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Abstract
The number of mathematical models for biological pathways is rapidly growing. In particular, Boolean modelling
proved to be suited to describe large cellular signalling networks. Systems biology is at the threshold to holistic
understanding of comprehensive networks. In order to reach this goal, connection and integration of existing
models of parts of cellular networks into more comprehensive network models is necessary. We discuss model
combination approaches for Boolean models. Boolean modelling is qualitative rather than quantitative and does
not require detailed kinetic information.We show that these models are useful precursors for large-scale quantita-
tive models and that they are comparatively easy to combine. We propose modelling standards for Boolean
models as a prerequisite for smooth model integration. Using these standards, we demonstrate the coupling of
two logical models on two different examples concerning cellular interactions in the liver. In the first example,
we show the integration of two Boolean models of two cell types in order to describe their interaction.
In the second example, we demonstrate the combination of two models describing different parts of the network
of a single cell type. Combination of partial models into comprehensive network models will take systems biology
to the next level of understanding.The combination of logical models facilitated by modelling standards is a valuable
example for the next step towards this goal.
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INTRODUCTION
Dynamical models have the potential to provide a

realistic description of cellular events as they are cap-

able of reproducing time dependent processes in

a quantitative manner. We adhere to the final goal

of a comprehensive dynamic model of signal trans-

duction processes. However, we are not able to

reach this vision short term. Due to the large size

of the cellular network in combination with experi-

mental bottlenecks in parameter measurement, it is

still unfeasible to build a comprehensive dynamic

cell model. Instead, a stepwise but nevertheless,

aim-oriented procedure is needed. We will propose

here details towards this goal, using the liver and

especially the hepatocyte as an example.

We will particularly focus, thereby, on the poten-

tial of Boolean or logical models. They are well

established, e.g. in the field of gene expression [1].

Furthermore, they already allow predictions when

kinetic data are sparse and detailed dynamic

approaches such as modelling on differential equa-

tions, kinetic rate equations [2] or power laws

(S-Systems) [3], suffer from insufficient data for the

approach. Recently, more and more attention is

being paid to the Boolean modelling of signal trans-

duction [4–7]. The relevant literature is actually quite

rich, and a closer look reveals tens of relevant articles.

Thus Medline lists 153 articles (as of 15 September

2011) using the keywords Boolean model(l)ing

with a clearly increasing trend to use such models.

Groups working in this area include among others,

Alvarez-Buylla and colleagues [8, 9] on dynamical

properties of gene transcription networks. For their

Boolean models, they used hundreds of microarray

experiments to infer the nature of the regulatory

interactions among genes, for Saccharomyces cerevisiae,
Escherichia coli and Bacillus subtilis,Drosophilamelanogaster
and flower development of Arabidopsis thaliana.
Discrete logical models are furthermore developed

by Sorger and co-workers, for instance to compare

normal and transformed hepatocytes [10]. Their

approach specifically deals also with the fuzzy logic

of biochemical signals [11]. Garg et al. [12] provided

algorithms based on reduced ordered binary decision

diagrams (ROBDDs) for Boolean modelling of

gene regulatory networks of T helper cells and

Th1–Th2 cellular differentiation. Boolean models

are now easily transformed into continuous models

(see algorithm comparisons below) as for instance

Wittmann et al. [13] demonstrate in a concrete

example on T-cell receptor signalling.

Recently, Wang and Albert [14] introduced elem-

entary signalling modes to predict the essentiality of

signal transduction network components and

show strong agreement with the results of their

Boolean (logic) dynamic models and experimental

observations. Chaves et al. [15] compare Boolean

and piece-wise affine differential models for genetic

networks regarding the carbon starvation response

network in E. coli. The comparison yields new

tools for analysis and reduction of biological

networks, robustness of Boolean networks and asyn-

chronous Boolean dynamics. Larger and more

complex gene regulatory networks come in reach

by Boolean models such as the gene regulatory

network underlying mammalian cortical area

development [16].

We, hence, believe Boolean models to be cur-

rently the most adequate approach to reproduce

comprehensive signal transduction networks

(e.g. [17–19]). In order to reach this goal, one

needs to integrate Boolean models of subsystems

into more comprehensive models.

Model integration suffers from several pitfalls.

Combined models generally are over-proportionally

complex because the behaviour of the model com-

ponents is context-dependent and the interactions

between the submodels leads to non-trivial behav-

iour. For smooth model integration, it is essential

that the submodels adhere to consistent modelling

standards. Based on these standards, we will demon-

strate two different ways of integration. We start

with a model integrating two different cell types

and their interactions and then illustrate the fusion

of two models operating within one cell type.

The overall goal of a unifying dynamical and

quantitative model providing holistic understanding

of cellular signalling is the declared aim of many

systems biology research projects. We suggest that

the comprehensive description of cellular signalling

can be reached by Boolean modelling and model

integration. Comprehensive, qualitative Boolean

models may then pave the way for the develop-

ment of comprehensive, quantitative and dynamic

models.

Comparison of different approaches and
tools for Boolean modelling
A number of tools allow Boolean or semi-

quantitative modelling, for instance, Copasi (signal-

ling example in Ref. [32]), S-Systems (including

power law transformation or approximation [3])
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and Petri Nets [33]. Specific software for

Boolean-type of modelling includes the Genetic

Network Analyzer (GNA [20]). GNA employs

piece-wise linear (PL) differential equation models

that have been well studied in mathematical biology.

While abstracting from the precise molecular

mechanisms involved, the PL models capture essen-

tial aspects of gene regulation. Their simple math-

ematical form permits a qualitative analysis of the

dynamics of the genetic regulatory systems to be

carried out. Instead of numerical values for param-

eters and initial conditions, GNA asks the user to

specify the qualitative constraints on these values in

the form of algebraic inequalities. Unlike precise

numerical values, these constraints can usually be

inferred from the experimental literature and incor-

porated as algebraic inequalities. Analysis of the state

transition graphs by means of VisualGNA allows one

to investigate in detail the predicted qualitative equi-

librium state, as well as qualitative behaviours leading

to the equilibrium state. Furthermore, Boolnet is an

R package for generation, reconstruction and ana-

lysis of Boolean networks [21]. This is a powerful

package and efficiently integrates methods for syn-

chronous, asynchronous and probabilistic Boolean

networks. This includes reconstructing networks

from time series, generating random networks,

robustness analysis via perturbation, Markov chain

simulations and identification and visualization of

attractors applying various R routines. Besides this,

Albert et al. [22] present BooleanNet]. This is a soft-

ware library that can perform Boolean modelling

simulations based on simple text inputs. Quite com-

plex networks can be tackled, e.g. modelling abscisic

acid (ABA)-induced stomatal closure in plants, T-cell

large granular lymphocyte leukaemia simulation

or modelling the mammalian immune response to

Bordetella bronchiseptica infection. Synchronous and

asynchronous updates of simulations are possible, as

well as exploiting the piece-wise linear formalism to

build specialized Boolean rules that can represent

each individual node. For comparison, GINsim

(Gene Interaction Network simulation) [23] is

a computer tool for the modelling and simulation

of genetic regulatory networks featuring a simulator

of qualitative models of genetic regulatory networks

based on a discrete, logical formalism. Structural ana-

lysis on the network is possible, e.g. elementary

circuits, inclusion of perturbations (e.g. mutations),

state transitions (calculated using priority classes for

interactions, individual nodes get discrete maximal

level and basal level, incoming interactions and

their logical connections).

A recent tool of interest is the Network-Free

Stochastic Simulator (NFsim), a general-purpose

modelling platform that overcomes the combinator-

ial nature of molecular interactions [24]. Instead of

representing molecular species as variables in equa-

tions, NFsim uses a biologically intuitive representa-

tion: objects with binding and modification sites

acted upon by reaction rules. Reaction rates can

thus, be defined as arbitrary functions of molecular

states to provide powerful coarse-graining capabil-

ities, e.g. to merge Boolean and kinetic repre-

sentations of biological networks. The authors

demonstrate this with models of immune system sig-

nalling, microbial signalling, cytoskeletal assembly

and oscillating gene expression.

As powerful, handy and easy to use Boolean mod-

elling tools, we review more closely Standardized

Qualitative Dynamical systems (SQUAD) [25] and

CellNetAnalyzer (CNA) [26]. These two approaches

are complementary to each other.

CNA is a Matlab toolbox for Boolean modelling

and model analysis. A key analysis method is the com-

putation of the partial logical steady state for given

initial conditions. CNA computes the values of nodes

that approach a unique steady state. Node values that

show multiple steady states and oscillations, as they

may occur in networks with feedback loops, are

excluded from the steady state analysis. It is often

possible to break feedback loops by omitting

interactions based on biological considerations

such that steady state analysis of all nodes becomes

possible, see for example ref. [27]. Further, the CNA

toolbox includes among others, the pathway and

feedback analysis, automated search for minimal

intervention and cut sets and calculation of depend-

ency matrices.

The Java-based tool SQUAD uses a heuristic

algorithm based on concatenated exponential func-

tions to build a differential equation system from

a given Boolean model. The differential equation

system is supposed to provide a qualitative approxi-

mation of the transient network behaviour. Overall,

SQUAD is fast, easy to use and is helpful to get a full

and fast system overview for systematic comparisons.

SQUAD, as well as CNA calculate the (partial)

logical steady state of a network but do not use

any so-called updating strategy to simulate the net-

work response. As described by Fauré et al. [28],

updating strategies can be classified in synchronous
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and asynchronous updating. However, both types of

updating strategies require assumptions on the rate

and order of the state transitions and thus require

biological knowledge that is often not available.

Alternatively, one can simulate the network for

many times and perform statistical analyses [29].

These problems are circumvented by calculating

the logical steady state of the network because it

does not depend on the updating strategy. For

these reasons, we recommend to build logical

models of large-scale networks with a steady

state-oriented approach for the present.

Besides these two tools and their respective

approaches, similar other tools and approaches to

Boolean modelling exist, e.g. Odefy [30] as a closely

related approach uses a modelling technique called

HillCube to convert a Boolean model into a model of

differential equations [31]. A selection of features

pertaining to this related method is compared with

the two approaches intensively used in this article

(Table 1).

Note that our tool comparison gives only a first

idea about the differences and specific advantages and

limitations of the various tools.

BOOLEANMODELLING OF
APOPTOSIS IN HEPATOCYTES
Two examples of Boolean models describing

apoptosis signalling in hepatocytes form the basis

for further model integration. One study used

SQUAD [5]. It samples over the different network

states in a dynamical way, starting from a Boolean

network that modelled Fas ligand (FasL)-mediated

apoptosis in liver cells. A complex and internally

strongly linked network was assembled around this

(74 nodes, 108 edges) and a number of alternative

crosstalk possibilities and networks were considered.

Four robust and stable system states were identified:

two states comprise cell survival and two describe

apoptosis by the intrinsic or extrinsic pathway,

respectively. The model (http://boolean.bioapps.

biozentrum.uni-wuerzburg.de/index.php) was vali-

dated by comparing it with experimental data from

kinetics of cytochrome c release and caspase activa-

tion in wild-type and bid knockout cells grown on

different substrates. Pathophysiological model

modifications produce output behaviour that agrees

well with experimental data such as input from cyto-

megalovirus proteins M36 and M45. Intercellular

Table 1: Comparison of technical features in SQUAD,Odefy and CNA

Feature SQUAD Odefy CNA

Input format net, mml and xml:sbml Boolean formulas, yED, CNA,
GINSim, PBN

CNA format, SBML

Output format canonical time-series plot,VirtualBlot,
numerical data in a plain text file with
tab-separated values

SQUAD,GNA, MATLAB script files,
SB toolbox, SBML and R script files

CNA, Matlab, text, SBML

Compatibility Only with Celldesigner 3.5.1 Matlabçand octaveçcompatible Matlab and to some extent octave
Version compared Version 2.0 Version 2010 Version 2010
Open source Yes Yes No (but free download)
System state analysis Yes, strength of the method, rapid

sampling over all system states, system
state directly transferred to nodes.

Yes, but more time consuming, excel
Table of nodes and their activation

Yes, but more time consuming, excel
Table of nodes and their activation

Simulation Basic simulation and visualization
functionalities for the continuous
models. The software permits to make
simulations on the continuous system,
allowing for the modification of several
parameters.

Basic simulation and visualization
functionalities for both the Boolean,
as well as the continuous models.
Multi-level logical states are
implemented (2 or n times activated/
inhibited)

Calculation of dependency matrix,
paths and cycles, logical steady
state analysis (I/O behaviour),
determination of minimal intervention
sets

Transformation SQUAD converts the network into a
discrete dynamical system, and it uses
a binary decision diagram algorithm to
identify all the steady states of the
system.Then, the software creates a
continuous dynamical system and
localizes its steady states which are
located near the steady states of the
discrete system.

Automated transformation of
Boolean equations or graphs or
imported models into systems of
ordinary differential equations by
multivariate polynomial interpolation
and optional application of sigmoid
Hill functions.

Logical hypergraphs can be trans-
formed into interaction graphs.Odefy
can be used as plug-in (on the fly
transformation to a dynamic model
in ODEfy format)

Download link http://www.enfin.org/wiki/doku.
php?id¼enfin:squad:start

http://cmb.helmholtz-muenchen.
de/odefy

http://www.mpi-magdeburg.mpg.
de/projects/cna/download.html
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regular interactions considered below involve in

addition TNF and IL6.

Schlatter et al. [4] built a literature-based,

large-scale Boolean model of the central intrinsic

and extrinsic apoptosis pathways, as well as pathways

connected with them using CNA. The logical apop-

tosis model comprises 86 nodes and 125 interactions.

The model responds to several external stimuli

such as Fas ligand, TNFa, ultraviolet radiation B

(UV-B) irradiation, interleukin-1b and insulin and

is freely available. Extensions of classical Boolean

models, namely timescales and multi-value node

logic, were used in this study and shown to be in-

dispensable to reproduce the behaviour of the apop-

totic network. The coherence of the model with

measurement data was extensively experimentally

validated. Thereby, an UV-B dose effect is shown

for the first time in mouse hepatocytes. The logical

model of apoptosis provides valuable information

about the topology of the network including feed-

back loops and crosstalk effects. Analysis of the

model revealed a tight regulation emerging from

high connectivity and spanning crosstalks and a

particular importance of feedback loops. TNFR1-

induced apoptosis (in contrast to Fas) is a two-step

process, which involves two sequential signalling

complexes. Regarding this, an unexpected feedback

from Smac release to receptor-interacting protein

(RIP) could further increase complex II formation

(TNF receptor-associated death domain (TRADD)

and RIP1 associate with Fas-Associated protein with

Death Domain (FADD) and caspase-8, thereby

forming a cytoplasmic complex). The introduced

Boolean model provides a comprehensive and co-

herent description of the apoptosis network behav-

iour. It gives new insights into the complex interplay

of pro- and anti-apoptotic factors and can be easily

expanded to other signalling pathways.

MODELLING STANDARDS
FACILITATEDIRECT
COMBINATIONOF BOOLEAN
MODELS
A direct combination of two mathematical models

requires a compatible modelling approach. The

combination of dynamical, differential equation

models is quite challenging as the parameters of

differential equation models often do not correspond

to elementary kinetic parameters but subsume

different biochemical processes, new parameter

estimates for the combined model might be

needed. The combinatorial explosion of complexity

makes parameter estimation in a detailed differential

equation model of the whole liver cell impossible

in the light of current technical possibilities.

Combination of Boolean models describing different

aspects of the same system is less complex although

not trivial.

Consistent modelling standards are indispensable

for successful combination of Boolean models

regardless of which tool is used. To encourage

model convergence towards a comprehensive overall

Boolean model, e.g. for the liver cell and/or its

cell–cell interactions, we propose the following

conventions on node values (i and ii), quantitative

experimental data (iii), time (iv), input and output

(v and vi) and unknown components (vii).

(i) Definition of node values: Classical Boolean

algebra only provides two node values namely ‘on’

and ‘off’ or ‘1’ and ‘0’. However, many biological

interactions cannot be realized with only one level

of activation. For example, the decision about

CD95-mediated apoptosis is based on typical thresh-

old behaviour [34] and a dose-dependent effect of

UV irradiation was shown in hepatocytes [4].

We propose to discretize the ‘on’ state of affected

nodes either modelling several different nodes repre-

senting different active states or using multi-value

logic as implemented in CNA. In fact, both

approaches are compatible as also in CNA, the

logical equations for each multi-level node status

can be written separately. However, we propose

that the ‘off’ state of every node must stay equivalent

to the absence of the according chemical species,

e.g.the knockout of the according gene. So any

node in the ‘off’ state is not able to participate

actively in an interaction according to our standards

as a matter of principle. We call the definition of a

node value by a certain functional property, a func-

tional definition of the node value. Using this stan-

dardized functional definition of the node value

‘zero’, the knockout of a gene is equivalent to setting

its node value to zero.

Regardless of using single or multi-value logic, we

propose such a functional definition also for the ‘on’

state(s).

(ii) Boolean models are not quantitative and we do

not recommend the attempt to imitate quantitative

model behaviour; e.g. there should be no excessive

use of multi-level values. Instead, the special potency

of Boolean models for qualitative predictions can be
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strengthened by functional definition of node values.

A discretization of the ‘on’ state may only be intro-

duced and accordingly assigned if there are function-

ally different effects on the network related to the

respective node, e.g. if a high, low and zero (or very

low) concentrations of a protein have qualitatively

different effects.

(iii) Quantitative experimental data: this issue is

directly related to the topic of experimental

validation of Boolean models. Measurement values

usually consist of information on quantities (concen-

tration, activity, etc.) plus an according point of time.

Both aspects cannot be directly translated to a logical

model. Regarding quantity, we propose to check for

functional dependencies. If a node A is defined to be

‘1’ by its function to activate node B, the activation

of B should also be measured in order to prove

‘A¼ 1’ in a certain setting.

(iv) Treatment of time: as time is not respected

while calculating the logical steady state of a

Boolean network, this information seems to be dis-

pensable. However, the measurement time point is

of course not arbitrary. A major focus of Boolean

modelling is the description of the short-term

response of signal transduction networks upon a

stimulus or a set of stimuli. In such examples, one

is mainly interested in the question whether a certain

species, e.g. protein, is active at any time point

during the signalling process. In such cases, it is

appropriate to use the peak concentration over a

time course. Other applications of Boolean model-

ling may require the formulation of similar standards.

(v) Output: finally, we discuss the possibility of

introducing artificial nodes in a Boolean model

which do not correspond to a single chemical spe-

cies. Artificial nodes are useful to sum up the specific

network response of interest such as ‘apoptosis’ or

‘survival’ [4, 5]. All pre-conditions for apoptosis

included in the model can thereby be linked using

logical gates. This approach has not only the advan-

tage of making the model outcome visible at first

sight, but also allows for automated analysis of,

e.g. impact of a certain input node on the output

node ‘apoptosis’ and thereby for the relevant

biological question.

(vi) Input: besides the functional definition of

output nodes, we also propose this option for input

nodes. An artificial node termed ‘‘housekeeping’’

node can be used as a pre-condition to initialize

the ‘on’ status of certain nodes in the model that

are constitutively active in wild-type cells [4]. The

employment of such a ‘housekeeping’ node allows

simulating the impact of transcriptional inhibitors

such as Actinomycin D via setting the ‘housekeep-

ing’ node to zero. Transcriptional inhibitors are here,

drugs of special interest; they are not only used to

investigate cellular networks experimentally but also

to treat diseases such as cancer or HIV.

(vii) Treatment of unknowns: not least, artificial

nodes can be used to model unknown interrelations

and thereby to avoid doubtful assumptions on

molecular interactions that could become independ-

ent otherwise during a model combination process.

For example, it was shown that hepatocytes switch

between type I and type II apoptosis depending on

culturing conditions [35]. However, the underlying

mechanism is not yet elucidated. The switch was

modelled by [4] accordingly using an artificial node

‘P’ representing some unknown interaction(s) or

protein(s). Artificial nodes like these are easy to rec-

ognize as such and can be replaced neatly as soon as

the according cellular functionality has been clarified.

COMBINATIONOF BOOLEAN
MODELS
Combination of mathematical models
establishing a cell^cell interaction
As a case study from our current work, we demon-

strate the direct unification of a Boolean model of

the hepatocyte with a Boolean model of the Kupffer

cell by considering aspects of their cell–cell inter-

action (Figure 1). The SQUAD model introduced

above forms the basis of the integrated model. First,

both cell types are described by a similar model

of the FasL, TNFa and IL-6 signalling pathways

(hepatocyte version: Supplementary Figure S1).

Here, the focus lies on the Fas-induced extrinsic

apoptotic pathway, the NFkB correlated survival

pathway and on the Ras-/MAPK-dependent prolif-

erative pathway. The integrated model includes two

connection pathways between hepatocytes and

Kupffer cells describing their interplay. The activa-

tion of the NFkB pathway in Kupffer cells goes

along with a secretion of IL-6. IL-6 itself binds and

activates the IL-6 receptor in hepatocytes thus,

activating the Ras-/MAPK-dependent proliferative

pathway. The other interplay between hepatocytes

and Kupffer cells deals with the secretion of

TNFa from Kupffer cells, activating the TNFR-1-

dependent TNFa mediated anti-apoptotic signalling

in hepatocytes.
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The integrated cell–cell interaction model has four

different stable steady states (Table 2).

In steady state 1 and steady state 2, all nodes of the

survival pathway as well as proliferative nodes are

active, whereas all apoptotic nodes are inactive. The

difference between them is the activation of the

proliferative pathway. In steady state 1, all nodes in

the model except the caspases are active and the hep-

atocyte gets its proliferative signal from stimulation

with HGF. In steady state 2, Akt, as well as PI3K are

inactive and the hepatocyte gets its proliferation

signal via IL-6 from the Kupffer cell. In contrast, in

steady state 3, only the apoptotic nodes are active

whereas survival and proliferative nodes are inactive.

Figure 1: Network topology for the cell^ cell interaction model. Apoptosis, proliferation and survival pathways
belonging to the hepatocyte cell are shown on the top. Pathways for Kupffer cells are shown on the bottom with
two interactions connecting both cell types. Method: The SBML file/model was set up with CellDesigner Version
3.5.1 and analysed with SQUAD on a windows computer.
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In steady state 4, all nodes are inactive. This

situation guarantees stable population of the liver as

proliferation and apoptosis are each in cell-type

equilibrations adjusted by the overarching hierarch-

ical interactions.

The model is available from our website in

XML format (http://boolean.bioapps.biozentrum.

uni-wuerzburg.de/index.php). The complete cell–

cell interaction model allows to be quickly assembled

as the interactions are directly connecting the

individual models and the comprehensive model

integrates inter- and intracellular interactions:

we are able to have a close look at two different

cell types responding with apoptosis (example

SupplementaryFigure S2a) or proliferation and how

IL-6 (Supplementary Figure S2b) or TNF

(Supplementary Figure S2c) may influence this inter-

action in the cell–cell interaction model. Four differ-

ent system states describe here the essence of the

resulting system behaviour composed of the two

cellular networks and their key interactions.

It is of course a strong simplification to focus on

just two intercellular interactions and one must care-

fully evaluate the validity of the model for a given

application. However, current experimental data

available from this system are compatible with the

model behaviour.

Thus, the model predicts well the behaviour of

hepatocytes under different cultivation conditions

regarding viability and apoptosis, intrinsic and extrin-

sic pathway [5] and is compatible with further

protein expression data regarding both pathways

[30]. Moreover, the two key interactions chosen

were found to be important in cell co-cultures of

hepatocytes and Kupffer cells [36]. Thus, the

demonstrated model integration strategy is a valuable

tool to get insight into the mutual interaction of

two cell types.

Integration of mathematical models
of different cellular pathways
As an example for the combination of two different

signalling networks in one cell type, we present the

integration of a comprehensive logical apoptosis

model (Supplementary Figure S3) [4] with an apop-

tosis execution model presented here for the first

time. The logical apoptosis model comprises 86

nodes and 125 interactions. It responds to several

external stimuli such as Fas ligand, TNFa, UV-B

irradiation, interleukin-1b and insulin. The coher-

ence of the model (predicted apoptosis output) was

experimentally validated [4]. The model focuses on

the different signalling pathways leading to caspase-3

activation and their crosstalks. The activation of

executioner caspase-3 was taken as indicator for

apoptosis and in a simplified manner only four

nodes (gelsolin, PARP, ICAD, CAD) have been

Table 2: Steady state analysis of the integrated cell^ cell interaction model

Steady state 1 2 3 4 Pathway

Apoptosis 0 0 1 0 Apoptosis
Caspase6/7 0 0 1 0 Apoptosis
Caspase8 0 0 0.93 0 Apoptosis
Caspase9 0 0 1 0 Apoptosis
CytC 0 0 1 0 Apoptosis
IL6 1 1 0 0 Inflammation
IL6R 1 1 0 0 Inflammation
MAPK/ERK 0.93 0.91 0 0 Proliferation
Proliferation 1 1 0 0 Proliferation
AKT 1 0 0 0 Cytoskeleton
AKT* 1 0 0 0 Cytoskeleton
FLIP 0.93 0.93 0 0 Apoptosis
IKK 1 0.93 0 0 Inflammation
NFkB 1 1 0 0 Inflammation
NIK 1 1 0 0 Inflammation
PI3K 0.93 0 0 0 Phosphatidylinositol
RAS 1 0.93 0 0 Proliferation
Survival 1 1 0 0 Survival
TRAF2 0.91 0.91 0 0 Apoptosis

All key nodes of the cell^ cell interaction model network are listed together with the activation state for each steady state. Full activation is
represented by 1; inactive nodes are set to 0. Pathway classification is only for demonstration issues; in fact, it is difficult to differentiate exactly
between the pathways.
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modelled between caspase-3 and the apoptosis

output node.

In contrast, the apoptosis execution model focuses

on the events following the activation of executioner

caspases which lead to the final demise of the cell

(Supplementary Figure S4). It comprises 60 nodes

and 91 interactions. Input nodes of this model are

caspase-3 and -7 and the output node is apoptosis.

The model includes six artificial nodes describing

central events in cell demise. These describe the

nucleus DNA fragmentation, chromatin con-

densation and core fragmentation, as well as cellular

condensation, blebbing and release. In the

Supplementary Data, all nodes and logical equations

of the apoptosis execution model are listed including

the according literature references. Overall, the apop-

tosis execution model provides a solid composition of

current knowledge on the final steps to cell death.

Both models have been designed with CNA

thereby, using the logical steady state approach and

have been modelled under consideration of the

modelling standards described above. Therefore,

the same understanding of artificial nodes and func-

tional node value definition can be assumed. For

example, both models employ a housekeeping

node and the ‘off’ state of every node representing

a protein is equivalent to the knockout of the

according gene. There are also multi-value nodes

in both models. For the logical apoptosis model,

they are discussed in [4]. Amongst others, caspase-3

p17 is defined as apoptotic for node value ‘2’. The

apoptosis execution model adopts this definition.

Another example for multi-value logic in the apop-

tosis execution model is ICAD which also nicely

illustrates the principle of functional node definition.

The protein ICAD is necessary for correct folding of

the protein CAD. Further, CAD is activated by

cleavage of ICAD via active caspase-3. Therefore,

ICAD¼ 0 which is equivalent to ICAD knockout

leads to CAD¼ 0 because CAD does not fold prop-

erly. The ‘on’ state of ICAD needs to be discretized

so that ICAD¼ 1 corresponds to the uncleaved

ICAD and ICAD¼ 2 to the cleaved protein which

is the only setting leading to CAD activation.

The complete model is provided as Supple-

mentary Data. It comprises 136 nodes and 206 inter-

actions, implying that 10 nodes and 5 interactions

have been cut during the model combination process

that will be discussed below. The complete network

map of the unified model is shown in Supplementary

Figure S5. A scheme of the unified model is shown

in Figure 2A which mainly represents the apoptosis

model [4] and the Figure 2B corresponds to the

apoptosis execution model. The two models are

not only connected by handover of the caspase-3

node value, but both models share several common

nodes making integration necessary.

We now describe the integration process in detail.

In a first step, the defined species and interactions of

both models have been pooled in common model

files as basis for the combined model. In the second

step, we have to decide about the handling of every

single common node of the two initial models which

are sketched in the model scheme in Figure 2B.

The five nodes gelsolin, PARP, ICAD, CAD and

apoptosis in the apoptosis model and their corres-

ponding interactions as a whole have been replaced

by the more detailed description in the execution

model. In the combined model, the interactions for

the nodes caspase-3 p17, caspase-6, JNK, NFkB and

PKB are the union of the interactions of the single

model with a single exception. The inhibition of

the NFkB node via active caspase-3 p17 was

excluded from logical steady state analysis because

this interaction led to a feedback loop and no

unique steady state exists. Experimental validation

is needed to clarify whether this inhibition is relevant

in hepatocytes. In addition, both models include a

housekeeping node, which can be merged without

difficulty as this is structurally an input node.

At this point of the procedure, the logical model

has a unique steady state for a defined stimulus.

However, because model integration may introduce

unforeseen effects, we must ensure that the model

still reproduces the same effects as the single models

were required to do. The detailed analysis of occur-

ring differences is necessary and can reveal new

model predictions that need to be experimentally

studied and thus, may give new insight in the system.

In order to analyse the combined model and

to compare it with the single models, we applied

quality assurance methods for Boolean modelling

[27]. Exhaustive input testing allows for automated

complete evaluation of all possible input settings. We

checked all possible input node value combinations,

576 test settings in total. In every setting, we com-

pared the values of the nodes for apoptosis, PKB,

JNK, PARP, ICAD, CAD, caspase-6, caspase-3

p17 and NFkB from the apoptosis model [4] and

the combined new model.

Both models result in the same results for the

nodes PARP, ICAD, CAD, caspase-3 p17 and
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NFkB. However, the node values were different

for caspase-6 in 57.6%, for PKB in 29.2%, for JNK

in 27.1% and for apoptosis in 19.4% of the test

settings. The changed results for the caspase-6

node are due to the fact that its evaluation was

excluded from logical steady state computation in

the apoptosis model [4] but in the combined

model activation by active caspase-3 p17 is included.

The PKB node in the apoptosis model [4] is activated

only by the insulin signalling pathway. In the

new combined model, it is also influenced by

active caspase-3 p17 in accordance with our bio-

logical knowledge. Therefore, we consider the chan-

ged behaviour of the model with respect to caspase-6

and PKB to be more reliable and take the new

results as new predictions for future experimental

validation.

The discrepancy in 19.4% of the test cases for the

apoptosis node could be assigned to the influence of

the JNK node. The JNK node in the apoptosis

model [4] is a signal sink only activated by TNF

and inhibited by NFkB. In the combined model,

its position is much more central and its status is

influenced by several additional players

(Supplementary Figure S5). In particular, JNK pro-

motes chromatin condensation and is therefore

pro-apoptotic. This circumstance allowed induction

of apoptosis by a TNF stimulus alone which is wrong

regarding hepatocytes. To correct the model output,

we changed the interaction [(TNF activates JNK) or

(no NFkB activates JNK)] to [(TNF activates JNK)

and (no NFkB activates JNK)]. After this adjustment

the exhaustive input testing was repeated and the

results for the apoptosis node value are now the

same as for the primary models in all test cases.

In addition, discrepancy for the JNK node value

increased in 46.5% of the settings which is considered

as a shift to more correct results.

Overall, the direct combination of both models

was achieved without fundamental adjustments and

the complexity was only moderately increased.

However, we took high advantage from the fact

that both models were based on the same standards.

Even a single interaction can make a huge difference

in a strongly cross-linked network and we consider

a complete model check as indispensable for integra-

tion and therefore recommend the application of

quality assurance methods. An implementation

Figure 2: Combined cellular pathway model. (A) Schema of the combined model with inputs (dark grey dots), sig-
nalling pathways (grey blocks) and the output apoptosis. (B) Schema of connecting nodes (white) between the apop-
tosis model (grey) and the execution model (blue; within black framed box at the bottom on the right) before
model combination. The black framed path at the bottom left is replaced by the execution model (bottom right)
during model combination.
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of the tools suggested earlier [27] can be freely

downloaded as CNA plug-in.

DISCUSSION
Boolean models allow a comprehensive understand-

ing of the complex signalling network governing the

fate of liver cells. They do not depend on detailed

kinetic information but are established from the

network topology. Furthermore, the analysis of the

systems response to different combined inputs is

a special potency of this approach. The impact of

crosstalks is of outstanding importance for the result-

ing behaviour of the cell. Moreover, knockout and

knock-in effects can easily be modelled as well as

different compartments. Here, we demonstrate that

Boolean models of subsystems can be connected to

more comprehensive models when following

common modelling standards. We believe that this

approach has the potential to be expanded towards a

comprehensive cell-covering model structure.

Critically evaluated and validated, comprehensive

Boolean models can serve as textures for dynamic,

differential equation-based modelling by mapping

crosstalks and contributing structural information.

Thereby, Boolean models support the overall

long-term goal of a dynamic whole cell model.

The here mentioned Boolean models gave new

insights into liver signalling and promote our know-

ledge about hepatocytes. There are also promising

clinical application aspects. For example, viral apop-

tosis blocking was demonstrated for M36 and M45

cytomegaly virus proteins [5] and a UV-B light dose

effect in hepatocytes was shown [4]. Furthermore,

infection by cytomegaly virus, as well as oncolysis

by vaccinia virus have been tested [37] and are cur-

rently explored further. Comprehensive Boolean

models can contribute to important biological

research questions. Boolean models may help to

reveal the changes induced by cultivation of cells

under different conditions, e.g. collagen or suspen-

sion, as this modifies cellular properties and differen-

tiation. Cell–cell interaction models can furthermore

be applied for tissue engineering [38] including

modified AKT signalling in the different cell types.

Larger logical models also support development of

new drugs. For example, SMAC-mimetics are used

as anti-cancer treatment and are included in the used

apoptosis model of Schlatter et al. [27] and the inte-

grated model presented here. In addition, minimal

intervention sets as implemented in CNA allow

target search in such models. Viral infections of

liver cells can be better understood starting from

Boolean cellular models [5] but now including spe-

cific cell–cell interactions. This includes therapeutic

approaches such as the action of an oncolytic virus

[37] on liver tissue plus metastases. Combined

Boolean models generate semi-quantitative data on

all involved nodes immediately, if desired even

cell-type specific and including key information on

qualitative changes in the system.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� Integration of existing models is critical for a holistic or com-
prehensive understanding of cells.

� Booleanmodelling does not require detailedkinetic information
and are useful precursors for large-scale quantitative models.
Booleanmodels are comparatively easy to combine.

� We propose modelling standards for Boolean models as
a pre-requisite for smoothmodel integration.

� We demonstrate coupling of logical models for two cell types,
as well as combination of two models describing different parts
of the network of a single cell type.
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