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Abstract
A method is presented for the determination of physical discharge
parameters for partial discharges (PDs) of voids in solid insulation. Based
on a recently developed stochastic theory of PD processes, a statistical
analysis of a measured phase-resolved partial discharge (PRPD) pattern
allows the determination of the relevant physical parameters like first
electron availability or decay time constants for deployed charge carriers.
These parameters can be estimated directly from the measured patterns
without the need of performing simulations. Furthermore, error bounds for
the parameter values can be given.

The parameter estimation algorithm is based on the analysis of a
contiguous region of the PRPD pattern where this region can be chosen
nearly arbitrarily. Thus, even patterns with several active PD defects or
patterns which are corrupted by noise can be analysed.

The method is applied to a sequence of patterns of a void in epoxy resin.
The change in first electron availability in the course of a day can be
determined quantitatively from the data while the other physical parameters
remain constant.

1. Introduction

Much work has been established in the last two decades in

order to understand and describe the nature of partial discharge

(PD) processes [1–9]. For some discharge phenomena physical

models have been developed (e.g. [2, 5, 22, 27]). These

models have substantially increased the knowledge of the

physical processes during PD processes. For the analysis

and interpretation of measured PD data, this knowledge is

fundamental. It allows to extract information about the

physical situation at the PD defect.

On the other hand, different PD measuring systems have

been developed which allow the detection and recording of

PDs. These systems are now widely used for monitoring and

failure detection in high-voltage equipment. Especially phase-

resolved partial discharge (PRPD) measurement systems have

become very popular.

However, the analysis and interpretation of measured PD

data is still a difficult task. Many publications treat this

problem (e.g. [10–29]). Two different kinds of analysis meth-

ods are used: the first method is based on a description of

the PD data by means of a set of parameters which, in most

cases, are statistical features [13–21], e.g. the number of dis-

charges per period, skewness and kurtosis of the pulse height

or phase-distribution, and others. These parameters yield a

characterization of the PD pattern and can thus be used for

interpretation and classification tasks. The main disadvantage

of such a purely descriptive characterization is the fact that the

parameters are not physical parameters, making an interpreta-

tion difficult. For example, an increase of the applied voltage

may lead to other values of the statistical parameters, even if

the physics of the discharge does not change significantly.

In contrast, the second analysis method is based on a

physical model which is used to perform simulations of the PD

process. Comparison of the simulated data with the measured

ones allows for the determination of the physical parameters.

Examples of this approach are [22–29]. This approach

renders a characterization of the pattern by physical parameters
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which, in most cases, is more useful than a purely descriptive

characterization. However, the simulation–comparison

method is difficult to use since there is no systematic way to

find the correct parameter settings. Most often, the parameters

are found by trial and error. This prevents the physical method

to be used in automatic pattern analysis algorithms.

In this paper, a new method is presented which allows the

extraction of physical discharge parameters from measured PD

data in a systematic and automatic way, based on the analysis

of PRPD patterns. It is based on a newly developed description

of the PD process [8] which is consequently formulated in a

stochastic framework. The discharge process is assumed to be

governed by few pysical parameters the most important ones

are the first electron availability and the charge removal after

a discharge.

By statistical data analysis of the measured pattern, the

values of the physical parameters can be extracted directly

from a measured PRPD pattern. Thus, a characterization

by physical parameters can be obtained without the need of

simulation. This overcomes one of the major restrictions

of the above-mentioned physically based analysis methods.

It thus combines the advantage of the purely descriptive

method (possibility of automated parameter extraction)

with the advantage of the physical model-based approach

(characterization by physically meaningful parameters).

The method is explicitely worked out for the case of void

discharges with constant first electron supply rate. However,

as will be shown in section 3.6, it can be extended to non-

constant hazard rate. Furthermore, the idea of the parameter

estimation method could be used for other kinds of discharges

like surface discharges or corona discharges.

The new method of data analysis has the advantageous

property that it can be applied even to small parts of the pattern.

Thus, it is possible to analyse separately different PD sources

which are separated in the PRPD pattern. Furthermore, it is

possible to deal with disturbances which, in practice, cannot

be avoided. Therefore, the method is not restricted to the

laboratory but can be used in the daily engineering work.

The paper is structured as follows: in section 2 the

description of the PD process as a stochastic process will be

reviewed briefly. In sections 3 and 4 the new method of data

analysis is described. In section 5 the method is applied to

simulated data, while in section 6 the application to measured

PD patterns is shown.

2. PD process as a stochastic process

The presented pattern analysis method is based on a recently

developed description of the PD process as a stochastic process

which will be reviewed briefly in the following. For details,

the reader is referred to the original paper [8]. Within this

paper, the discussion is restricted to the case of void discharges.

However, the original model is more general and can be applied

to other kinds of discharges as well.

The PD process consists of the sequence of electrical

discharges under an externally applied electrical field E0(t).

The discharges (PD events) lead to a charge deployment in the

vicinity of the PD defect which give rise to a so-called internal

field Ei(t). Each PD event changes the internal field suddenly.

Between the successive PD events, the internal field changes

due to charge dissipation mechanisms like surface conduction

in voids, or charge carrier drift in gas discharges. The PD

process itself can thus be described by the evolution of the

internal field Ei(t). The dynamics of this process is described

briefly in the following.

During a discharge at time t the total electric field Etot(t),

Etot(t) = E0(t) + Ei(t), (1)

drops to a residual field Eres:

Etot �→ E′
tot = ±Eres. (2)

The positive sign is chosen if Etot(t) > 0 and vice versa. The

value Eres of the residual field is defect specific. It is assumed

that the residual field has a constant value for each discharge.

With equation (2) a discharge leads to a sudden jump in Ei:

Ei(t) �→ E′
i(t) = ±Eres − E0(t). (3)

The bipolar charge distribution deployed in the vicinity of the

PD defect tends to vanish by drift and recombination processes.

In general, it can be described by a differential equation:

Ėi(t) = f (Ei(t), E0(t)). (4)

In contrast to the jump process during a PD event, this field

change is continuous and deterministic until the next PD event

takes place. A simplification consists in setting

f = −Ei/τ, (5)

leading to an exponential decay with a single time constant τ

which does not depend on Ei and E0:

Ei(t) = Ei(t0)e
−t/τ .

In this simplification, the drift and recombination process is

subsumed by a single parameter τ which is a time constant

for the charge decay process. Note that this only can be

a very rough approximation to the real physical drift and

recombination processes which cannot take into acount the

detailed physical processes. Examples are field-dependent

surface conduction, or shielding effects due to conductivity of

cavity walls. On the other hand, the parameter τ has a direct

physical meaning. For different kinds of discharges, the time

constant for the decay of internal charge can be very different.

For example, for a void discharge, where the internal charge

may decay by surface conduction, the time constant is of the

order of magnitude of minutes or hours.

Both processes, discharge ( jump of Ei) and drift/

recombination (continuous change of Ei), interact in a real PD

process. They are coupled by the discharge probability in the

following way: let c dt be the probability that a fast discharge

occurs in the time interval [t, t + dt]. This probability may

depend on the internal field Ei(t) as well as on the external field

E0(t) and depends on the mechanism of first electron supply

[8]. For a void where starting electrons are supplied mainly by

external radiation, we have c = 0 for Etot < Einc with a typical

inception field Einc, and c = const for Etot > Einc. The value

of c depends on the void volume and the electron production

rate of the externally imposed radiation [5].
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For a small time step dt the time evolution of Ei(t) is

shown schematically in figure 1. Two different paths are

possible: a fast discharge, or a slow discharge due to drift

and recombination. The probability for each path is c dt and

1 − c dt , respectively. In figure 2 typical (random) trajectories

of Etot(t) and Ei(t) for the case of AC voltage are shown.

Note that the same process realization is shown in figures 2(a)

and (b).

The dynamics of the internal field forms a piecewise

deterministic Markov process [30]. Such processes are

generally described by a dynamical equation for the time-

dependent probability density p(Ei; t). From the short-time

dynamics of the stochastic process as sketched in figure 1,

a differential equation for p(Ei; t) can be constructed, the

so-called master equation [31]. For the considered PD system

one gets (see [8] for details)

∂

∂t
p(Ei; t) = −c(Ei, E0(t)) · p(Ei; t)

−
∂

∂Ei

(f (Ei, E0(t)) · p(Ei; t))

+
(

∫

E′
i +E0(t)>0

c(E′
i, E0(t)) · p(E′

i; t) dE′
i

)

·δ(Ei − (Eres − E0(t)))

+
(

∫

E′
i +E0(t)<0

c(E′
i, E0(t)) · p(E′

i; t) dE′
i

)

·δ(Ei − (−Eres − E0(t))), (6)

where δ(·) is the Kronecker delta function.

Figure 1. Time evolution of Ei(t) to Ei(t + dt) for small dt . The
upper path with probability c dt represents the change of Ei(t) due
to a discharge, the lower path with probability 1 − c dt is the time
development for the case of no discharge.

(a)

(b)

Figure 2. Typical trajectories under AC for (a) Etot(t) =
E0(t) + Ei(t) and (b) Ei(t).

From p(Ei; t) one can derive the probability density

pd(Ei, t) of a PD event at time t and internal field Ei (the

subscript d stands for discharge)

pd(Ei; t) = c(Ei, E0(t)) · p(Ei; t). (7)

Until now, the dynamics of the PD system has been formulated

in terms of the internal field Ei(t). However, with the usual

PD measuring technique Ei(t) cannot be measured, i.e. the

PD process cannot be observed directly. Instead, the charge

separation of the bipolar charge quantity ±q being deployed

during the discharge is measured.

The jump �E of the internal field during a fast discharge

according to equation (3) is given by

�E = E′
i − Ei = ±Eres − (Ei + E0(t)). (8)

This field change is accomplished by the deployment of

a bipolar charge quantity which, for a void discharge, is

proportional to the field change [8]. The measured charge q,

in turn, is proportional to the deployed charge, leading to

q = −γ · �E = γ (Ei + E0(t)µEres). (9)

The proportionality factor γ not only depends on the void

geometry but also on the electromagnetic coupling of the void

to the PD detector [37, 38]. Given the field Ei just before the

discharge and the external field E0 at the discharge time, the

charge q can be calculated. The minus sign in the first line of

equation (9) accounts for the usual convention that a charge

is considered positive if the field change is negative, and vice

versa.

The probability density pd(Ei; t) can be transformed into

the probability density p̃d(q, t) of a discharge with specified

charge q at time t :

p̃d(q, t) = pd(Ei(q), t)
dEi

dq
. (10)

For AC voltages, the so-called PRPD patterns correspond to

p̃d(q, t) for t ∈ [0, T ] or p̃(q, ϕ) for ϕ ∈ [0, 2π ], respectively.

When measuring a PRPD pattern, one plots each measured

PD event (t, q) in the ϕ–q plane, where ϕ is the phase angle

of the discharge time t . Thus, the point density of a PRPD

pattern directly corresponds to the probability density p̃d(q, t)

of the generating PD process. This yields the possibility of

extracting the physical parameters of the model from measured

PRPD data.

3. Determination of parameters from measured
PRPD data

In this section the new method for extracting the physical

parameters of the discharge directly from the measured PRPD

pattern is presented. This method is described for the case of

void discharges with a constant rate of initial electrons. It can

be extended to the case of non-constant hazard rate as will be

discussed in section 3.6.

We consider the case of sinusoidal external voltage,

leading to a field

E0(t) = Ê0 sin(ωt). (11)
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The considered model parameters which are estimated from

measured PRPD data are,

• the time constant τ for the drift/recombination of deployed

charge,

• the parameter c which specifies the first electron

availability,

• the maximum field Ê0 at the discharge site, and

• the residual field Eres.

These parameters specify the dynamics of the stochastic

discharge process. Three remarks are to be made:

1. The absolute values of the fields Ê0, Eres and Einc

cannot be derived from the PRPD measurements without

a complete knowledge of the whole electric assembly

(geometry, dielectric constants). However, for the

dynamics of the process it suffices to know the fields Ê0

and Eres in units Einc. We therefore set Einc = 1. The task

is then to determine the value of Ê0 and Eres.

2. The absolute measured charge value q for a PD event is

proportional to the field change �E via a proportionality

factor γ which often is unknown. The analysis does not

exploit the absolute value of the charge but only takes

into account the internal structure of the PRPD pattern.

Therefore it is not necessary to specify the proportionality

factor γ of equation (9).

3. For the following, we assume c = constant for Etot

above the inception field. Thus, we focus on the case

of a constant rate of initial electrons. The case of initial

electron supply by surface charge detrapping processes is

not covered. In general, however, the electron supply may

depend on the number of trapped charge carriers and the

applied field. The model of [8] accounts for this case since

c may be a function of Ei and E0(t). It will be discussed

in section 3.6 how the parameter extraction method can

be extended to this more general case.

3.1. General remarks on identifiability

The parameters characterizing the physical situation of a

void discharge are the charge decay time constant τ and the

discharge probability density c, where τ is assumed to be

constant, and c is assumed to be constant for Etot > 1 (in

units of Einc), and zero otherwise.

These parameters have to be estimated from measured

PRPD data. This is possible in principle because the discharge

process itself depends on the parameter values. However,

there are situations where a quantitative determination of the

process parameters may not be possible. Two examples will

illustrate this.

As a first example consider a discharge with τ being much

larger than 1/c. Since 1/c is a typical time interval between two

successive discharges, this means that the internal field does not

decay substantially between two successive discharges. This

leads to the fact that the process itself is not dependent on the

value of τ , as long as τ is suffiently large. Consequently,

the value of τ cannot be estimated quantitatively from the

measured data. In other words, the data do not bear any

information about τ except that τ is much larger than 1/c.

In this case, a parameter estimation of τ can give only a lower

bound for τ . The exact value of τ cannot be determined.

As a second example, consider the case where 1/c is much

lower than the period time T = 2π/ω of the external field.

This is the case if many first electrons are available. As soon

as the electric field Etot at the defect site increases over the

inception field Einc, a discharge will take place. Typically this

leads to PRPD patterns with horizontal lines; all discharges

have the same field change �E and, consequently, the same

charge. In this case no quantitative information about c can be

expected from the data except that c is very large. Furthermore,

if τ is larger than the period time of the driving external field,

the value of τ cannot be determined reliably because the time

interval between successive PD events does not exceed the

period time T .

These examples show that under certain circumstances

one or several of the process parameters cannot be estimated

reliably from the measured data. Only a lower or an upper

bound for the parameter can be given. Note that this is not

a consequence of the used data analysis method. It is a con-

sequence of the fact that the corresponding information is not

present in the data. Therefore, a parameter extraction algo-

rithm should not only give an estimated value of the physical

parameter but also a confidence interval. Large confidence

intervals indicate that there is a lack of information in the data.

3.2. Estimation of the process parameters

As shown in the last section, the PD process is governed by

equation (6) which describes the temporal evolution of the

density p(Ei; t). Each Ei is linked to a charge q by equation (9)

which enables the transformation of the density p(Ei; t) into

a density p̃d(q, t) describing the measured PD pattern of the

process. The structure of pd(Ei; t) or p̃d(q, t), respectively,

bears the information on the process parameters. However,

the link between process parameters and the structure of the

resulting density is rather complicated and cannot be given

explicitely.

In order to simplify the equations, the data analysis is

restricted to a contiguous region in the PRPD pattern where

c > 0 everywhere. Since each point (q, t) is linked to a

point (Ei, t) in the Ei–t space, this means that the analysis

is restricted to a region in the Ei–t space, where

|Etot| > Einc.

This, in turn, has the consequence that the δ(·) terms in

equation (6) can be omitted (note that since Eres < Einc, the

argument of the δ-terms cannot be zero for |Etot| > Einc). This

leads to the following simplified equation for p(Ei; t):

d

dt
p = −cp −

∂

∂Ei

(fp), (12)

where the arguments have been omitted for the ease of notation.

With f = −Ei/τ , one gets a simplified version of the

master equation

d

dt
p =

(

1

τ
− c

)

p −
Ei

τ

∂p

∂Ei

. (13)

In a second step, instead of regarding the process in the Ei–t

space, a transformation in an x–t space is performed where the

new variable x is given by

x = Eie
t/τ . (14)
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Under this transformation, the dynamical equation

(equation (13)) transforms to the simple form (see appendix A)

d

dt
p̂(x; t) = −c(x, t)p̂(x; t), (15)

where p̂(x; t) is the time-dependent probability density

function of the variable x. This equation can be solved

analytically. For the case of void discharges where c =

constant for Etot > Einc, one gets

p̂(x; t) = A(x)e−ct . (16)

Thus, in the x–t space, the the state density has a product form.

Similar to the discussion in section 2, this probability

density is a density of the possible states of the stochastic

process. The density of actually observed PD events is given by

p̂d(x, t) = c(x, t)p̂(x; t). (17)

Recall that c is assumed to be either zero or a constant. In

regions where c > 0, p̂d(x, t) differs from p̂(x, t) only by a

proportionality factor. Thus

p̂d(x, t) = Â(x)e−ct (18)

within this region with a function Â(x). Again a simple product

form is obtained.

For summarizing we conclude that by a variable

transformation q → x according to

Ei = ±Eres − E0 −
q

γ
,

x = Eie
t/τ ,

(19)

the density pd(q, t) transforms into the density p̂d(x, t) which

has a simple product form. The time dependence consists of

an exponential decay e−ct with an initial density Â(x).

The same transformation can be performed on a measured

PRPD pattern. Each PD event (q, t) is represented by an event

in x–t space with the transformations equation (19). Thus,

PRPD pattern is transformed into a point pattern in the x–t

space.

In figure 3 this transformation of the PRPD data is shown

where the two steps (q, t) → (Ei, t) and (Ei, t) → (x, t) are

shown separately.

Figure 3. Transformation of PRPD data: (q, t) → (x, t).

The main idea of the parameter estimation algorithm is the

following: The transformation (q, t) → (x, t) depends on the

process parameter values. Only if the the parameter values

are chosen correctly, the resulting transformed pattern has

the simple structure of equation (18). The correct parameter

values can be found by maximizing the compatibility of the

transformed pattern with a probability density function as given

in equation (18).

3.3. A maximum-likelihood principle for parameter

estimation

A measure of the compatibility of a measured set of

independent observations xi , i = 1, . . . , N with a given

probability density fθ (x), depending on some parameters

θ = (θ1, . . . , θp) is the likelihood

L =

N
∏

i=1

fθ (xi)

of the set of observations. A well-established method for

parameter estimation is the maximum-likelihood (ML) method

which consists in estimating the parameters θ by maximizing

the likelihood with repect to θ :

L(θ) =

N
∏

i=1

fθ (xi) = max .

The new parameter estimation method for PRPD patterns

adopts this principle in the following way: the parameter vector

θ consists of the parameters c, τ , E0 and Eres which are to be

estimated from measured data. For given parameters c, τ , E0

and Eres, the measured PRPD pattern can transformed into the

x–t space by means of equation (19).

From this pattern in the x–t space, the term Â(x) is

estimated by using equation (18) in the form

Â(x) =
p̂d(x, t)

e−ct
(20)

and integrating this equation over the time

Â(x) =

∫

p̂d(x, t) dt
∫

e−ct dt
(21)

(see appendix B for details).
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Figure 4. Estimation of Â(x) from the transformed data.

The enumerator of equation (21) can be estimated from the

measured data via a kernel estimator [32]. The denominator

is known for specified model parameters. As an example,

figure 4 shows the transformed data and an estimate of the

initial distribution Â(x).

The likelihood of the measured set of PD events is

now calculated by treating each PD event as an independent

realization of an underlying two-dimensional density function

p̂d(x, t):

L(c, τ, E0, Eres) =

N
∏

i=1

p̂(c,τ,E0,Eres)(xi, ti), (22)

where (xi, ti), i = 1, . . . , N , denote the single PD events in

the x–t space, and p̂d(x, t) is given by equation (18), using the

estimate of Â(x).

Maximizing this likelihood with respect to the process

parameters leads to the estimates of the parameters.

Schematically the whole procedure is as follows:

1. transform data (qi, ti) → (xi, ti) (depending on Eres, Ea

and τ),

2. estimate Â(x),

3. p̂d(x, t) = Â(x)e−ct ,

4. L(c, τ, E0, Eres) =
∏N

i=1 p̂(c,τ,E0,Eres)(xi, ti).

The parameters Eres, Ea and τ contribute to the likelihood

function L via the transformation (qi, ti) → (xi, ti) and the

estimation of A(x). The likelihood function is maximized by

a standard optimization algorithm [33].

3.4. Confidence intervals

To obtain confidence intervals for the estimated parameter,

a non-parametric bootstrap method is applied [34]. If the

original data set D consists of N data points, M new data

sets, D1, . . . , DM , each with N data points are drawn from

the original set with replacement. From each new data

set parameters Θ
∗
i are estimated. Those will be distributed

around the original estimated parameters Θ̂ with a particular

distribution. Confidence intervals can be obtained from the

quantiles of that distribution [34].

3.5. Discussion of the parameter estimation method

In this section, some remarks on the parameter estimation

method are made.

First, a remark on the statistical methodology must be

made. The above-applied method for parameter estimation

by maximizing L(c, τ, E0, Eres) in equation (22) is, strictly

speaking, not identical to the usual ML method, since for the

density p̂d(x, t) the function Â(x) is used which is estimated

from the measured data. However, for large samples, the

kernel estimator for Â(x) yields the correct density. Thus,

asymptotically, the likelihood is calculated correctly.

A second remark must be made on the estimation of the

fields Ê0, Eres and Einc. As explained in section 3, these

fields cannot be determined in their absolute values (i.e. in

units V m−1). From a practical point of view, it would be

desirable to get Ê0 and Eres in units Einc which only requires

the determination of the ratios of the fields.

With the parameter estimation method as described above,

it is not possible to extract the value of Einc. This is due to

the fact that the parameter estimation algorithm is based on

data analysis in a region of the PRPD pattern where c > 0.

On the other hand, the inception field Einc is specified by

the field value where c drops down to zero. Since this is

outside of the analysed region, the estimation algorithm cannot

determine Einc.

However, Einc can be calculated from the minimum

measured charge qmin. For simplification, we restrict the

discussion to positive discharges. Setting Etot = Ei + E0 to its

minimum value Einc in equation (9), one gets

qmin = γ (Einc − Eres). (23)

Usually the minimum charge qmin can be determined quite

well from the measured PRPD pattern. Once Eres has been

estimated by the parameter estimation algorithm, the field

Einc can be calculated in the same units as the field Eres by

determining the minimum charge qmin from the measured PD

pattern. With this information the fields E0 and Eres can be

given in units of Einc.

Thus, an additional input for the parameter estimation

algorithm is the specification of qmin. Note that this

information is not necessary for the parameter estimation itself,

but only for calculating the correct units for the estimated fields.

3.6. Extension of the parameter estimation method to

non-constant hazard rate

The parameter estimation algorithm has been developed for

the case of a constant first electron supply, i.e. a constant value

of the parameter c. It can, however, be extended to the case of

non-constant hazard rate as will be shown in the following.

For the case of a non-constant hazard rate which depends

on the number of trapped charges and the applied external field,

the parameter c is a function of Ei and E0(t), or, equivalently,

on Ei and t : c = c(Ei; t). This means that the single parameter

c is replaced by a function which has many degress of freedom.

For the following we assume that this function c(Ei; t) is

parametrized by some parameters ψ = (ψ1, ψ2, . . .). Instead

of estimating one single value c, the task of the parameter

estimation procedure is to estimate the parameter vector ψ ,

describing the mechanism of first electron supply.

For doing this, the above described parameter estimation

method has to be modified only slightly. The transformation

from the pattern p(Ei; t) to the pattern p̂(x; t) can be made
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exactly like for the case of constant c since this transformation

does not require c to be constant.

A difference arises in equation (16) which is replaced by

p̂(x; t) = A(x) exp

(

−

∫ t

0

c(x, t ′) dt ′
)

, (24)

where the function c(Ei; t) has been transformed into the

function c(x, t). The discharge event density p̂d(x, t) is then

given by

p̂d(x, t) = c(x, t)A(x) exp

(

−

∫ t

0

c(x, t ′) dt ′
)

, (25)

and the function A(x) can be estimated using the equation

A(x) =

∫

p̂d(x, t) dt
∫

c(x, t) exp (−
∫

c(x, t)t ′ dt ′) dt
. (26)

For given c(x, t), or, equivalently, for a given parameter

vector ψ , the function A(x) can be estimated as before from

the transformed pattern. The calculation of the likelihood can

then be performed identically as for the case of constant c.

The model parameters are estimated by maximizing the

loglikelihood with respect to the model parameters Eres, Ea, τ

and ψ .

Thus, the parameter estimation algorithm for non-constant

hazard rate is identical to the case of constant hazard rate

except that equations (18) and (21) have to be replaced by

equations (25) and (26), and the single parameter c is replaced

by a set of parameters ψ = (ψ1, ψ2, . . . ).

4. The holographic property of the parameter
estimation algorithm

In the last sections a new algorithm for estimating parameters

of a PD process has been presented. Basically, it consists of a

ML approach which has to be applied to a contigueous region

of the PD pattern for which c > 0 is guaranteed. Such regions

can be easily found in a measured PD pattern since c must be

positive in all regions where actually PD events are recorded.

Aditionally, if positive charges are recorded at a point (q, t),

then c > 0 for all point (q ′, t) with q ′ > q.

The simplest possibility of a contiguous region with c > 0

is to take the whole positive or negative part of the pattern

with exception of the horizontal zone around q = 0 where

no discharges are recorded3. In figure 5, this is displayed

for positive discharges. Using this whole region ensures that

all available data are taken into account for the parameter

estimation procedure.

It must be stressed, however, that the analyis region can

be chosen arbitrarily as soon as it does not contain regions

with c = 0. In figure 5, another example for a valid

analysis region is shown in the lower part of the figure. The

parameter estimation algorithm works equally well on this

restricted region of the pattern because, in principle, the whole

information about the process parameters is available within

3 The fact that no discharges are recorded in the zone around q = 0 can

be produced by two reasons: either there are no discharges with such small

q values. Then c = 0 in this regions, or the threshold level of the PD measuring

system prevents the recording of PD events with smaller charge.

Figure 5. Two different contiguous regions in of the PRPD pattern
where c > 0 is given. Each of these regions can be used for
performing a parameter estimation of the PD process.

arbitrarily small regions. This corresponds to the well-known

fact that an experienced human PD specialist is able to analyse

PD patterns even if not the whole pattern is available due

to overlapping with other PD sources or noise. We call this

phenomenon the holographic property of PRPD patterns.

On the other hand, of course, due to statistical reasons, the

accuracy of the parameter estimation is reduced if only a part

of the pattern is used for the parameter estimation.

5. Application to simulated data

Numerous sets of artificial data were produced by simulations

to investigate the accuracy of the algorithm. Figure 6 shows

four PRPD patterns from simulations with different parameter

combinations. E0 and Eres are kept fixed at values of 5 and

0.3 respectively. The important parameters τ and c are varied.

A discharge in a spherical void under sinusoidal voltage of

50 Hz was assumed. The simulation time was set to 20 min.

For the parameter estimation, the whole upper half of the

pattern was used with exception of the the zone stripe q = 0

where no discharges are recorded.

Figure 6(a)–(d) show the data from the simulations. These

particular combinations of c and τ are chosen to trace out the

limits of the parameter estimation algorithm.

Table 1 shows estimates for the different parameters and

their confidence limits. Note that the confidence intervals are

sometimes asymmetric. In most of the cases an estimation

is possible, if not—e.g. the estimation for τ in (a) and (d)

it reflects the fact that this discharge parameter has little or

no influence on the pattern as discussed in section 3.1. This

lack of information in the data is reflected in large confidence

intervals.

In the following, the four examples are discussed briefly.

(a) Parameter τ was chosen so that the internal field decays

very slowly. There is a fast discharge about every fifth

period. During that time the internal field declines only

by 1% due to drift processes. Thus the drift processes

have negligible influence to the process dynamics which

is governed by the fast discharges. As a result, τ cannot

be estimated accurately. However, a lower bound for τ is

found by the algorithm.

(b) With this parameter setting, the internal field decays

during ten periods to a value of 1/e and there is a discharge

approximately every tenth period. Both c and τ can be

estimated accurately.
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Figure 6. Simulated data for different parameter combinations of τ and c.

Table 1. True values and estimates of parameters c, τ , E0 and Eres for simulated data.

c cest τ τ (estim.) Ê0 Ê0 (estim.) Eres Eres (estim.)
Figure (s−1) (s−1) (s) (s) (Einc) (Einc) (Einc) (Einc)

(a) 10 13.6 ± 4.5 10 140+∞
−135 5 5.01 ± 0.02 0.3 0.29 ± 0.02

(b) 10 13.18 ± 4.7 0.2 0.22 ± 0.03 5 4.97+0.04
−0.1 0.3 0.3 ± 0.01

(c) 250 249.5 ± 1.5 0.1 0.098 ± 0.003 5 5.01 ± 0.03 0.3 0.3 ± 0.01
(d) 5000 4950 ± 30 0.1 0.2+∞

−0.15 5 6 ± 3 0.3 0.2 ± 0.2

(c) τ is similar to the value in (b). The internal field decays

during five periods to a value of 1/e—c is higher. The

parameters can be estimated with high precision.

(d) c is extremely high. As soon as the total field exceeds the

inception field, a discharge takes place. Drift processes

have no influence to the process dynamics. Thus τ cannot

be estimated.

In all cases, the values of Ê0 and Eres could be determined

with a high accuracy.

As an example of the holographic property, in figure 7 the

estimated parameter values for two different analysis regions

are shown. It can be seen that the parameter estimation

works well for both regions. However, the smaller the region,

the larger are the error bounds because fewer data enter the

analyis.

6. Application to measured data

The algorithm was applied to data obtained from an artificial

spherical void in epoxy resin under sinusoidal voltage.

Seventy-two measurement were made during 24 h (20 min

per measurement) at constant voltage level [35]. The PRPD

patterns are provided as a 256×256 numerical array where each

bin is specified by its phase position and the charge amplitude

Figure 7. Holographic property.

and contains the number of recorded PD events for this phase

position and charge. In [36], the details on the experimental

setup and the measurement method can be found. Figure 8

shows a selection of these measurements.

The PRPD patterns can be divided into two groups.

Measurements 1–22 and 49–72 (group I) show nearly identical
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patterns; so do measurements 26–45 (group II). Measurements

23–25 and 46–48 show the change of the two pattern types

into one another. The two patterns correspond to the day–

night cycle. At daytime (group I), more first electrons are

available due to UV radiation of the sunlight. At night, few first

electrons are present, leading to patterns with a small number

of discharges.

The patterns show a strong asymmetry, suggesting a

significant difference in the discharge behaviour for positive

and negative discharges. Therefore, the parameter estimation

is done separately for the two half-waves. The parameter

estimation region was chosen like indicated in figure 8. Only

the first part of the pattern has been used.

Figure 8. Selection of measured data. The upper-left pattern the chosen analysis region is indicated. The process parameters have been
estimated from the data within this region.

Figure 9. Estimation of parameter c for positive and negative discharges. The circles show the estimated value, the vertical bars indicate the
90% confidence interval.

6.1. Estimation of the process parameters

Figure 9 shows the estimates of c for the different

measurements for positive and negative discharges. The

change of c from measurements of group I to those of group II

is enormous. It changes by the factor of about 100. A small c

means a lack of first electrons while a large c corresponds to

an abundance of first electrons.

It can be seen that the estimation of the parameter c is

possible within reasonable error bounds.

This is different for the parameter τ which describes

the decay of the deployed charge by drift and recombination

processes. In figure 10, the τ estimation for the positive
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discharges is shown. For negative discharges, similar results

are obtained. The estimated value for τ is 3–6 s for most cases;

however, the analysis of the confidence interval shows that,

actually, the parameter is not identifiable. In all cases, the

upper limit of the confidence interval is ∞, indicating that

the exact value cannot be determined. The reason for this

non-identifiability is that τ is much larger than the mean time

interval between successive discharges.

However, in each case a lower bound is found in the range

of 2–4 s. A τ value below this lower bound would not be

compatible with the measured data.

The estimation of the parameter Ê0 is shown in figure 11.

For patterns of group I, the error bars are quite large.

The reason for this behaviour is that the patterns of group I are

nearly degenerate, consisting of a rather narrow stripe. The

fit of the partial differential equation in this small region is

much more difficult as for the large regions which are available

Figure 10. Estimation of parameter τ for positive discharges. The
circles show the estimated value, the vertical bars indicate the 90%
confidence interval. In each case, the upper limit of the confidence
interval is ∞.

Figure 11. Estimation of parameter Ê0 for positive discharges. The
circles show the estimated value and the vertical bars indicate the
90% confidence interval.

for patterns of group II. Consequently, the error bounds for

patterns of group II are much smaller.

Note that the estimation only takes into account the

internal structure of the PRPD pattern as described by the

partial differential equation. In practice, the PRPD inception

voltage can be measured easily. Usually, Ê0 is obtained

by determination of the inception voltage which corresponds

to Ê0 = 1 in units of Einc. The presented parameter

estimation algorithm can be viewed as a complementary way

of determination of Ê0.

For the parameter estimation algorithm, no boundary

condition for Ê0 has been set. Thus, the estimation algorithm

also accepts values below 1 which, physically, is not realistic,

since for Ê0 < Einc, no discharge activity can take place.

The inclusion of such physical boundary conditions into the

statistical parameter estimation procedure will further improve

the results.

In figure 12, the estimation of Eres is shown. For

measurements of group II, the inception field can be estimated

quite well. It has a very small value, slightly above zero.

Similar to Ê0, this parameter can only be estimated with

large error bounds for measurements of group I. Similarly

to the Ê0 estimation, in these cases also unphysical values

larger than unity are given. Again, including the physical

restriction Eres < Einc would further improve the quality of the

results.

6.2. Comparison of simulated data with measured patterns

The estimated process parameters were used for simulating

PRPD patterns. If the parameters are estimated correctly,

the simulated pattern should have a high similarity with the

measured pattern. In figure 13 two examples of simulated

patterns are shown together with their measured counterpart.

In table 2 the statistical parameters of the measured and

simulated patterns are shown. Mean, variance, skewness and

kurtosis of the one-dimensional densities were evaluated from

the patterns, separately for the positive and negative charges.

Mean and variance are given in units bins (note that the patterns

are provided as a 256 × 256 array).

Figure 12. Estimation of parameter Eres for positive discharges.
The circles show the estimated value and the vertical bars indicate
the 90% confidence interval.
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Simulated Simulated

Measured Measured

C

D

B
A

Figure 13. Simulated data with parameter sets from estimation in comparison with corresponding measured patterns.

Table 2. Statistical parameters of the measured and re-simulated patterns shown in figure 13.

Mean Variance Skewness Kurtosis

Meas. Simul. Meas. Simul. Meas. Simul. Meas. Simul.

Void0021
qpos 38.571 43.646 1.976 0.976 0.872 0.074 −0.242 0.06
tpos 24.793 22.097 306.797 228.514 0.460 0.371 −0.728 −0.661
qneg −46.836 −44.395 14.581 2.962 −0.345 −1.292 0.011 3.375
tneg 153.26 150.208 191.491 213.61 0.516 0.449 −0.188 −0.547

Void0030
qpos 57.558 57.965 208.02 185.375 0.810 0.967 −0.273 −0.081
tpos 30.762 34.144 624.147 621.526 0.948 0.466 0.119 −0.546
qneg −65.409 −65.167 153.835 220.135 −0.500 −0.353 −0.792 −1.059
tneg 189.86 195.458 498.107 1085.64 −0.064 −0.106 −0.358 −0.918

It can be seen that the simulated patterns show a high

similarity with the measured patterns. Typical pattern features

are reproduced correctly. Examples are:

• the increased point density at the upper edge of the pattern,

especially at ϕ ≈ 0 (region A in figure 13);

• the occurrence of a second point accumulation for small

positive discharges at ϕ ≈ π/2 (region B in figure 13);

• the occurrence of two adjoining point clowds for negative

discharges (region C in figure 13). In the simulated

pattern, the separation between these two clouds is less

pronounced than in the measured pattern, but it is clearly

present.

• the lack of discharges in region D in figure 13. This lack

is only present for negative discharges.

Note that the different pattern structure for positive and

negative discharges is reproduced correctly. This is a very

strong result due to the following reason. For the parameter

estimation the two half-waves have been analysed separately,

leading to different PD parameters for positive and negative

discharges. No explicit mutual coupling between the two

discharge polarities have been taken into account. The only

information which is exploited for the parameter estimation is

the internal structure of the point pattern in a predefined region

of the PRPD pattern.

In reality, however, the positive and negative discharges

are coupled. The discharge behaviour in the positive half-wave

has direct consequences for the discharge behaviour in the

negative half-wave, and vice versa. This mutual coupling is not

used for the parameter estimation. However, when simulating

patterns with the estimated parameter values, this coupling

is taken into account. For patterns with a difference between

negative and positive discharges it is therefore far from being an

automatism that simulation of the PD process (with separately

estimated parameters) lead to PRPD patterns with the correct

structure.

In figure 13, the counts per cycle for positive and negative

discharges are displayed for the measured patterns as well as
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for the simulated ones. The simulations have a slightly higher

number of discharges than the measured patterns. The reason

for this systematic deviation is not yet clear. A possible reason

could be the dead times of the PD measuring system leading to

a number of discharges which is systematically too low. This

assumption is supported by the observation that the deviation

is larger for pattern with a high values of counts per cycle.

It must be stressed that the values of counts per cycle

for the measured patterns are not an input of the parameter

estimation algorithm. The parameter estimation is based on

the master (equation (13) or (16)) which is is a differential

equation for the point density which is independent on the

absolute pattern density. Consequently, the estimation of the

parameters is based solely on the relative temporal change of

the point density within the pattern, not on the absolute value

of the point density. Taking this into account, the reproduction

of the point density (measured by the counts per cycle) within

an error range of only some 10% is a validation of the model

and the presented parameter estimation procedure.

However, some properties of the pattern are not

reproduced by the simulation. For example, the step in the

horizontal stripe of figure 13 does not appear in the simulation.

Instead, the simulation yields a horizontal stripe without a

charge step.

Regarding the statistical parameters in table 2, there

are some significant differences between the original and

the simulated patterns, especially for the pattern of group I

(void0012, left patterns in figure 13). For example, the

variance of the negative charge distribution for void0012 is

much too low in the simulated pattern. For skewness and

kurtosis occasionally large deviations arise.

The reason for these deviations probably is originated

in too simplified a model for the discharge process. Note

that the description of the discharge process with only two

physical parameters c and τ (the other parameters E0 and Eres

are, striktly speaking, not discharge parameters but instead

describe the external field) is a very crude approximation to

the true complexity of the physical processes involved. For

example, the physical model for void discharges developed

in [5, 26] is much more complicated than the used simple

model of [8]. Additionally, in the used parameter extraction

algorithm, the first electron supply has been assumed to be

constant ignoring first electron supply by surface electrons.

Therefore, is expected that the model cannot capture all details

of the pattern.

In contrast, actually it is very surprising that the underlying

simple model is able to describe so much detail of the measured

PRPD pattern, and that the parameter estimation procedure

based on this model works that well. In spite of its simplicity,

the model seems to describe correctly the main features of the

physical process for the examined data.

7. Discussion

This section contains some additional remarks on the presented

parameter estimation algorithm.

The approach allows one to extract information about

the physical parameters of a PD without a simulation of the

discharge process. To the knowlegde of the authors, there is no

similar approach available in literature. Usually, the physical

parameters of a PD process are estimated by simulation of

the process according to a physical model, comparing the

output of the simulation with measured data, and changing

the parameters until a match between simulated and measured

data is obtained. The present method, in contrast, is able

to directly estimate the physical process parameters by data

analysis. Moreover, error bounds can be given easily, which

is very difficult with a trial-and-error parameter estimation

method using simulation.

Compared with other data analyis methods used, like the

extraction of statistical properties such as mean, skewness,

etc, from measured PRPD pattern, the proposed method is

superior since it renders physical information about the PD

process which describes the nature of the process much better

than in terms of simple descriptive statistical numbers. As

has been shown in section 6, a change of one of the physical

parameters (availability of first electrons) leads to patterns with

a completely different structure. The analysis of the physical

parameters shows clearly that only this one parameter has

changed while the others remain constant. Another example is

the comparison of patterns of the same PD defect at different

applied voltages. Here the usual statistical measures are

different. However, the physics of the discharge process,

described by the parameters c and τ , remains the same, which

can be clearly revealed by the proposed method.

It must be stressed that, as for all physical models, the

parameter estimates only make sense if the model for the

discharge process is correct. The presented algorithm is based

on a fairly simple model with only few physical parameters.

As mentioned above, it is to be expected that there may be

situations where the model may be too simplified and thus

inappropriate. For example, effects like shielding due to

conductivity of cavity walls or multi-PD phenomena in the

same cavity cannot be described. The great advantage of the

model developed in [8] is that it allows a direct parameter

estimation as described in this paper. This is in contrast to

more detailed physical models like those used in [5, 26] which

describe the process more accurately but render no possibility

to directly extract the parameter values from measured data.

Thus, the authors hope that the used simplified model together

with the possibility to extract the parameters directly from

the data helps to get a better understanding of measured PD

phenomena, even if the model can only be an approximative

one. Note, however, that the aim of this paper is not to prove

the validity of the underlying model assumption but to describe

an approach for physical parameter extraction based on the

stochastic model description of [8].

The presented algorithm does not make use of the absolute

charge value but is based on the temporal change of the pattern

as expressed in equation (6). This independence of the

absolute charge means that, for the parameter estimation, the

electromagnetic coupling between PD source and PD sensor

need not be known. This is very advantageous in practice

where the position of the PD source often is not known exactly.

The holographic property of the PRPD pattern is fully

exploited by the presented parameter estimation. For the

parameter estimation, it is not necessary to use the whole

pattern but a restriction to a part of the pattern is possible.

This large freedom in choosing the analysis region has a huge

impact on the practical usefulness of the approach. In practice,
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measured PDs are often corrupted by noise sources, or many

PD sources are active at the same time, leading to overlapping

patterns. In these cases, traditional PD analysis methods fail.

For example, deriving statistical parameters like skewness or

kurtosis makes no sense if more than one PD source is active, or

if a strong noise source is present. Our approach, in contrast,

can easily deal with noise and multi-source patterns as long

as there are regions in the pattern which can be assigned to a

single defect. It is possible to restrict the parameter estimation

to exactly this region and extract information on this single PD

defect.

The parameter estimation method has been presented for

the case of void discharges with a constant supply of first

electrons. It has been shown in section 3.6 that the approach

can be extended to the case of first electron supply by trapped

surface charges. In principle, the same idea of parameter

estimation could also be applied to other kinds of PD sources

as well, e.g. corona discharges or surface discharges. This

is possible since these discharges are described by the same

kind of master equation [8]. The only difference is the relation

between the field change �E and the measured charge q of

the discharge which is linear for void discharges and takes the

form of a power law for other discharges [8]:

q = −γ (�E)α.

An adoption of the presented method to other discharge types

would therefore be possible. Moreover, the exponent α could

be treated as an additional parameter which could be estimated

analogously to the others. The resulting algorithm would then

not only yield the physical parameters as described above, but

also additional information on the type of the discharge. This

could be used as a means for classification of PD sources based

on physical parameters.

8. Conclusion

In this paper, a novel method for estimation of physical

discharge parameters for PDs in voids has been presented.

The method is based on a recently developed framework for

modelling a PD process as a stochastic process governed by a

master equation.

The parameter estimation algorithm makes use of the

specific form of this master equation. By using a ML

approach, the parameters can be estimated. Furthermore,

error bounds for the parameter estimates can be given. With

this method a compact description of a PD pattern in terms

of the physical parameters governing the discharge process

is possible. In contrast to purely descriptive statistical

parameters, the physical parameters can be interpreted in terms

of discharge physics.

The method has been tested by application to different

simulated PRPD patterns. It has also been successfully applied

to measured data of a series of PRPD measurements of a void

in epoxy resin subjected to varying UV radiation. The change

of first electron availability is reflected by a clear change of the

corresponding physical parameter c.

The parameter estimation method works on a contiguous

region of the PRPD pattern which may be only a small part

of the actually measured pattern. This holographic property

of the method allows the application of the method even on

patterns with are strongly corrupted by noise, as long as there

are regions in the q–t space which are essentially free of noise.

For patterns with several active PD defects, the single defects

can be analysed separately as long as they are separated, at

least partly, within the pattern. This is not possible with usual

pattern analysis techniques.
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Appendix A. Transformation from (Ei; t) to (x, t)

For regions {(Ei; t)|c(Ei; t) > 0} and under the assumption

that f has the form given in equation (5), the master

equation describing the process dynamics has the form (see

equation (13)):

∂

∂t
p(Ei; t) =

(

1

τ
− c

)

p(Ei; t) +
Ei

τ

∂

∂Ei

(p(Ei; t)). (27)

We consider the transformation Ei → x = Eie
t/τ .

Normalization of the probability density has to be fulfilled

at every time t , thus we have

p̂(x; t) = p(Ei(x); t) ·
dEi

dx
= p(Ei; t)e−t/τ . (28)

The temporal derivative of p̂(x; t) is given by

dp̂(x; t)

dt
=

∂p̂

∂x

∂x

∂t
+

∂p̂

∂t
=

x

τ

∂p̂

∂x
+

∂p̂

∂t

The LHS of equation (27) now reads

d

dt
p(Ei; t) =

d

dt
(p̂(x; t)et/τ ) = et/τ

(

x

τ

∂p̂

∂x
+

∂p̂

∂t

)

+
p̂

τ
et/τ .

With
d

dEi

=
dx

dEi

d

dx
= et/τ d

dx
,

the RHS of equation (27) takes the form

(

1

τ
− c

)

p̂(x; t)et/τ +
xe−t/τ

τ
et/τ d

dx
p̂(x; t)et/τ .

Comparing LHS and RHS, most of the terms cancel out,

leading to
∂p(x̂; t)

∂t
= −c(x, t)p̂(x; t).

Appendix B. Estimation of A(x)

Given a transformed PRPD pattern in the x–t space, each

measured PD event corresponds to one point of this pattern.

From theory (see appendix A) it is known that the process has

the probability density

p̂(x; t) = A(x)e−ct , (29)
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where A(x) is an initial distribution which is not known but
must be estimated from the data. The above equation is valid
only for a contiguous region for which c > 0 (see section 3.2).
While this region has generally a simple form in the q–t space
of the original pattern, it can have a complicated form in the
x–t space (see figure 14).

The measured PD pattern in the x–t space has a point
density which is given by

p̂d(x, t) = c(x, t)p̂(x, t). (30)

The task is to estimate the distribution A(x) such that
equation (30) is consistent with the measured data.

By integrating p̂d(x, t) over t one gets (see figure 14)
∫ T

0

p̂d(x, t) dt =

∫ b

a

cp̂(x; t) dt

= cA(x)

∫ b

a

e−ct dt

= A(x)(e−cb − e−ca),

where a and b are the interval boundaries for the region where
c > 0. Thus

A(x) =

∫ T

0
p̂d(x, t) dt

e−cb − e−ca
.

Thus, in principle, the density A(x) can be estimated by
summing all PD events along a horizontal line in the x–t space
and dividing by the factor (e−cb − e−ca). In practice, however,
the resulting density Aest(x) is very peaked, especially when
the pattern consists of few points. Therefore, the calculated
estimated density is additionally smoothed with a smoothing
kernel. The resulting estimator for the initial distribution A(x)

can thus be interpreted as a kernel estimator.
In order to yield a valid probability density, the resulting

estimated density

p̂est(x, t) = Aest(x)e−ct

is normalized in order to get
∫

t

∫

x

p̂est(x, t) dx dt = 1,

where the integration extends over the whole considered region
of the x–t space.

a b t

Figure 14. Estimation of the initial distribution A(x) from the data.
For a given x, the value of the initial distribution A(x) can be derived
from the data by integrating all PD events along a horizontal line.
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