulting in the depression of peaks in the data and therefoldardware and software

n : bias Ic()f thedestlma:]e.. litud Vi The code written for this paper is part of an interdisciplinary
S peaks and even their amplitudes are extremely Impor|f)roject. Because of the different computer platforms in-

tant in the physiological interpretation of the releasg ratevolved, portability was a crucial issue. The programs were
oversmoothing can hardly be tolerated. Undersmoothing, Oritten in C/C+ + and run on IBM RS/6000 workstations,

the other hand, can amplify spurious effects in the data t§~5 \vith MS-DOS. and PCs with the LINUX operating
such an extent that their amplitude is of the same size as th@&stem. '

of the relevant physiological features.
There are several techniques for choosing the bandwidth
b adaptively from the given data (Mar and Stadtriiller,
1987; Seather, 1992). The resulting bandwidth will still eadModel simulations

inevitably to oversmoothing in some parts of the data,ror the simulation of artificial C& records, we constructed
whereas other parts will be undersmoothed. One can thergste_of-release waveforms, which were used as input flux
fore think of locally adapting to the structure of the data, f,nctions in a simplified C& distribution model.
decreasing it at peaks and increasing it in flat sections. The calcium release rate in skeletal muscle has been
Quantitatively, the locally optimal bandwidth of a kernel shown to reach a maximum value within a few milliseconds
estimator for thevth derivative off(t) is inversely propor-  after the onset of a strong depolarization (Baylor et al.,
tional to the square of thes(+ 2)th derivative off(t), €.9.,  1983; Melzer et al., 1984, 1987; Simon and Schneider,
of the third derivative of (t) if one wants to estimatE(t). ~ 1988). It then falls to a considerably lower value, probably
To take these variations into account, one has to estimate thesulting from a C&'-dependent inactivation (Schneider
third derivative of the data. This can be done with anand Simon, 1988; Simon et al., 1991; Jong et al., 1993,
appropriate kernel estimator for which, because of the larga99s; Chandler et al., 1995), and finally declines to zero
variance of the estimate, a rather large bandwidth should bgith a very slow time course, because of the combined
chosen. Mathematical as well as implementational details cdction of SR depletion (Schneider et al., 1987) and voltage
this method are given by Mier (1988), whose paper also sensor inactivation (Brum et al., 1988b). Even though pub-
contains further references to the literature. For the problentished release rates vary considerably, the fundamental char-
discussed here, a fixed bandwidth of 50 ms was chosen tacteristics, i.e., an early peak followed by a more or less
estimate the third derivative. steady level, seem to be conserved in different preparations
Boundary effects were treated by generating pseudodai@lelzer et al., 1987; Gafraiand Schneider, 1993; Delbono
outside the measurement interval as described by Hall anet al., 1995; Delbono and Meissner, 1996; Shirokova et al.,
Wehrly (1991), as the behavior of the measured curve lond996). We constructed release rate records that exhibited a
before and long after the depolarization is well known. fixed ratio of peak amplitude to a steady level of 2:1 by
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using Eq. 8: and release in voltage-clamped frog muscle fibers, apart
0 fort<0 from the fact that the G& indicator is not included as a
- separate compartment in the present model. It was chosen to
r)={ s—ae’™+@—-se’ for0<t=T, P P P

illustrate the use of the analysis algorithms because it has a
®) small number of parameters and still exhibits the main
characteristics of calcium distribution in muscle cells, i.e.,
Herer, andr, are the time constants for the rise and declinefast and slow binding and slow uptake.
of the initial peak, respectively. The constantlefines an The model contains an instantaneously equilibrating non-
overall scaling of the curve, whereasdefines the steady saturating compartment CaF, the occupancy of which is a
level. The values used for our calculations are given in thenultiple (factorF) of the free calcium concentration (Eq. 9),
legend of Fig. 1. a saturable slow compartment CaS, described by rate con-
By varying the depolarization tim&, release records of stantsk,,, and k. and total concentration of binding sites
different duration were constructed (see FigAL The S ., (Eq. 10), and a slow, nonsaturable uptake,Gaith
decline of the release after repolarization is determined bwssociated fixed rate constdqt (Eq. 11):
the time constant,, which was set to a low value of 3 ms )
in all simulations, except the one described in connection CaF = F * Céayee 9)
with Figs. 9 and 10. ]
Fig. 1 B shows the calcium distribution model that was CaS = kon* Caree (Sota — Ca9 — ki - CasS (10)
used for the simulations. It is virtually identical with the one .
used by Melzer et al. (1986, 1987) to analyz& Ceemovall Cayp = Kns* Cayree- 11)

The time derivatives of the concentrations obey a conser-

A SR B vation law:
1 uMims W Caelt) = Cayed) + CaF(t) + CaS(1) + Ca,lt),  (12)
CaF—Ca where Glfel(t) is the rate of calcium release.

—ae’m+ (a—9ge ™+ se®@D" fort>T.

free The parameters were chosen to be close to those deter-
mined by Melzer et al. (1986) to fit calcium transients
CaS measured in frog muscle fibers (see legend of Fig. 1). A
peak amplitude of the input calcium release rate pM/ms
C D was chosen to generate transients with characteristics sim-
ilar to those measured in muscle cells (FigC)1 A series of
five simulations obtained with release duratidnsf 20, 50,
100, 150, and 200 ms was used for the various analyses of
this investigation. Fig. 1 shows the release rafgsafid the
occupancies of the calcium compartments, &&C), Ca,,
(D), and Cas, the latter one at two different time scales
200ms 200ms (E, F).
For the chosen range of release rates, the slow saturable
compartment reached saturation levels between 21% and

E F 91%. This leads to a progressive slowing of the relaxation
50uM 50uM phases in thg five free calc?um recqrds with increasing
release duration. The saturation of this slow compartment
reduces its participation in the removal ofCarom com-
partments Cg,. and CaF. It is necessary to include in the
analysis records with low and with large saturation of CaS,
5s

200ms if one wants to precisely identify the parametégs, Ko,
and Sotal'

200ms

M
1uM 50

FIGURE 1 Construction of synthetic calcium transient) C&" re-

lease rates calculated with Eq. 8. Parameters:4.6,s= 1,7, = 2 ms,

7, = 5 ms. Amplitude 2uM/ms. Off time constants, = 3ms.Thad values  Determining the release rate

of 20, 50, 100, 150, and 200 ms to simulate different durations of depo-

larization. @) Ca* distribution model used for the calculations in this The first step in determining release from giverfCéran-
paper. C) Synthetic free calcium transients simulated with the moBRI ( sients is a characterization of €aremoval. For this pur-
Egs. 9-12, and synthetic release raté§ Model parameters were as po90 5 C%' distribution model is used to fit the relaxation

follows: Slow sitesk,, = 10 uM~2s7%; ko = 0.3 S% S = 100 uM. - .
Uptake:k,. = 400 s %, Expansion due to intrinsic fast sitds,= 30. ) phases of measured €atransients. The fit returns a set of

Reuptake of C&'" into the SR. E) Occupancy of slow sitesEf Occupancy kirjet.ic model ParamEterS to d'escribe.re'moval. The only a
of slow sites on a larger time scale. priori assumption on release is that it is turned off after
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repolarization. Therefore, it is assumed that the relaxatiomhanged. Now Egs. 9—11 are used to calculate free calcium,
phases of the free calcium transients reflect redistribution ofising the values at the end of the first calculation as initial
calcium in and removal from the myoplasmic space involv-values for the integration. Because the parameter values are
ing fluxes between compartments ;Ga CaF, CaS, and different from the true ones, the calculated curvbsld
Ca,, In general, the model used will at best be a goodlines) deviate from the simulated calcium records (Fig. 2,
approximation to the real situation in the cell. In the presenstage 1). A least-squares minimization algorithm that
case, however, the model structure used for analyzing thsearches for a minimum of the objective functiqA(p)
simulated calcium transients is identical with the modelmodifies the parameters until the Euclidean norm of the
used for simulation. Therefore, we expect that the values ofipdate step is less than some fractional amount, e.g3 10
the four free parameterk,,, K. Scowr @nd K. can be  of the norm of the parameter vector. We do not use relative
determined precisely from the information contained in thechange ofy*(p) as a criterion because numerical experience
different calcium relaxation phaseB (vas set to the true shows that this may lead to premature signaling of conver-
value of 30). gence in some cases (Gill et al., 1981).

Fig. 2 shows that this is indeed the case. Stages 1 and 2 In the example shown in Fig. 2, it took three iterations for
of the figure show the start and end of the iterative procesghe fitting algorithm to converge (stage 2). As noted in the
in which a 150-ms interval of each relaxation phase of thefigure legend, the parameters found by the fit approximated
five simulated calcium records was fitted with the numericalthe true parameters with deviations of less than 1%. Con-
solution of Egs. 9—11 with respect to {za Starting values vergence to the absolute minimum of the objective function
for the fit were as followsk,, = 5 uM ~'s™%, ks = 0.15 depends on the choice of the parameter starting values. If
S 1, St = 50 uM, k., = 200 s . these starting values are too far from the true values, the

The fitting procedure works in two steps. First, the givenalgorithms might proceed to a local minimum comprising
calcium transients and initial suggestions for the parametersonsiderably worse fits or might even diverge. A substantial
are used to calculate the occupancies of the nonobservahi@provement can be obtained by using the so-called multi-
C&" compartments (CaF, CaS, and QaAt 15 ms after  ple shooting approach introduced by Bock (1981).
the start of the release turn-off, the mode of calculation is Based on the best-fit parameters, the occupancies of all
compartments are calculated. Their sum yields the released
calcium (Fig. 2, stage 3). Finally, the rate of release is given
by the derivative of the released calcium (Fig. 2, stage 4).

1 2
TuMl it removal RESULTS
model ) . ) o
—— In this section we first compare the initial value and the
multiple shooting approach for parameter estimation in dif-
— ferential equations. Then we investigate the different
200ms 200ms R . . . . .
smoothing algorithms to estimate derivatives of noisy data.
calculate Finally, we examine how violations of the model assump-
release tions influence the estimated rate of release.
4 b 3
1 uMims 100uM . Comparison of two fit algorithms
G We first compare the two algorithms with respect to their
32':;\‘/‘;‘\‘; B convergence behavior if the starting guesses for the param-

A eters are varied.

Application of the multiple shooting procedure is exem-

plified in Fig. 3. For this figure, the starting values were
FIGURE 2 Removal fit and release calculation. Initial parameters wereChosen to be substantially off the true parameter values:
_ —1e-1 _ <1 _ — <1 : _ —1—1 _ —1 — — —1

r:;nsignlgwwe?e %ittk(t)efzi si%ﬁi:néosu(;@. (15)01{:1|\i/r|1, :?rnfes:ZSOy(:ltshétéllt:grfsients!(on - LuM s ko-ﬁ -1so Storal — LuM, kns ~ls- imiti
Bold lines: Initial trajectories produced by the fitting routine. (2) Thin Given these starting guesses forthe parameters, the initial
lines: Synthetic transients. Bold lines: Trajectories of the fitting routine value approachleéft) qu unable to return estimates for the
upon convergence. Best-fit parametdes; = 9.95uM s %, k,, = 0.297  parameters, as the trajectory of one of the unobserved com-
$7Y Sow = 100.6 uM, k.o = 399.7 s1. True parameters used for partments in the model diverged during the iteration. The
simulation:ko, = 10 uM s, kot = 0.3 5™, S = 100uM, kys =400 multiple shooting algorithm right), however, succeeded

—1 . . . .
s . (3) Occupancy of the model compartments, computed from the ranxtar 11 jterations (Fig. F) and estimated the parameter
sients of (1) using best-fit parameters (shown for the longest depolarization

only). (A) Cayee + CaF, ) Cas, C) Cay, (D) Cae, equal to the sum of values with the same pregision as in the case pf Fig. 2.
(A), (B), and €). (4) Release rates computed as the numerical derivative of AS €xpected, this algorithm proved its superiority when
Ca,, (3D). the deviation of the starting values from the true parameter

200ms

200ms
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A B TABLE 1 Comparison of initial value and multiple shooting
approaches for different starting guesses of the parameters
uM Positivity
No constraints constr.

Starting parameters  FIX FREE FIX FREE Method

200ms 2 2 2 2 \Y
c D 10, 0.3, 100, 400 5 5 5 5 MS3
5 5 5 5 MS5
3 3 7 7 \Y
20, 0.6, 200, 800 6 6 9 8 MS3
6 6 8 8 MS5
3 3 8 13 \Y
5, 0.15, 50, 200 6 6 5 6 MS3
6 6 5 5 MS5
E F D D D D v
0.1, 0.1, 100, 100 D D 8 13 MS3
D D D D MS5
D D 12 D \Y
1, 1, 1000, 1000 D D 8 9 MS3
D D 11 11 MS5
D D D D 1Y
FIGURE 3 Comparison of initial value approach and multiple shooting 1, 1, 100, 100 9 6 8 6 MS3
approach. Fit of the synthetic transients of Fig. 1, using the ill-chosen initial 9 D 7 7 MS5
parameter&,, = 1 uM s ks =15 %, Sprm = 1 uM, ks =15 L All D D N L v
five transients were fitted simultaneously. Thin lines: Synthetic transients.L 1, 10, 10 D D 10 7 MS3
Bold lines: Trajectory produced by the fitting routinkeeft Initial value D D 9 9 MS5
approach. The figure shows iterationsA), (2 (C), and 3 E). After the third D D D L v
iteration, the program stopped because of the divergence of one of the 1 1 1 D D D 12 MS3
trajectories of the unobserved compartmeriRgght Multiple shooting D D D 11 MS5

approach with five subintervals. The figure shows iterationB)1 8 (D), — —
and 11 F). The program signaled convergence after the eleventh iterr:ltion?'l“lJe valuesky, = 10uM s %, kot = 0.3, Sopa = 100uM, ks = 400

Note that the trajectory is discontinuous during iterations 1 and 3. s % The parameteF was fixed at 30. MS3 and MS5 denote multiple
shooting with three and five subintervals, respectively. The table gives the

number of iterations needed for convergence. L: Convergence to a local

minimum in parameter space; D: divergent behavior; N: no convergence
values was large. Table 1 summarizes the results of @ithin 100 iterations. Results are shown for either no constraints or
number of runs with the two algorithms in which different positivity constraints on the parameters. Furthermore, the first fitting point
sets of starting values were tried. Furthermore, we com¥as e_i_ther fixed (FIX) or t_reated as an additional free parameter (FREE).

. . IV, Initial value; MS, multiple shooting.

pared the performance of the algorithms with respect to
positivity constraints on the parameters and investigated the
effect of fixing the first point of the trial trajectory to the considerable advantage. The five artificial®Caecords of
observation. The entries denote the numbers of iterationgig. 1 were subjected to noise by adding normally distrib-
until convergence. In several cases, the procedure stoppegled random numbers with standard deviatiensanging
because the trial trajectories diverged (D). In one instancefrom 0.005 to 0.2uM, and the largest amplitude reached in
no convergence was obtained within 100 iterations (N). Athe calcium transients was 18\Vl. Fig. 4 shows examples
local minimum in parameter space was reached twice (L).
When no constraints were imposed on the parameters, both
routines failed to converge in a large number of cases.

A
Furthermore, fixing the first fitting point (FIX) to the ob- WMI
servation proved to be destabilizing. Thus positivity con-
straints and a freely varying first point (FREE) should be

included in any strategy. As can be seen from the fifth

column of Table 1, the multiple shooting approach was able 200ms c D
to handle much larger deviations of the starting values from
the true parameters than the initial value approach. In the
one case in which the multiple shooting algorithm failed, the
introduction of small positive (instead of zero) lower
bounds on the parameters led to convergence, whereas the

initial value approach still diverged. o ) . ) .
The multible shooting algorithm proved to be especiall FIGURE 4 Synthetic C& transients with different noise levels. Differ-
p ; g aig P P yently scaled identical realizations of normally distributed random numbers
helpful when noisy records were analyzed. Here the fact thaere added to the smooth transients shown in Fig. @) o = 0.01 uM.

the initial values of the trajectory are also optimized was of(B) o = 0.05uM. (C) 0 = 0.1 uM. (D) ¢ = 0.2 uM.

W“l mm
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with four different noise levels. Fits were carried out with TABLE 2 Convergence behavior of initial value and multiple
each set of records. An example is shown in Fig. 5. [tshooting approaches at six different noise levels o

demonstrates the result of the removal fit with three selected (um) IVa IVb IVe MS3 MS5 MS9
records from the total number of five cglcium trgnsientsA: Parameter starting values: 5, 0.15, 50, 200
(o = 0.2 uM). The true recordsdashed linesand fitted  .005 8 D 9 5 5 6
trajectories old lineg are superimposed on the noisy 0.01 8 8 8 5 5 7
records. 0.02 8 10 9 5 5 9
Fig. 5 A shows the effect of fixing the first point of the 0.05 g 13 L8 g 3 12
f?ttgd t.rajectory to thg observatio'n at the beginning of the, 5 D D 12 M 1 15
fitting interval. As this value deviates far from the under-
lying true curve, the final trajectory could not reproduce theB: Parameter starting values: 20, 0.6, 200, 800
data adequately. In the example shown, the release rat€$05 7 8 7 10 9 7
computed with the parameters obtained from this fit were 02 g g ; 18 g g
uqsatisfactory. !f the initial value was allowed to vary freely 5 D D 8 22 8 8
(Fig. 5 B), the fit reproduced the data adequately, and the 1 D D N 9 7 7
true parameters could be identified within the predictedo.2 D D L 8 7 8
error margins. Two different sets of parameter starting values were chosen for the itera-

Table 2 summarizes the result of fits to the same origination (A, B). True model parameterk;, = 10 uM~2s7%, k4 = 0.3 s,
records but subjected to different levels of noise, and comSow = 100 uM, k,s = 400 s™*, F fixed at 30. Starting values for the four
pares the results for the two algorithms considered. In eaclf® FICEEE B BE e S e 1o obeerved vaive
case, three different variants \_Nere mves_tlgatEd (fpr deta"%Vb; as IVa, but first point gs additionall freepparameter; IVc: as IVb, but Y
see table legend). The multiple shooting algorithm wasyi positivity constraints on all parameters.
superior to the conventional initial value approach, in that itMs3, MS5, and MS9 denote multiple shooting with positivity constraints

produced convergence more reliably at |arger noise levelxn all parameters and with three, five, and nine subintervals, respectively.
The table gives the number of iterations needed for convergence. L:

Convergence to a local minimum in parameter space; D: divergent behav-

Smoothing algorithms and numerical derivatives ior; N: no convergence within 100 iterations.
IV, Initial value; MS, multiple shooting.

The second stage in the rate of release recalculation in-
volves the following step. The model equations, now sup-

plied with the best-fit values of the free parameters, are used
A B to calculate the C& occupancies of CaF, Ggand CaS by
using as the input function a given calcium transient (i.e.,

B the observed function representing;Ga All four com-
MMM WMWM%M partment concentrations are summed (Fig. 2, stage 3). As-
suming that no C& was present initially, this yields the
200ms estimated time course of the total calcium released. To

derive the rate of release, a function reflecting the gating of
the release channels, the summed total calcium has to be
differentiated numerically (Fig. 2, stage 4). This can easily
be done by using a difference approximation (Eq. 5, Meth-
ods) if the records are smooth. However, as soon as noise is
involved, the numerical derivative poses severe problems.
To a certain degree this can be overcome by means of signal
averaging. Yet, because not all preparations allow for time-
consuming signal averaging, one has to look for optimal
procedures to carry out the analysis with noisy records. In
the following, we compare the quality of three different

] ) ) ) ) ~ways of estimating numerical derivatives and describe the
FIGURE 5 .Removal_flt of noisy synthetlc galmum transu'ents. All five errors in the calculated rate of release introduced by each
records of Fig. D (o = 0.2 uM) were fitted simultaneously; only three . . . .
records are shown. Thin lines, Simulated noisy transient. Dashed linedN€- The first procedure is the conventional difference ap-
Underlying noise-free transient. Bold lines, Bestfit trajector§) The  proximation (Eg. 5). The second method (kernel estimation
initial value of the ODE system was fixed to the measurement at thewith globally chosen bandwidth) smoothes the noisy record
beginning of thlefifting interval. Best-fjtlparameters Gtandard errors): by a weighted moving average, which is equivalent to fitting
kon=5=6uM 157 ko = 0+ 0.004 S %, S = 266+ 447 uM, ko= ; . .
0 = 761 s *. (B) The initial value of the ODE system was allowed to vary pqunomlals IocaIIy. This has t_he advamage t_hat the deriv-
freely. Best-fit parameterk,, = 13+ 4 uM s k., = 0.04= 0.18s%,  ative can be calculated analytically from the fitted parame-
Sota = 144+ 32 uM, ko = 350 + 77 %, ters. The choice of the interval length over which each local

b s
b s
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fit is carried out results from an analysis of the noise
varianceo?.

A more refined method (local adaptive algorithm; see
Mller, 1988) adjusts the interval length by estimating the
local curvature of the signal by means of a crude estimate of
the third derivative of the record. This reduces oversmooth-
ing at locations where the signal changes steeply and uses
larger smoothing intervals in regions where the curvature is
small.

The details of the procedure are demonstrated in Fig. 6.
Here, the numerical derivative of a simulated free calcium
transient with Gaussian noise € 0.1 uM, comp. Fig. 4C)
is calculated. The original record (with and without noise) is
shown in Fig. 6A. Fig. 6 B shows the estimated third
derivative used in the kernel estimator, calculated with a
fixed bandwidth of 50 ms (see Methods), and FigC6
shows the resulting kernel bandwidth for each point in time
chosen by the algorithm. The continuous line in FigD6
shows the first time derivative of the noisy calcium transient
determined with the locally varying kernel bandwidth of
Fig. 6 C. For comparison, the dashed line shows the true
derivative of the noise-free transient. The positive peak at
the beginning of the time course is underestimated by 23%.
This difference results from the trade-off between bias and
variance of the estimator. Choosing a smaller bandwidth in
this region would decrease the bias but increase the vari-
ance. The chosen bandwidth minimizes the expected mean-

;
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200ms
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1uM
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square error, which combines bias and variance.

rrJJl
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JELE

Fig. 7 compares a number of methods for calculating the
num_encal derivative in the determ!natlon of .the rate_ OfFIGURE 7 Comparison of numerical derivative procedures for the cal-
calcium release. Three different noise levels in the simuculation of the rate of calcium release from calcium transients subjected to
lated calcium records were applied (see legend). To excluddifferent levels of noise. The true values of the model parameters were used
effects due to different realizations of the noise. we usedn each case; therefore, the variability results exclusively from the different

identical realizations scaled to different amplitudes (Fig.

A 5¢10°° uM/ms3 B
1 uMI
O_.
400 ms
\

200ms

0.05 ¢ uM/ms

0 \/"/'7100 ms

400 ms

FIGURE 6 Computation of the numerical derivative of a noisy freé"Ca
transient by locally adaptive kernel estimatioA) Synthetic noisy C&"
transient ¢ = 0.1 uM, cf. Fig. 4 C). (B) Estimate of third derivative (in
wM/ms®). (C) Locally chosen kernel bandwidtisdlid ling). The globally
optimal bandwidth dashed ling is 36 ms. D) First derivative of the
transient shown i\. Solid line: Derivative computed by locally adaptive
kernel estimator (inuM/ms). Dashed line: Analytical derivative of the
noise-free transient.

7ways of calculating the derivativesA) Noisy synthetic transients. From
left to right: o = 0.005, 0.05, and 0.1M. (B-G) Original (dashed ling
and recalculatedcpntinuous ling rate of release using the following
methods of carrying out numerical derivatives of summed total calcium
concentration (see Fig. 2)B) Local adaptive kernel estimatoCY Kernel
estimator with optimal global bandwidtkeft, 8 ms;middle 27 ms;right,
36 ms). D) Kernel estimator with fixed bandwidth of 10 m<£)(Kernel
estimator with fixed bandwidth of 50 md&=) Finite differencesh = 4 (see
Eq. 5). G) Finite differencesh = 10.

A). In each case, the true values of the model parameter
were used for the calculation of the compartment occupan-
cies to exclude variability due to different quality of the
removal model fit. Fig. 7B shows the application of the
locally adaptive approach outlined in Fig. 6. It produces a
rather smooth record and yet gives a relatively good recon-
struction of the rapid components of the original rate of
release curvedashed ling even for the highest level of
noise. From left to right, the calculated peak amplitudes
were 98%, 83%, and 86% of the original one. In contrast, a
kernel estimator with optimal global bandwidth (Fig.Cy
considerably underestimated the initial peak rate for the
larger levels of noise (99%, 67%, 66%). Lowering the
global bandwidth in an attempt to get better peak restoration
also considerably increased the noise (FidD)7 This was
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even more the case when a difference approximation of th¥jolation of the model assumptions
numerical derivative was used. A choice of the bandwidth

(h = 4) that gave good peak restoration completely failed afA crucial assumption for the rem_oval model ﬁt. anglysis Is
the higher noise levels (Fig. 7), and increasing the band- that release can be turned off rapidly by repolarization. Only

width to lower the noisel{ = 10) strongly suppressed the f[hls enr?\bles an independent charagterlzatlon of rem.oval.by
peak (Fig. 7G). inspecting the decay of free calcium. If release is still

Fig. 8 demonstrates the outcome of the complete analysgresent duripg the decay, one can expect that removal will
procedure in the presence of noise. It compares the standa underestimated, and the calculated release time course

analysis used in the original description of the proceduredu”n.g the depolatlzatlon will be in error. To assess this
(Melzer et al., 1987), i.e., the initial value method for possible error, we increased the turn-off time constaof

parameter estimation by removal fit and finite differencesthe m_put calcium .release §|gnal§ (Eq. 8) and analyzed the
resulting free calcium transients in the same way as before.

for derivatives on one handeft columr), with the multiple . . ; )
shooting method combined with the adaptive kernel estimaF'g' 9ffs?ows the trestult Krtrtlh's ﬁntarl:y&s fcl)(r f?tf[;] d|ffe|rent
tor on the other handi@ht columr). Apart from the major urn-oft ime- constants. ouy € peak ol the release

problems regarding the numerical derivatives, the L~:tandar5’lte was not affected, increasingproduced an increasingly

procedure introduced further deviations in the release Calftron?er, ISIEJI_\;]VIy dfecaylggl un%erslhoot be1ltotvr\]/ thelactual Ela'
culation due to the unreliability in estimating the model €au level. Therefore, delayed closure of ne release chan-

parameters and failed to calculate a tolerable estimate of thr?aeIS would cause an appare ntincrease in the ratio of peak to
eady level of the determined rate of release.

rate of release time course. The new methods, however, Iest‘} . . . .
Fig. 10 explains this result. The figure compares the

to a result that stayed close to the original record, even T . .
under these unfavorable conditions contribution of the different calcium compartments to the

In summary, whereas for relatively clean recordit( '([jq:fal rek;:ase rateg d(;:rr]lveldf;/wth thg re_mé) val moddel fit 'tr;] two
columnof Fig. 7) even a difference approximation with ifferent cases. On the left a rapigf & 3 ms) and on the

small bandwidth (Fig. 7F) gives good results, the only right a slow ; = 25 ms) turn-off of the release had been

method that could cope with the higher noise levels was thé'sed. for the calcium transient simulation. For the slowly
locally adaptive kernel estimator (Fig.). ceasing release, 55% of the steady-state level of release was

The latter method offers a more reliable estimation of theStIII active at the time the f'.t §tarted.
As the model used for fitting assumes that release has

release rate. This holds for the reconstruction of the peak at - .
turned off completely 15 ms after repolarization, this con-

the beginning of the depolarization, as well as for the ﬂatd't' i f d th timated rel te. thereb

parts of the release rate time course. ition 1S forced upon the estimated release rate, thereby
distorting its shape. The slow saturable component in par-
ticular is too small (Fig. 10right).

A c Inspecting t.hef best.-fit parameter yalygs (Fig. 10 Ieg.end)
shows that this is mainly due to a significant underestima-
tion of Sy (43 versus 10uM). An additional underesti-
mation of the nonsaturable removal parametgr (330

1 uM/ms

200ms

FIGURE 8 Comparison of two analysis procedures for determining the

rate of C&" release from the noisy set of free calcium data of Fi@ 4

(o = 0.1 uM). Left Canonically applied methodRight Improved meth-

ods. @) Result of removal fit with the initial value approach with no =
constraints on the parameters and with the first point at the beginning of the

fitting interval fixed to the observation. Best fit parametécs; = 3.4 = FIGURE 9 Consequences of delayed turn-off of release for the analysis
20uM s kyy = —0.01+ 0.06 S, S = 342 + 289 uM, ks = result. Free calcium transients were simulated with release rates with
—83 = 381 s'*. (B) Release rate computed by symmetrical finite differ- different 7, (cf. Eq. 8). These transients were then fitted with the removal
ences,h = 10 (Eq. 5). C) Final trajectory of the multiple shooting model, assuming that the release had turned off completely 15 ms after
approach (five subintervals) with positivity constraints on the parametergepolarization. Solid lines, release rates computed from the transients using
and with the first point at the beginning of each fitting interval as an best-fit parameters. Dashed lines, original release rates. The fractions of
additional free parameter. Best fit parametdqs; = 11 = 2 uM 57, release still present at 15 ms after repolarization, as a percentage of the
Kot = 0.14* 0.11 S}, S = 118 = 17 uM, k= 376 = 43 s . (D) steady level (JuM/ms), were as follows in parentheses)A) 3% (3 ms);
Release rate computed by the locally adaptive kernel estimator. (B) 12% (7 ms); €) 37% (15 ms); D) 55% (25 ms).
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] ”MI are analyzed, however, the model used for the fit will at best
A be an approximation to the real system. In general, the
/\ A models will be misspecified. This misspecification might
—_— show up in different ways:

200ms 200ms

1. The model does not contain as many compartments as
the real system.

2. Some parameters of the model are fixed to values that are
not equal to the true ones.

3. The kinetic scheme of the model does not correspond to
the real system.

There is no straightforward way to decide if the model used

1 uM/msl for the fit can sufficiently reproduce the main characteristics
C of C&" release in the experimental system. The criterion
generally used to decide if a given model suffices for the

analysis is the quality of the removal fit. A model that does
not lead to a good fit of the relaxation time course can be
assumed to be insufficient for the release calculation. On the
D 1uM/mSI other hand, it is assumed, even though not unambiguously
______ . proved, that a model which leads to a good fit of thé Ca
T  — relaxation time course after repolarization under different
conditions will correctly describe the overall removal prop-
erties of the cell and will, therefore, lead to a good approx-
imation of the release rate time course. We believe that this
E WM/mSl criterion needs further evaluation in future investigations.
P It seems more straightforward to decide if a given re-
I T moval model (which fits the real data well) can be replaced
by a simpler model. Here, too, the simulation approach
lated with fast and slow turn-off of release. Five calcium transients WereOﬁerS a valuat?le tool. Free galcmm da,ta resembling real
generated from synthetic release rates with differerftf. Eq. 8). These ~ON€s can be simulated by using a detailed model and can
transients were then fitted with the removal model, and release rates wefien be analyzed with models comprising fewer parameters
computed with the resulting best-fit parametdtsvas fixed at 30 in each  or even a different kinetic structure. If release rates obtained
caseLeft 7, = 3ms, i.e, fast release turn-off. Best-fit paramettfs=  from the analysis are close to the known ones used for the
9-95uM S i koy = 0.29S 7 S = 100.64M; koo = 399.7S L Right 50y 1vion it seems justified to substitute the simpler model
7, = 25 ms, i.e., slow release turn-off. Best-fit parametégs: = 10.4 ! . . ;
M7 L kg = 0 8% Sop = 43.4uM; ko = 330 s L. (A) Simulated  TOr the more complex one. In applications this may offer the
transients thin lineg and trajectory from the removal fibold lines. (B) possibility of using a model in which all parameters are
Total release ratesCj Rates of change for total fast calcium, i.ea,C, + identifiable from the given data.

g‘f;‘g : ﬁigi;’I‘;dcl‘zii;e“SPtg'Z%%{oééE)DF;fﬁ:do‘;if"e“';‘_”goiif",r S'IOW calcium,  \we demonstrate this approach with two examples shown
' ' ' puted. - nginat. in Fig. 11. As before, we used the release rates of Fi§y. 2
and generated free calcium transients with the model dis-

played in Fig. 2B.

For the model used in the removal fit analysis, we used a
different structure. The rate constadqt was changed to a
function that decreased with the amount of released cal-
Effects of misspecified removal models on the cium. For this purpose the fractional saturatfasf the site
estimated release Swas calculated (Eq. 13, obtained from Eq. 10 after divid-

] ] ) _ing by Sga) and was assumed to modify the uptake rate
In the preceding paragraphs we investigated how the qualityccording to Eq. 14, which replaces Eq. 11:
of the release rate estimate obtained from the removal

FIGURE 10 Result of release rate calculation fo? Cé&ransients simu-

versus 400 s') contributes little to the underestimation of
the removal rate (Fig. 10, right).

model fit approach depends on factors like the level of noise f=K,* Caeer (1 — ) — ko - f (13)
in the data, the numerical procedure used for calculating
derivatives, and the degree to which the assumption that Caup: (a— F)K,* Cayenr (14)

release stops immediately after repolarization is fulfilled.

To ensure that the model used for the fit could reproduceé.e., akl, is the effective uptake rate constant at zero satu-
the characteristics of & removal in the system underly- ration of S, whereasd — 1)k%is the value at full saturation.
ing the calculated free calcium data, we used exactly the The new model reproduced the slowing of relaxation of
same model for generating the data. When measured dathe calcium transients, which in the original scheme resulted
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Delbono et al., 1995; Delbono and Meissner, 1996; Shi-
rokova et al., 1996; Jong et al., 1996). An empirical deter-

A C
1M I mination requires several steps of analysis, including the fit
of a removal model to experimental calcium transients
(Melzer et al., 1986, 1987; Brum et al., 1988a; Gdegand

Rios, 1993; Shirokova et al., 1996).
B 200ms D In the present work we examined, under defined condi-
tions, the degree to which the analysis gives correct results.
For this purpose, we applied known release rate waveforms
to a known, completely identifiable calcium turnover
model, so that the result of the analysis could easily be
compared with the true data, and the influence of various
disturbing factors on the analysis result could be studied.
FIGURE 11 Effects of misspecified removal models on the estimated/Ve described several mathematical tools that can help to
release A) Synthetic free calcium transients (FigC) and removal fit of ~ improve the method.
the misspecified model bpld lineg. Best-fit parametersi; = 944.5 k,, The main questions studied were the following: 1) How
o oot espehe ok I 5 iy CA 1 oninear emoval ft be opinized? 2) To what
?ree calcium transients (Fig.CL)F;nd removal fit of the misspecif)i/ed model qegree ?an,the rEIea,S’e determination cope W,It_h observa-
Il (bold liney. Bestfit parametersk®, = 990.5,k,, = 3.21. ©) True  tional noise in the calcium records? 3) How sensitive are the
release ratedashed lines(Fig. 1A) and estimation based on the misspeci- results to a violation of the main assumption of the removal
fied model Il Golid lines. fit analysis, namely, that release is completely turned off
after repolarization? 4) Is it possible to use simplified re-
moval models comprising fewer parameters?

from the progressive filling of the slow buffer S. Inthe new  There is no general procedure that prevents divergence of
scheme, S was eliminated as a buffer by assuming3hat  the removal model fit or convergence to a local minimum of
had a negligibly small value. Thus calcium bound to thethe parameter space. Compared with the classical initial
slow system S does not influence the calcium distributionvalue approach, the multiple shooting algorithm that divides
directly. The uptake in the new scheme can be envisaged tide fit interval into smaller subintervals showed clear ad-
become partially inactivated by a calcium-dependent mechvantages. It reduces the inherent numerical instability of the
anism that contributes a negligible number of calcium-initial value approach, which results from its high sensitiv-
binding sites. For a further simplification, we set the pa-ity to the initial choice of the parameter values. The multiple
rameterk,, to zero. Thus the resulting model (model 1) shooting procedure requires less effort to search for a suit-
contained one parameter less than the model used for geable set of initial parameter guesses, because it converges to
erating the data. the correct values for a larger range of initial guesses than

Fig. 11Adisplays the calcium transients and the removathe initial value approach. It seems particularly useful when
fits. Fig. 11B compares the synthetic release rattssfied noisy records are to be analyzed. By including the measured
lines) and those calculated based on the simpler modetoncentration values at several points of time during the free
(solid lineg. Apart from a slight underestimation of the calcium decay as initial values for a discontinuous initial
plateau, the time courses are in good agreement. Fi€: 11 trajectory, the multiple shooting fit uses the available dy-
shows the removal fits for the case that the parameiar  namic information of the system more efficiently. The re-
Eq. 14 is fixed to 1 (model II), which means that uptake isformulation of the initial value problem into a multipoint
completely suppressed when S is fully saturated. The quaboundary value problem forces the trajectory to stay close to
ity of the fit is only slightly worse than that in Fig. 14 but  the measured data, and therefore reduces the chance of
the estimated release rates in Fig.Ddiffer qualitatively  divergence, even for ill-chosen starting values. Because the
from the original ones in showing an increase instead of actual linearized problem that has to be solved has the same
steady level and negative going phases at the end of thd@imension as the initial value problem, the multiple shoot-
shorter depolarizations. ing algorithm does not require significantly more calcula-
tion time. We think that this method will be of advantage in
applications where short lifetimes of the preparation (e.g.,
DISCUSSION patch-clamp experiments on isolated myocytes or neurons)
The determination of the G4 release rate from the sarco- prohibit time-consuming signal averaging.
plasmic reticulum has been used frequently to characterize The physics underlying the €& compartment model
excitation-contraction coupling in muscle cells (Baylor etimposes certain constraints on the parameters. Most nota-
al., 1983; Melzer et al., 1984, 1987; Schneider et al., 1985bly, rate constants and concentrations must be nonnegative.
Brum et al., 1988b; Sipido and Wier, 1991; JacquemondNumerical experience shows that fitting algorithms tend to
and Schneider, 1992; Gaacand Schneider, 1993; Goes.  diverge if these constraints are violated. Therefore, it seems
and Ros, 1993; Pape et al., 1993, 1995; Delbono, 1995natural to implement them as part of the fitting procedure.

1 uM/msI

200ms
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Our simulation studies showed that positivity constraints orinclude diffusion of both Ca and some of its target site
the parameters do indeed stabilize the fitting procedur@opulations, and will have to appreciate the fact that the
substantially. myoplasm is not uniform in terms of Ca releaséqfkand
In the presence of noise, convergence to a local minimun$tern, 1997). Ca is released from distinct regions within the
was not a serious problem with the multiple shooting ap-sarcomere, which can create substantial local concentration
proach, whereas this could easily occur in the initial valuegradients.
approach. With regard to the latter, one additional point For the purpose of this paper, i.e., for demonstrating the
should be noted. It has been common practice in previouadvantages of improved numerical methods, we chose the
work with the removal fit method to fix the first point of the present, relatively unsophisticated calcium distribution
fitted trajectory to the observation at the beginning of themodel, simply because of the small number of model pa-
fitting interval. However, there is no real justification for rameters involved. However, the general conclusions re-
this procedure. Instead, the initial value should be treated agarding the benefits of the multiple shooting algorithm
an additional free parameter to be fitted. Indeed, our simueombined with an adaptive kernel estimator for deriving the
lations showed that fixing the first point destabilized therate of release also hold for more complicated reaction
procedure, both in the absence and even more in the presehemes introduced in previous publications.
ence of noise. The problem of actually selecting a minimal kinetic
Noise is even more of a problem when numerical deriv-scheme for the removal model fit appropriate for given
atives have to be calculated. This is required in all availableexperimental results was not the scope of this study. How-
methods of determining the release rate, be they deductivever, with the example of Fig. 11, we demonstrate that the
(Baylor et al., 1983) or inductive (Melzer et al., 1987; Brum approach of analyzing artificial free calcium transients sim-
et al.,, 1988b). Furthermore, it is necessary when kinetiazlated with known release rates may be applied for the
limitations of indicator dyes have to be corrected for (Klein purpose of model reduction, i.e., to decide if a given model
et al., 1988). There are definitely limits to off-line analysis can be replaced by a simpler one. A simpler model can be
as a corrective for noise, and experiments should be dearusted to fulfill its task equally well if it reliably returns the
signed to reduce it as much as possible beforehand. Amorgiown release rates used for the simulation. Conclusions
the algorithms we compared, the kernel estimator withexclusively based on the apparent fit quality, however, may
locally adaptive optimization of the filter bandwidth showed be misleading. The result of Fig. 1€,andD, indicates that
the best results in preserving fast changes and flat sectiorss satisfactory fit does not necessarily guarantee perfect
of the release rate. Difference approximations of the timeaeconstruction of the underlying release rate waveform. We
derivative should only be used when the records have a higtherefore feel that one should be cautious in overinterpreting
signal-to-noise ratio. small kinetic details of the release rates determined from
The quality of the estimated release rate time coursenuscle cells, and that the general issue of optimal model
depends not only on the numerical methods applied, but alsselection requires further mathematical investigation.
on the validity of the central assumption that there is no In summary, we showed that advanced methods of data
residual release during the decay phase of the calcium signahalysis for fitting ODEs as well as for estimating deriva-
that is used for the removal model fit. tives from noisy data allow for a more reliable reconstruc-
We investigated the effect of a violation of this assump-tion of the release rate time course than the commonly
tion by allowing increasing overlap between the analysisapplied methods. Because the methods investigated here
interval and slowly decaying release. The calculated releasghowed their full power in the presence of noise, they will
rate underestimated the true one and was temporally dide particularly useful when the time-resolved transmem-
torted. This showed up in an increased ratio of peak tdrane calcium flux is to be determined from calcium tran-
steady level and in a shallow minimum of the release ratesients of smaller cells (cultured myocytes, neurons, etc.) that
right after the peak (Fig. ¥). From an analysis of the produce signals with lower signal-to-noise ratios than skel-
temporal behavior of the model compartments, this effecetal muscle fibers.
could be explained by an underestimation of the slow sat-
urable removal component. Overall, however, the main
temporal characteristics were rather well preserved, even ile thank W. Horbelt for valuable discussions, Drs. J. Honerkamp and F.
cases where the overlap was large. Lehmann-Horn for their support, B. Dietze and A. Struk for technical help,
Larger models including more details of the calcium and Dr. M. Schiebe for initiating the cooperation.
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to semiempirically derive the rate of release in muscle fibergchaft to WM.
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