
A&A manuscript no.(will be inserted by hand later)Your thesaurus codes are:03.13.6,13.25.2 ASTRONOMYANDASTROPHYSICS3.12.1996Analyzing X-ray variability by Linear State Space ModelsMichael K�onig1 and Jens Timmer2;31 Institut f�ur Astronomie und Astrophysik - Astronomie, Universit�at T�ubingen, Waldh�auser Str. 64, D { 72076 T�ubingen2 Fakult�at f�ur Physik, Albert-Ludwigs-Universit�at, Hermann-Herder Str. 3, D { 79104 Freiburg3 Freiburger Zentrum f�ur Datenanalyse und Modellbildung, Albert Str. 26-28, D { 79104 FreiburgDecember 3, 1996Abstract. In recent years, autoregressive models havehad a profound impact on the description of astronom-ical time series as the observation of a stochastic process.These methods have advantages compared with commonFourier techniques concerning their inherent stationarityand physical background. However, if autoregressive mod-els are used, it has to be taken into account that real dataalways contain observational noise often obscuring the in-trinsic time series of the object. We apply the techniqueof a Linear State Space Model which explicitly modelsthe noise of astronomical data and allows to estimate thehidden autoregressive process. As an example, we haveanalysed the X-ray 
ux variability of the Active GalaxyNGC 5506 observed with EXOSAT.Key words: X-rays: galaxies { methods: statistical { ob-jects: NGC 55061. IntroductionA common phenomenon of Active Galactic Nuclei, whichpresumably harbor supermassive black holes with massesof 106 { 109M� (Rees 1984), is the strong variabilitywhich can be observed in X-ray lightcurves. These AGNlightcurves seem to show featureless 'red noise', i.e. scale-free, divergent variability at low frequencies, often alsodescribed as 
ickering or 1=f 
uctuation (Lawrence et al.1987). The 1=f term describes the power law distributionof the spectral power with the function f�� in the powerspectrum, often denoted as '1=f ' behavior.We present an alternative model to analyse the vari-ability seen in the X-ray lightcurves of AGN. The standardmethod of analyzing time series in the frequency domainis discussed brie
y in Section 2. The alternative is knownas a Linear State Space Model (LSSM) based on the the-ory of autoregressive processes (Scargle 1981, Honerkamp1993) which usually cannot be observed directly since theobservational noise (i.e. detectors, particle background)

overlays the process powering the AGN. A LSSM �t ap-plied to the time series data yields the dynamical param-eters of the underlying stochastic process. These param-eters should be strongly correlated to the physical prop-erties of the emission process. The corresponding LSSMpower spectrum exhibits both the decrease of power atmedium frequencies and a limitation of spectral power atlow frequencies. The detailed mathematical backgroundof LSSM and the �t procedure are described in Section 3and 4. Finally we present �rst results using this techniquewith EXOSAT data from the Seyfert galaxy NGC 5506 inSection 5.2. Description of the Method based on the 1=f�-modelAlthough measured astronomical data are time domaindata, a commonly applied method works in the frequencydomain by analyzing the power spectrum of the time se-ries. As the observational window function is convolutedto the true spectrum of the source, artefacts might beproduced in the power spectrum, which make a proper in-terpretation more di�cult (Papadakis and Lawrence 1995,Priestley 1992). In most cases, the power spectra are �t bya power law function with an o�set described as 1=f�+ c,with values of � ranging from 0 to 2 and a mean of about1.5 (Lawrence and Papadakis 1993). The value c is oftendenoted as the `observational noise 
oor' which describesthe random process comprising the observational errorswhereas the `red noise' component is the signal of interest.In the case of long AGN observations, however, a 
atten-ing at low frequencies occurs which cannot be modelledby the 1=f�-model (McHardy 1988).The 1=f�-model is an ad hoc description of the mea-sured periodogram, without any direct physical motiva-tion. However, it is possible to generate time series with a1=f�-spectrum using self-organized criticality models sim-ulating the mass 
ow within an accretion disc of the AGN(Mineshige et al. 1994). Such models produce a stationarytime series that exhibits a 1=f�-power spectrum by lim-



2 Michael K�onig et al.: Analyzing X-ray variability by Linear State Space Modelsiting the timescales occurring in the simulated accretionprocess. A 1=f�-model without limited timescales wouldbe stationary only if the power law slope is smaller thanunity (Samorodnitsky and Taqqu 1994). The observedtime series is composed by the superposition of single lu-minosity bursts. The slope of the 1=f�-spectrum of datasimulated in that way is about 1.8, signi�cantly higherthan those measured from real data (Lawrence and Pa-padakis 1993). If the inclination of the accretion disk isbrought in as an additional model parameter the slopecan be diminished, but not in a way that leads to con-vincing results (Abramowicz et al. 1995). Another pointthat contradicts this assumption is that there is no cor-relation between the spectral slope and the type of theSeyfert galaxy (Green et al. 1993). This correlation shouldbe present since the Seyfert type is believed to be causedby the inclination of the line of sight (Netzer 1990).The periodogram which is used to estimate the truesource spectrum is di�cult to interpret in the presenceof non-equispaced sampling time series arising from realastronomical data (Deeter and Boynton 1982 and refer-ences therein). The estimation of the 1=f�-spectrum ishampered even in the absence of data gaps. This is dueto the �nite extent of the observed time series. Therefore,the transfer function (Fourier transform of the samplingfunction) is a sinc-function which will only recover thetrue spectrum if this is su�ciently 
at (Deeter and Boyn-ton 1982; Deeter 1984). In the case of `red noise' spectrathe sidebands of the transfer function will cause a spectalleakage to higher frequencies which will cause the spectrato appear less steep (the spectral slope will be underesti-mated).Even periodograms of white noise time series deviatefrom a perfectly 
at distribution of frequencies as the pe-riodogram is a �22-distibuted random variable with a stan-dard deviation equal to the mean (Leahy et al. 1983).Thus the periodograms 
uctuate and their variances areindependent of the number of data points in the time se-ries. Due to the logarithmic frequency binning, AGN pe-riodograms will always show this strong 
uctuation dueto the low number of periodogram points averaged in thelowest frequency bins (see Fig.1).Furthermore, additional modulations can be createdin white noise periodograms if the time series consists ofparts which slightly di�er in their means and variances,respectively (Krolik 1992). In the case of the EXOSATME X-ray lightcurves this e�ect is due to the swappingof detectors as each detector has its own statistical char-acteristics which cannot be totally suppressed (Grandi etal. 1992; Tagliaferri et al. 1996). Fig.1a shows a typicalX-ray lightcurve which mainly consists of uninterrupted11 ksec observation blocks before detectors are swapped.If the periodogram frequency corresponds to the obser-vation block length, the calculated sum of Fourier coe�-cients equals its expected white noise value of �2 due tothe constant mean and variance within the entire oscilla-
Fig. 1. a) EXOSAT ME X-ray lightcurve of the quasar 3C273(Jan. 1986), b) corresponding periodogram. Each dot repre-sents the spectral power at its frequency, stepped with 1=Ttot.The periodogram is binned logarithmically (squares indicatesa single point within the frequency bin).tion cycle. At other, mainly lower, frequencies the Fouriersum yields non-white values due to temporal correlationscaused by di�erent means and variances of observationblocks located in the test frequency cycle. These devi-ations from a 
at spectrum will be very strong at fre-quencies which correspond to twice the observation blocklength. The arrows in Fig.1b clearly show this minimumfeature at 9:1 � 10�5Hz and another shortage of power at1:4 � 10�5Hz which corresponds to the long uninterrupted72 ksec observation block starting at the second half ofthe EXOSAT observation (Fig.1a).Consequently a model is required which operates inthe time domain and avoids any misleading systematicale�ects occuring in power spectra.



Michael K�onig et al.: Analyzing X-ray variability by Linear State Space Models 33. Mathematical Background of the Linear StateSpace ModelIn this section we brie
y introduce the Linear State SpaceModel (LSSM). For a detailed discussion, see Honerkamp(1993) and Hamilton (1995). The LSSM is a generalizationof the autoregressive (AR) model invented by Yule (1927)to model the variability of Wolf's sunspot numbers.We follow Wold's decomposition theorem (Wold 1938;Priestley 1992; Fuller 1996) which states that any discretestationary process can be expressed as the sum of twoprocesses uncorrelated with one another, one purely deter-ministic (i.e. a process that can be forecasted exactly suchas a strictly period oscillation) and one purely indeter-ministic. Further, the indeterministic component, which isessentially the stochastic part, can be written as a linearcombination of an innovation process, which is a sequenceof uncorrelated random variables.A given discrete time series x(t) is considered as asequence of correlated random variables. The AR modelexpresses the temporal correlations of the time series interms of a linear function of its past values plus a noiseterm and is closely related to the di�erential equation de-scribing the dynamics of the system. The fact that x(t)has a regression on its own past terms gives rise to the ter-minology `autoregressive process' (for detailed discussionssee Scargle 1981; Priestley 1992). A time series is thus arealization of the stochastic process or, more precisely, theobservation of a realization of the process during a �nitetime interval. The AR model expresses the temporal cor-relations in the process in terms of memory, in the sensethat a �lter (ai) remembers, for a while at least, the pre-vious values x(t� i). Thus the in
uence of a predecessorvalue decreases as time increases. This fading memory isexpressed in the exponential decay of the AR autocorrela-tion function (see eq. 10). The AR processes variable x(t)remembers its own behavior at previous times, expressedin a linear relationship in terms of x(t�1); x(t�2); : : : plus�(t) which stands for an uncorrelated (Gaussian) whitenoise process.x(t) = pXi=1 aix(t� i) + �(t); �(t) � N (0; �2) (1)The number of terms p used for the regression of x(t) de-termine the order of the AR process, which is abbreviatedto an AR[p] process. The parameter values ai have to berestricted for the process to be stationary (Honerkamp1993). For a �rst order process this means ja1j < 1, for asecond order process: ���a1 �pa21 + 4a22 ��� < 2. Dependingon the order p, the parameters ai of the process repre-sents damped oscillators, pure relaxators or their super-positions. For the �rst order process AR[1] the relaxationtime � of the system is determined from a1 by:� = � 1log ja1j (2)

In the case of a damped oscillator for an AR[2] processthe parameters, the period T and the relaxation time �respectively, are related by:a1 = 2 cos�2�T � e�1=� (3)a2 = �e�2=� (4)For a given time series the parameters ai can be esti-mated e.g. by the Durbin-Levinson- or Burg-algorithm(Honerkamp 1993). By statistical testing it is possible toinfer whether a model is compatible with the data.A �rst generalization of AR models are theautoregressive-moving-average (ARMA) models that in-clude also past noise terms in the dynamics:x(t) = pXi=1 aix(t� i) + qXj=1 bj�(t� j) + �(t) (5)Both models, AR and ARMA processes, assume that thetime series is observed without any oberservational noise.In presence of such noise the parameters ai will be under-estimated and statistical tests will reject the model evenif its order is speci�ed correctly.LSSMs generalize the AR and ARMA processes byexplicitly modelling observational noise. Furthermore,LSSMs use the so called Markov property, which meansthat the entire information relevant to the future or for theprediction is contained in the present state. The variablex(t) that has to be estimated cannot be observed directlysince it is covered by observational noise �(t). Followingthe Markov property it is possible to regressively predictthe values x(t), though.The measured observation variables y(t) may not nec-essarily agree with the system variables x(t) that providethe best description of the system dynamics. Thus a LSSMis de�ned with two equations, the system or dynamicalequation (6) and the observation equation (7).x(t) = Ax(t� 1) + �(t) �(t) � N (0;Q) (6)y(t) = Cx(t) + �(t) �(t) � N (0; R) (7)This de�nition is a multivariate description, which meansthat the AR[p] process is given as a p-dimensional AR pro-cess of order one, with a matrix A that determines the dy-namics. By combining the di�erent dimensional terms ofthe multivariate description the typical AR[p] (see eq. 1)form can be derived easily. The observation y(t) is formu-lated as a linear combination of the random vectors x(t)and �(t). The matrix C maps the unobservable dynamicsto the observation. The terms �(t) and �(t) represent thedynamical noise with covariance matrix Q and the obser-vational noise with variance R, respectively.The estimation of the parameters in LSSMs is morecomplicated than for AR or ARMA processes. There aretwo conceptually di�erent procedures available to obtain
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Fig. 2. a) EXOSAT ME X-ray lightcurve of NGC 5506 (Jan. 1986), b) Hidden AR[1]-process, estimated with the LSSM �t.the maximum likelihood parameters estimates. Both areiterative and start from some initial values that have tobe speci�ed. The �rst procedure uses explicit numericaloptimization to maximize the likelihood. The other ap-plies the so called Expectation-Maximization algorithm.The latter procedure is slower but numericallymore stablethan the former and is described in detail by Honerkamp(1993). Statistical evaluation of a �tted model is generallybased on the prediction errors. The prediction errors areobtained by a Kalman �lter which estimates the unob-servable process x(t) (Hamilton 1995). Such a linear �lterallows us to arrive at the variables x̂(t) (and its predic-tion errors), used to describe the system dynamics, start-ing from a given LSSM and the given observations y(t)(Brockwell and Davis 1991, Koen and Lombard 1993).Multiplying the estimated process x̂(t) with the esti-mated C yields an estimate ŷ(t) of the observed time seriesy(t). A necessary condition that the model �ts to the datais that the di�erence y(t)� ŷ(t) represents white noise, i.e.the time series of prediction errors should be uncorrelated.This can for example be judged by a Kolmogorov-Smirnovtest that tests for a 
at spectrum of the prediction errorsor by the Portmanteau test using their autocorrelationfunction. We have used the �rst method to quantify thegoodness of �t of the tested LSSMs (see table 1).Another criterion to judge �tted models is the decreasein the variance of prediction errors with increasing orderof the �tted models. A knee in this function gives evi-

dence for the correct model order. Any further increaseof the model order will not reduce the variance signi�-cantly. The so called Akaike information criterion (AIC)formulizes this procedure including the di�erent numberof parameters of the models (Hamilton 1995). Any oscil-lators and relaxators which might occur in unnecessarilymore complex LSSMs should be highly damped and canbe neglected therefore.The last method to judge a �tted model is to comparethe spectrum that results from the �tted parameters withthe periodogram of the sample time series. The spectrumof a LSSM is given by :S(!) = C(1� Ae�i!)�1Q �(1� Aei!)�1�TCT +R (8)The superscript T denotes transposition. Spectra of AR orARMA processes are special cases of equation (8). In thesimplest case of an AR[1] process modelled with a LSSM,the corresponding spectrum is given by:S(!)LSSMAR[1] = Q1 + a21 � 2a1 cos(!) + R (9)This function provides both the 
attening at low and thedecrease of power at medium frequencies seen in peri-odograms (e.g. see Fig. 4).In a �rst approach gaps in the observed lightcurve were�lled with white noise with the same mean and rms as theoriginal time series in order to create a continuous time



Michael K�onig et al.: Analyzing X-ray variability by Linear State Space Models 5series. In a second run these gaps were re�lled with thepredictions of the Kalman �lter plus a white noise realiza-tion with the original lightcurves variance. Generally, gapsin an observed time series can be handled by the LSSMin a natural way avoiding the �lling of gaps with Poissonnoise. The key is again the Kalman �lter. The Kalman �l-ter considers the fact that there are still decaying processestaking place even if the object is not observed. In each cy-cle of the iterative parameter estimation procedure x(t)is estimated based on an internal prediction, corrected byinformation obtained from the actual data y(t). In case ofgaps no information from y(t) is available and the internalprediction decays in its intrinsic manner until new infor-mation is given. In the case of the lightcurve of NGC 5506the resulting parameters are consistent with those of the�rst approach due to the high duty cycle of the originaltime series.4. The EXOSAT observation of NGC 5506As the X-ray lightcurves from EXOSAT are the longestAGN observations available, we have used the longest in-dividual observation of about 230 ks of the Seyfert galaxyNGC 5506 for applying the LSSM (Fig. 2a). The datawhich have been extracted from the HEASARC EXOSATME archive, are background subtracted and dead timecorrected, with a 30 sec time resolution obtained over 1{8keV energy range. The Seyfert galaxy NGC 5506 holdsa special place in AGN variability studies, as it is bothbright and one of the most variable AGN. The chosenlightcurve contains only few gaps providing a duty cyle of92.4%. The mean and rms of the lightcurve are 6.87 and1.55 counts in 30 s bins.Table 1. Results of LSSM �ts to the EXOSAT NGC 5506 dataModel Ra� Periods �b KS testcLSSM AR[p] (s) (s)0 1 - - 0.0%1 0.722 - 4799 93.5%2 0.701 - 26.1 66.8%- 50113 0.510 - 10.6 88.2%- 18.9- 47984 0.395 236.3 71.1 92.1%- 6.7- 4780a Variance of the observational noiseb Relaxation timec Kolmogorov-Smirnov test for white noiseWe applied LSSMs with di�erent order AR processes.An LSSM using an AR[0] process corresponds to a purewhite noise process without any temporal correlation and

a 
at spectrum. The used Kolmogorov-Smirnov test re-jects this model at any level of signi�cance (see table 1).Without loss of generality, Q is set to unity, the meanand variance are set to 0 and 1, respectively. We see thatthe X-ray lightcurve of NGC 5506 can be well modelledwith a LSSM AR[1] model, as the residuals between theestimated AR[1] process and the measured data are con-sistent with Gaussian white noise. Fig.3 shows the distri-bution and the corresponding normal quantile plot of the�t residuals which both display the Gaussian characterof the observational noise. The standard deviation of thedistribution is 0.738 which is in good agreement to theestimated observational variance of 0.722 for the LSSMAR[1] �t (see table 1). Furthermore, the lightcurve of theestimated AR[1] looks very similar to the temporal be-havior of the hidden process (Fig.2). The correspondingdynamical parameter a1 of the LSSM AR[1] �t is 0.9938which corresponds to a relaxation time of about 4799 s.
Fig. 3. a) Distribution and b) normal quantile plot of theresiduals of the LSSM AR[1] �t to the EXOSATME NGC 5506lightcurve (the dotted lines in a) indicate the mean and rms ofthe observational noise). A normal quantile plot arranges thedata in increasing order and plot each data value at a positionthat corresponds to its ideal position in a normal distribution.If the data are normally distributed, all points should lie on astraight line.The LSSM AR[1] gives a good �t to the EXOSATNGC 5506 data as the variance of the prediction errorsnearly remains constant from model order 1 to 2 and theresiduals conforms to white noise. The decrease in thevariance for higher model orders might be due to corre-lations in the modelled noise, generated by the switch-ing of the EXOSAT detectors. Since each detector has itsown noise charateristics a regular swapping between back-ground and source detectors would lead to an alternatingobservational noise level (see Section 2). The higher orderLSSM AR[p] �ts try to model the resulting correlationswith additional but negligible relaxators and damped os-cillators (� � bintime, � � Ttot).



6 Michael K�onig et al.: Analyzing X-ray variability by Linear State Space ModelsWe have used the Durbin-Levinson algorithm (see sec-tion 3) to estimate the parameters of a competing simpleAR[p] model (see table 2). As expected for time series con-taining observational noise, the characteristic timescalesare underestimated by �tting a simple AR process and thestatistical test rejects the AR[p] model. A test for whitenoise residuals fails, which means that there are still cor-relations present which cannot be modelled with an AR[p]procces. We have performed AR[p] �ts for model orders upto 10 and we never found residuals consitent with whitenoise, indicating that there is no preferred model order. Alloccuring relaxators and damped oscillators are insignif-icant due to their short relaxation timescales comparedwith the bintime of 30 s. As the observational noise is notmodelled explicitly in AR models, it is included acciden-tally in the inherent AR noise term. Thus, any correlationin the observed time series which can be detected in theLSSM �ts, is wiped out and the higher order AR �ts onlyreveal fast decaying relaxators and oscillators.Table 2. Results of AR �ts to the EXOSAT NGC 5506 dataModel Qa� Periods �b KS testcAR[p] (s) (s)0 1 - - 0.0%1 0.9235 - 23.3 0.5%2 0.8814 - 55.6 0.3%- 29.83 0.8566 - 97.0 0.4%197.4 40.64 0.8362 - 153.2 0.4%- 51.2127.7 55.1a Variance of inherent AR noiseb Relaxation timec Kolmogorov Smirnov test for white noiseOne might expect that the resulting best �t LSSM lightcurve (Fig. 2b) might also be produced by just smooth-ing the original lightcurve. This assumption is wrong asa smoothing �lter would pass long timescales and sup-press all short time variability patterns. Thus all informa-tion about the variations on short timescales would be lost(Brockwell and Davis 1989). The Kalman �lter concedesnot only the time series values x(t) but also its predictionerrors. These errors are much smaller than the errors ofthe observed lightcurve y(t). In the case of the NGC 5506observation (Fig.2) the estimation errors are about 0.18counts/sec and the errors of y(t) are about 1.3 counts/sec,respectively. Both lightcurves in Fig.2 are shown withouterror bars due to reasons of clarity.We have used Monte Carlo Simulations to determinethe error of the dynamical parameter a1. Using the dis-tribution of the estimated parameters of 1000 simulatedAR[1] time series with the best �t results, we found

a1 = 0:9938 � 0:0007. As the dynamical parameter isclose to unity the corresponding relaxation time error ishigh, with � = 4799+632�472 s. To prove the quality of theLSSM results we have �tted a LSSM AR[1] spectrum tothe periodogram data. This �t yields the dynamical pa-rameter a1 = 0:9936 � 0:0021 which is consistent withthe LSSM AR[1] �t in the time domain, but the corre-sponding error is much higher due to the lower statisticalsigni�cance of frequency domain �ts (see Section 2).The autocovariance function of the AR[1] process isgiven by:ACFAR[1](�) = Q1� a21 elog(a1)� (10)which is an exponentially decaying function for stationary(ja1j < 1) time series, very similar to the temporal behav-ior of the autocorrelation function of a shot noise model(Papoulis 1991):ACFshot noise(�) = ��2 e��=� (11)The variable � denotes the density and � is the life-time of the shots. This similarity means that an AR[1]process can also be modelled by a superposition of Pois-son distributed decaying shots (Papoulis 1991). The shotnoise model, which has been used as an alternative to the1=f� model, appears to give a good �t to the power spec-trum of NGC 5506 (Papadakis and Lawrence 1995, Belloniand Hasinger 1990 and references therein). But insteadof all the shots having the same lifetime, Papadakis andLawrence (1995) used a distribution varying as ��2 be-tween �1 and �2. They �xed �2 arbitrarily at 12 000 s andfound that �1 is around 300 s for NGC 5506, much lowerthan the relaxation time of about 4800 s found with theLSSM �t. A possible explanation for this di�erence couldbe the distribution of lifetimes. Since the power law slopeof the shot noise model is constantly �2 at medium andhigh frequencies, this distribution is necessary to modifythe slope and to maintain a good �t to the spectrum. Theadvantage of a LSSM is a variable slope at medium fre-quencies which depends on the dynamical parameter (seeFig. 4).The shot noise model can be regarded as an approx-imation of an AR[1] model for values a1 near unity. Themean density of the Poisson events � then corresponds tothe variance Q of the dynamical noise in the LSSM sys-tem equation (6). Thus Q could be used to quantify andcompare the rate of the accretion shots occuring in AGNs.5. DiscussionWe obtain a convincing �t to the observed X-raylightcurve of an AGN using a LSSM AR[1] process aswell in the time and in the frequency domain. The ex-plicit modelling of observational noise allows to estimate
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Fig. 4. Periodogram of the EXOSAT ME X-ray lightcurve ofNGC 5506 (dots) and the spectrum of the best �t LSSM AR[1]model in the time domain (line) (see Fig.2a). The spectra of thehigher order LSSM AR �ts di�er less than 2% from the LSSMAR[1] spectrum. The dashed lines display the �1� - spectra ofthe corresponding frequency domain �t. The time domain �tyields 1� errors which are more than 3 times smaller (see textfor details).the covered AR[1] process, indicating that the stochas-tic process is dominated by a single relaxation timescale.We show that the general AR[p] model (see Eq.1) can berestricted to a simple AR[1] process which succeeds in de-scribing the entire dynamics of the observed AGN X-raylightcurve.It has been suggested by McHardy (1988) that the sin-gle shots, which are supposed to be superimposed to buildthe lightcurve, may arise from subregions of an overalllarger chaotic region which are temporarily lit up, per-haps by shocks. Since one would expect a non uniformelectron density throughout this region (probably decreas-ing with distance from the central engine), the resultingdi�erence in cooling timescales yields the di�erent decaytimescales (Green et al. 1993). As the LSSM predicts thatthe stochastic process is dominated by a single relaxator,we presume the existence of a single cooling timescale or auniform electron density in the emission region followingthe shot noise model (see Sutherland et al. 1978).The assumption of an exponentially decaying shotseems to be reasonable as time-dependent Comptonisa-tion models lead to such a pulse pro�le. The scenario fora thermal Comptonisation model (Payne 1980, Liang andNolan 1983) starts with UV photons which arise as theaccretion in
ows inhomogeneities, each producing a sin-gle 
are when gravitational energy is set free as radiation.The impulsive emission of the Poisson distributed deltapeaks in a cloud of hot electrons triggers X-ray 
ares witha speci�c pulse pro�le depending on the seed photon en-ergy, the density, and the temperature of the electrons.This impulsive emission is delayed and broadened in timeand spectrally hardened due to repeated Compton scatter-
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