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Comment on “Kullback-Leibler and renormalized entropies:
Applications to electroencephalograms of epilepsy patients”
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In a recent paper Quian Quiroga et al. [R. Quian Quiroga et al., Phys. Rev. E 62, 8380 (2000)] found
renormalized entropy, formerly introduced as a complexity measure for the different regimes of a dynamical
system, to be closely related to the standard Kullback-Leibler entropy. They assure this finding by reanalyzing
electroencephalographic data of epilepsy patients, previously examined by exclusive use of renormalized
entropy [K. Kopitzki et al., Phys. Rev. E 58, 4859 (1998)]. We argue that the general considerations undertaken
by the authors and the experimental results do not justify this conclusion.
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Quian Quiroga et al. [1] investigate the relationship be-
tween Kullback-Leibler (KL) and renormalized entropy. The
use of renormalized entropy as a complexity measure for the
different regimes of a dynamical system, as described by the
authors, was proposed by Saparin et al. [2]. Subsequently the
method was applied to different physiological time series
[2—5]. The procedure is based on Klimontovich’s S theorem,
which states that in the process of self-organization the en-
tropy, renormalized to a given value of mean effective en-
ergy, decreases [6—8]. Given a reference distribution g(X) of
an observable X, representing the state of maximum disorder,
the renormalized entropy AH(p,q) of a state p(X) is given

by
AH[p.q]1=H[p]—H[q]

=—fp(X)lnp(X)dx+f g(X)Ingq(X)dx.
(1

Here the reference distribution g(X) is renormalized into
q(X) according to the S theorem to ensure the equality of

mean energies in g(X) and p(X). As shown by the authors
of Ref. [1] for the discrete case AH[p,q] can be given in

terms of a standard KL entropy K(p|q):

p(X) -
L dx=—K . 2
nq(X) x (plg) (2)

AH[p,q]=— f p(X)1

Furthermore they prove that

|AH[p.q1|<K(plq) 3)
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holds true and infer from these findings that renormalized
entropy is unlikely to be more useful than the standard KL
entropy.

First, it should be mentioned that the relationship between
renormalized and standard KL entropy [Eq. (2)] is immanent
of Klimontovich’s S theorem and already given in Refs.
[2,6—8]. Being an addition to Boltzmann’s H theorem, the S
theorem uses the notion of free energy and KL entropy. The
relationship derived by Quian Quiroga et al. [Eq. (12) in Ref.
[17] is the discrete form of Eq. (2), previously given by Sa-
parin et al. in Ref. [2]. Independent of this the conclusion
drawn in Ref. [1] seems questionable. Although the renor-
malized entropy can be given in terms of a KL entropy with

respect to the renormalized reference g(X), it can not be
given in such terms with respect to the original reference
q(X). However, the renormalization of the reference distri-
bution is the basic idea underlying the concept of renormal-
ized entropy. It is due to the equality of the mean effective
energies that the entropy difference of these two distributions
in Eq. (1) can be given in terms of a Kullback-Leibler en-
tropy.

Second, the relationship given in Eq. (3) does not estab-
lish a superiority of either renormalized or KL entropy [9].
The essential feature of a complexity measure is not to indi-
cate every transition from one state to another but those
which are linked to a change of complexity as defined within
a certain framework. Here for example

|AH[4.9]|=0<K(qlq) )

holds true for all T7#0, meaning that the corresponding
states are assumed to have the same complexity [10].

To illustrate their findings Quian Quiroga et al. use both
measures to reanalyze electroencephalographic data of epi-
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lepsy patients. These electrophysiologic time series were re-
corded at different intracranial locations relative to the brain
area known to generate epileptic seizures. Both measures are
calculated for the power spectra of consecutive segments of
these time series resulting in time courses of renormalized
and KL entropy assigned to different recording locations.
Although the time courses of renormalized entropy given
in Ref. [1] do not coincide with those given in Ref. [5], the
spatiotemporal behavior seems similar. The decrease of
renormalized entropy within the transition from the presei-
zure to the seizure state is most pronounced for the recording
location within the seizure-generating area [Fig. 2 in Ref.
[1]]. In contrast the greatest increase of KL entropy is found
in an adjacent brain area [Fig. 3 in Ref. [1]]. As mentioned in
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Ref. [5] this feature of renormalized entropy might be useful
for clinical applications such as localization of the seizure-
generating area. The aforementioned discrepancies are pre-
sumably caused by a systematic error in the calculation of
renormalized entropy in Ref. [1]. This is suggested by the
fact that the time courses of renormalized and KL entropy do
not satisfy Eq. (3) within long time intervals as becomes
most evident in Fig. 4. However, the figures do not indicate
that KL entropy is closely related to renormalized entropy.

Summarizing the explanations given above, Eq. (3) seems
to be the only genuine relationship between renormalized
and KL entropy established by Quian Quiroga et al. [1]. But
this equation does not provide any qualitative information
about the relationship between these measures.
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