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In Brief

Transforming growth factor b (TGF-b)

leads to the phosphorylation of Smad

proteins and thereby facilitates the

formation of different trimeric Smad

complexes. By combining quantitative

mass spectrometry with mathematical

modeling, the identities of the formed

trimeric Smad complexes are resolved

and the link of these transcription factors

with target gene expression is

established. This approach allows

predicting based on gene expression

data that in hepatocellular carcinoma the

abundance of Smad proteins and their

phosphorylation is elevated, which was

experimentally validated.
.
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SUMMARY

Upon stimulation of cells with transforming growth
factor b (TGF-b), Smad proteins form trimeric com-
plexes and activate a broad spectrum of target genes.
It remains unresolved which of the possible Smad
complexes are formed in cellular contexts and how
these contribute to gene expression. By combining
quantitative mass spectrometry with a computational
selection strategy, we predict and provide experi-
mental evidence for the three most relevant Smad
complexes in the mouse hepatoma cell line Hepa1-6.
Utilizing dynamic pathway modeling, we specify the
contribution of each Smad complex to the expression
of representative Smad target genes, and show that
thesecontributionsareconserved inhumanhepatoma
cell lines and primary hepatocytes. We predict, based
ongeneexpressiondataofpatient samples, increased
amounts of Smad2/3/4 proteins and Smad2 phos-
phorylation as hallmarks of hepatocellular carcinoma
and experimentally verify this prediction. Our findings
demonstrate that modeling approaches can disen-
tangle the complexity of transcription factor complex
formation and its impact on gene expression.

INTRODUCTION

Transforming growth factor b (TGF-b) is a pleiotropic factor with

multiple functions for which the underlying mechanisms are only
Cell Systems 6, 75–89, J
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partially understood. The most prominent intracellular mediators

of TGF-b signaling are the Smad proteins. The receptor Smad

proteins, Smad2 and Smad3, interact with the common Smad

(Smad4), form trimeric complexes, and translocate to the nu-

cleus, where they interact with other proteins including other

transcription factors and regulate transcription of hundreds of

genes (Moustakas and Heldin, 2002). Smad2 and Smad3 are

regulated by phosphorylation, but not Smad4. Based on the

three Smad proteins with three phosphorylation states for

Smad2 and Smad3 (n = 7) and the trimeric complexes (k = 3),

the theoretical number of different Smad complexes can be

calculated according to the formula for unordered sampling

with replacement:

�
n+ k � 1

k

�
= 84 (Equation 1)

Thus, in principle, 84 different trimeric Smad complexes can

form, but it has not been determined which Smad complexes

indeed occur in particular cell types such as hepatocytes.

Depending on the cell type, only distinct sets of target genes

are induced by TGF-b. This could be mediated by the interaction

of Smad complexes with other transcription factors or crosstalk

with other signaling pathways (Feng and Derynck, 2005). In addi-

tion, the amount, composition, or dynamics of Smad complex

formation could differ. Therefore, systematic studies are

required to decipher the contribution of individual Smad com-

plexes to gene expression.

Numerous intragenic mutations and homozygous deletions of

Smad2 and Smad4, as well as downregulation of Smad3 mRNA,

were reported for different forms of carcinoma (Levy and Hill,

2006). While attempts were made to quantify Smad expression
anuary 24, 2018 ª 2017 The Authors. Published by Elsevier Inc. 75
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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levels (Dzieran et al., 2013), potential alterations in the abun-

dance of Smad proteins in liver cancer tissue and hepatoma

cell lines compared with primary hepatocytes have not been

addressed. So far the impact of TGF-b stimulation was only

examined in proteome-wide studies that analyzed changes in

proteins and phosphorylation sites (Ali and Molloy, 2011;

D’Souza et al., 2014). However, comprehensive information on

the abundance and the degree of phosphorylation of Smad pro-

teins is currently not available.

TGF-b-induced signal transduction has been approached by

mathematical modeling that addressed the dynamics of ligand-

receptor interaction, identified the role of negative feedbacks,

and provided insights into nuclear-cytoplasmic shuttling (Schmi-

erer et al., 2008; Zi et al., 2011). However, most of these mathe-

matical models were primarily based on literature knowledge,

and only few of these studies included experimental data.

None of the previously published mathematical models ac-

counted for the composition of the trimeric Smad complexes

and the specific link to Smad complex-mediated gene

expression.

Combining mass spectrometric data and mathematical

modeling as utilized for the analysis of mechanisms governing

dimerization of phosphorylated Stat5 (Boehm et al., 2014), could

provide valuable information on Smad complex formation. In

such an approach, proteomics provides data on protein abun-

dance, while mathematical modeling provides a tool for an unbi-

ased selection strategy for the identification of transcription

factor complexes that are present in a given cell type. Since

the number of candidate models grows exponentially with the

number of model parameters, finding the exact solution of

such a model selection task is very challenging. We developed

a method to distinguish non-essential from essential model

parameters by combining nonlinear mathematical modeling

with L1 regularization (Merkle et al., 2016; Steiert et al., 2016).

The L1 regularization approach can be employed to investigate

which model reactions are required to describe experimental

data. Therefore the L1 regularization approach could be utilized

to statistically assess which individual reaction parameters lead-

ing to complex formation are necessary and sufficient and

thereby identify essential protein complexes.

Here we combine quantitative experimental techniques with

mathematical modeling approaches to resolve complexity in

Smad complex formation and to establish a quantitative link to

transcriptional activities in hepatoma cell lines and primary

hepatocytes.

RESULTS

Abundance and Interactions of Smad Proteins
To examine the TGF-b-induced formation of Smad complexes,

we quantified the amount of Smad proteins in unstimulated

Hepa1-6 cells using antibodies that specifically recognize

Smad2, Smad3, or Smad4 as well as an antibody with equal

affinity to Smad2 and Smad3 (Figure S1A). Immunoprecipitation

(IP) and quantitative immunoblotting (IB) experiments in combi-

nation with recombinant proteins (Figure S1B) revealed

825,000 ± 74,000 Smad2 and 402,000 ± 113,000 Smad4 mole-

cules per cell in Hepa1-6 cells (Figure 1A). To define the relative

abundance of Smad2 and Smad3, we combined isoform-inde-
76 Cell Systems 6, 75–89, January 24, 2018
pendent Smad2/3 IP with quantitative mass spectrometry

(Boehm et al., 2014). The results revealed a ratio of approxi-

mately 10:1 between Smad2 and Smad3 that was unaffected

by TGF-b treatment, with a total amount of 83,000 ± 6,600

Smad3 molecules per Hepa1-6 cell (Figure 1B).

To analyze the dynamics of TGF-b-induced phosphorylation of

Smad2 and Smad3 in Hepa1-6 cells, we stimulated cells with

1 ng/mL TGF-b for up to 10 hr and performed IP experiments

followed by mass spectrometry. These measurements enabled

us to distinguish non-phosphorylated Smad2 and Smad3

(nSmad2 and nSmad3), Smad2 and Smad3 phosphorylated at

the most C-terminal serine residue (pSmad2 at Ser467; pSmad3

at Ser425), and Smad2 and Smad3 phosphorylated at the two

most C-terminal serine residues (ppSmad2 at Ser465 and

Ser467; ppSmad3 at Ser423 and Ser425). At t = 0 min almost

all Smad2 and Smad3molecules were non-phosphorylated (Fig-

ure 1C). Upon TGF-b stimulation, the amount of nSmad2

decreased until 60 min and increased at later time points.

60 min after TGF-b stimulation, 5% of total Smad2 was present

as pSmad2. The abundance of ppSmad2 rapidly increased, with

a peak at 60 min after TGF-b stimulation at which the amount

corresponded to 60% of total Smad2, followed by a decrease

to basal levels after 10 hr. Similar dynamics were observed for

nSmad3, pSmad3, and ppSmad3.

To determine to which extent Smad2 and Smad3 engage

in complex formation, Hepa1-6 cells were stimulated with

1 ng/mL TGF-b for 60 min. The total amount of Smad2 and

Smad3, their phosphorylation status, and the amount of the

co-immunoprecipitated Smad2, Smad3, and Smad4 were

quantified by mass spectrometry (Figure 1D). Only doubly

phosphorylated Smad3 co-immunoprecipitated with Smad2

(Figure 1D, left panel) and the amount of co-immunoprecipi-

tated Smad3 (28,000 ppSmad3 molecules/cell) was low

compared with the amount of Smad2 (825,000 molecules/

cell). Only ppSmad2 was co-immunoprecipitated with

Smad3 (Figure 1D, right panel). Out of 550,000 ppSmad2

molecules per Hepa1-6 cell, only about 4% formed a complex

with Smad3. In Smad2 and Smad3 IPs, we could detect co-

immunoprecipitation (coIP) of Smad4. The Smad4 amount

detected after Smad2 IP was approximately 35-fold higher

than after Smad3 IP (69,000 and 2,000 molecules/cell, respec-

tively), suggesting a higher abundance of formed Smad2:

Smad4 complexes compared with Smad3:Smad4 interac-

tions. These results revealed that only doubly phosphorylated

Smad2 and Smad3 molecules formed complexes. Despite the

high degree of Smad2 and Smad3 phosphorylation, only few

Smad2 molecules interacted with Smad3. On the other hand,

around 30% of all Smad3 molecules are associated with

Smad2 upon stimulation with TGF-b. We also examined the

Smad complex formation in a time- and TGF-b dose-depen-

dent manner in Hepa1-6 cells (Figures S1C and S1D). We

concluded that the efficacy of Smad complex formation may

be highly dependent on the molecular ratio of the individual

Smad proteins.

Identification of the Most Relevant Smad Complexes
Theoretically, a large number of trimeric Smad2, Smad3, and

Smad4 complexes with different composition could be formed.

Trimeric complexes (k = 3) with nSmad2, pSmad2, ppSmad2,
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Figure 1. Abundance and Dynamics of TGF-b-Induced Smad Pathway Components

(A) Abundance of Smad2 and Smad4 proteins in Hepa1-6 cells determined by quantitative immunoblotting (IB). Error bars represent SEM (n = 18).

(B) Hepa1-6 cells were stimulated with 1 ng/mL TGF-b and relative protein abundance of Smad2 to Smad3 was determined by mass spectrometry (n = 2).

(C) Whole-cell lysates of Hepa1-6 cells stimulated with 1 ng/mL TGF-b were subjected to IP with anti-Smad2/3 antibodies (n = 3 for Smad2 and n = 2 for Smad3)

and analyzed by mass spectrometry for absolute phosphorylation levels of Smad2 and Smad3. n, non-phosphorylated; p, singly phosphorylated; pp, doubly

phosphorylated. Error bars represent 5% error from mass spectrometry measurement.

(D) Whole-cell lysates of Hepa1-6 cells stimulated with 1 ng/mL TGF-b for 60 min were used for IP with anti-Smad2 or anti-Smad3 antibodies. Amounts of coIP

nSmad2/3, pSmad2/3, ppSmad2/3, and Smad4 are shown. Smad2, Smad3, and Smad4 protein abundance was determined by mass spectrometry (n = 3 for

Smad2 and n = 2 for Smad3 and Smad4). Error bars represent 5% error from mass spectrometry measurement.
nSmad3, pSmad3, ppSmad3, and Smad4 (n = 7) would result in

84 possible complexes based on Equation 1. Since only

ppSmad2, ppSmad3, and Smad4 substantially engage in com-

plex formation (n = 3), this number is reduced to 10. As we

observed major differences in the total amount of Smad2 and

Smad3 proteins, it is possible that only a much smaller number

of Smad complexes occurs in Hepa1-6 cells.

To disentangle the combinatorial complexity of Smad

complex formation, we combined quantitative experiments

with mathematical modeling. The established mathematical

model consists of 31 mass-action kinetic reactions and 16

dynamical parameters that describe TGF-b receptor activa-

tion and Smad complex formation (Figure 2A). In the model,

the formation of each of the ten possible trimeric Smad com-

plexes consisting of ppSmad2, ppSmad3, and Smad4 was

characterized by a complex-specific association rate (kon).

The dissociation of each trimeric Smad complex was depen-

dent on the dephosphorylation of ppSmad2 and ppSmad3 in

the heterotrimeric Smad complexes or on the dissociation of

the homotrimeric Smad4 complex (Figure 2A). The mathemat-

ical model with ten complexes was capable of describing the
time and dose dependency of Smad complex formation

(Figure S1E).

To identify the most relevant Smad complexes in Hepa1-6

cells, we employed a data-based model selection approach

(Merkle et al., 2016; Steiert et al., 2016) to eliminate complexes

not required to explain the experimental data. For this purpose,

we added an L1 regularization term to the kon parameters favor-

ing a minimal number of distinct complexes in the mathematical

model. For statistical assessment, we calculated the profile like-

lihoods for the ten kon parameters of the considered trimeric

Smad complexes (Raue et al., 2009), indicating the parameter

ranges that are compatible with the experimental data. For seven

of the ten kon parameters (Figure 2B), the best parameter estima-

tion value (red asterisk) was compatible with 10�14, which is

equivalent to zero. For the other three kon parameters, the best

parameter estimation value was significantly different from

zero. These results suggested that only three complexes

ppSmad2:ppSmad3:ppSmad3, ppSmad2:Smad4:Smad4, and

ppSmad2:ppSmad3:Smad4 are necessary to describe the

experimental data. The reduced mathematical model

comprising only these three Smad complexes (Figure 2C) was
Cell Systems 6, 75–89, January 24, 2018 77
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Figure 2. Data-Driven Model Reduction Identifies Relevant Smad Complexes

(A) A mathematical model describes the formation of ten different homo- and heterotrimers comprising ppSmad2, ppSmad3, and Smad4.

(B) Employment of model reduction by L1 regularization to identify the relevant Smad complexes required to explain the experimental data. The black curves

indicate the profile likelihood for the association rate (kon) of a specific complex. For three complexes (gray background) the profile likelihood, �2 log(PL), in-

creases above the statistical threshold (red dashed line) if the association rate is deviating from the estimated value (red asterisk).

(C) Structure of the reduced model.

(D) Description of the experimental data by the reduced model. Left panels: Smad2 (n = 1), Smad3 (n = 2), and Smad4 (n = 2). Right panels: Smad2 (n = 2), Smad3

(n = 1), Smad4 (n = 1), and Smad2/3 (n = 2). Dots, experimental mass spectrometric data; continuous line, model trajectories; shading, 5% error.
able to describe the experimental data (Figure 2D) to a similar

extent as the comprehensive mathematical model considering

all ten possible trimeric Smad complexes. The goodness-of-fit

of the reduced model was assessed by the chi-square statistics

c2 = Si((yi–fi)/si)
2, which increases by 0.71 after removing seven
78 Cell Systems 6, 75–89, January 24, 2018
complexes from 743.56 to 744.28 for 342 data points, supporting

the model reduction. Thus, the model proposes ppSmad2:

ppSmad3:ppSmad3, ppSmad2:Smad4:Smad4, and ppSmad2:

ppSmad3:Smad4 as the most relevant TGF-b-induced Smad

complexes in Hepa1-6 cells.
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Experimental Validation of the Model-Predicted Smad
Complexes
To experimentally validate the model-predicted Smad com-

plexes, we combined sequential IP experiments using lysates

of Hepa1-6 cells with detection by quantitative IB. To confirm

the presence of the model-predicted ppSmad2:ppSmad3:

ppSmad3 complex, we examined a TGF-b-dependent, but

Smad4-independent, interaction of Smad2 with Smad3. We

depleted Smad4 by three repetitive IP experiments from lysates

of Hepa1-6 cells that had been treated with TGF-b or were left

unstimulated. Depletion of Smad4 from the lysate was confirmed

by IB, showing that the Smad4 signal was reduced to back-

ground. The Smad4-depleted lysates were exposed to Smad3

IP, and co-precipitated Smad2 was detected by quantitative

IB. Even in the absence of Smad4, Smad2 associates with

Smad3, but only in lysates of TGF-b-stimulated cells in which

most of Smad2 and Smad3 are doubly phosphorylated (Fig-

ure 3A), thereby supporting the model-predicted ppSmad2:

ppSmad3:ppSmad3 complex. Analogous experiments were

performed to validate the ppSmad2:Smad4:Smad4 complex.

Smad3 was depleted from lysates of TGF-b-stimulated or unsti-

mulated Hepa1-6 cells, again reducing the Smad3 signal to

background levels. The Smad3-depleted lysates were subjected

to Smad4 IP, and the analysis of Smad2 by IB showed the TGF-

b-dependent interaction of Smad2 with Smad4 (Figure 3B),

providing experimental evidence for the ppSmad2:Smad4:

Smad4 complex.

To verify the ppSmad2:ppSmad3:Smad4 complex, we immu-

noprecipitated Smad3 from lysates of Hepa1-6 cells, which were

stimulated with TGF-b or were left untreated. Immunoprecipi-

tated proteins bound to the beads were dissociated by the addi-

tion of an excess of the Smad3 blocking peptide. The resulting

supernatants were used for Smad4 IP, and the detection of

Smad2 by IB confirmed the coIP of Smad2 (Figure 3C). Since

only doubly phosphorylated Smad2 and Smad3 engage in com-

plex formation (Figure 1D), these results verify the TGF-b-depen-

dent formation of a trimeric complex between ppSmad2,

ppSmad3, and Smad4.

Model-Based Link of Smad Complexes with Gene
Expression Dynamics
The impact of individual trimeric Smad transcription factor

complexes on the expression dynamics of specific genes is un-

known. To establish time-resolved expression profiles of TGF-b
Figure 3. Experimental Evidence for the Predicted Smad Complexes a

The (A) ppSmad2:ppSmad3:ppSmad3, (B) ppSmad2:Smad4:Smad4, and (C) pp

lated with 1 ng/mL TGF-b for 60 min, or unstimulated, lysed, and subjected to IP

(A) Lysates were depleted of Smad4 by three sequential IPs and used for Sma

Experiments were performed in biological triplicates and means and SD are sho

(B) Lysates were depleted of Smad3 by three sequential IPs and used for Sma

Experiments were performed in biological triplicates and means and SD are sho

(C) Lysates were used for Smad3 IP and proteins were dissociated from beads. T

detected by IB. IPs were confirmed by IB. Experiments were performed in biolog

(D) Microarray-based gene expression analysis of Hepa1-6 cells treated (red) or

divided into 12 groups by k-means clustering. Continuous lines, estimated dynam

(E) Representative TGF-b target genes in each cluster were linked to the reduced p

could have an activating (green) or an inhibitory (red) effect on each target gene

(F) Gene activation dynamics of the 12 target genes were validated by qRT-PCR

area, estimated error.
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genes, RNA was extracted from TGF-b-treated and untreated

Hepa1-6 cells over time and subjected to microarray analysis.

To define transcripts with similar gene expression kinetics,

k-means clustering was performed. We identified 12 clusters

with distinct dynamic patterns of gene expression, each contain-

ing 20–50 genes (Figure 3D). The transcripts of clusters 1, 2, and

3 showed transient expression kinetics withmaximally increased

gene expression at around 3 hr. Clusters 4, 5, and 8 displayed

sustained dynamics, and clusters 6 and 7 were characterized

by a transient kinetics with a peak at 60 min. In contrast to these

positively regulated clusters, gene expression in clusters 9 to 12

was downregulated by TGF-b.

In each cluster, we selected a representative gene that was

previously linked to TGF-b-induced Smad2/3 signaling. We

selected Ski (Luo et al., 1999) for cluster 1, Skil (SnoN) (Stro-

schein et al., 1999) for cluster 2, Dnmt3a (Domingo-Gonzalez

et al., 2015) for cluster 3, Sox4 (Qin et al., 2009) for cluster 4,

Jun (Koinuma et al., 2009) for cluster 5, Smad7 (Lebrun et al.,

1999) for cluster 6, Klf10/Tieg1 (Dosen-Dahl et al., 2008) for clus-

ter 7, Bmp4 (Greber et al., 2007) for cluster 8, Cxcl15 with its

human ortholog CXCL8/IL8 (Ge et al., 2010) for cluster 9,

Dusp5 (Tao et al., 2016) for cluster 10, Tgfa (Nozato et al.,

2003) for cluster 11, and Pdk4 (Stockert et al., 2011) for cluster

12. To verify that these genes are bona fide TGF-b target genes,

we analyzed the expression of these genes in Hepa1-6 cells

upon stimulation with 1 ng/mL TGF-b in the presence or absence

of the selective TGF-b receptor inhibitor SB-431542. SB-431542

selectively inhibits ALK4, ALK5, and ALK7, and thereby impairs

canonical Smad-mediated TGF-b signaling, whereas non-ca-

nonical TGF-b signaling is not affected (Inman et al., 2002).

Our results demonstrated that SB-431542 reduces the

TGF-b-induced upregulation of the genes of clusters 1 to 8 as

well as the TGF-b-mediated downregulation of the genes of clus-

ters 9 to 12 (Figure S2A).

To quantitatively link the dynamics of TGF-b-induced forma-

tion of Smad complexes to gene expression, we established

an integrative mathematical model that extends our reduced

mathematical model to downstream transcriptional regulation.

Since the specific connection between the considered Smad

complexes and target gene expression was not known, we con-

strained the potential regulatory mechanisms in the integrative

mathematical model as little as possible to allow for positive

and negative regulation of each complex on every target gene,

as well as for a gene-specific turnover (Figure 3E).
nd Identification of Distinct Clusters of TGF-b-Regulated Genes

Smad2:ppSmad3:Smad4 complexes were examined in Hepa1-6 cells stimu-

and IB.

d3 IP, which was analyzed first by a Smad2 IB and second by a Smad3 IB.

wn.

d4 IP, which was analyzed first by a Smad2 IB and second by a Smad4 IB.

wn.

he supernatants were subjected to Smad4 IP and the associated Smad2 was

ical triplicates and means and SD are shown.

untreated (gray) with 1 ng/mL TGF-b for up to 10 hr was performed (n = 2) and

ics; dashed lines, cluster average.

athwaymodel, establishing an integrative mathematical model. Each complex

with a gene-specific turnover rate.

. Dots, experimental data (n = 3); continuous lines, model simulations; shaded
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Wedetermined by qRT-PCR the TGF-b-induced expression of

the 12 clusters in Hepa1-6 cells (Figure 3F). The integrativemath-

ematical model was able to describe the expression dynamics of

the 12 representative TGF-b target genes and captured up- and

downregulated as well as transient and sustained gene expres-

sion. The model feature that facilitated the description of

transient or sustained gene expression was a gene-specific

mRNA turnover parameter. We calculated the gene-specific

half-life based on this parameter (Figure S2B). The model

predicted a fast turnover for Jun, Smad7, Klf10, and Bmp4

(half-life < 10 min), an intermediate turnover for Skil, Dusp5,

and Pdk4 (half-life between 10 and 100min), and a slow turnover

for the five remaining genes (half-life >100 min). These model-

predicted values showed good agreement (Figure S2D) with

the mRNA half-life experimentally determined by the addition

of Actinomycin D (Figure S2C).

These results indicate that knowledge on the TGF-b-induced

dynamics of the ppSmad2:ppSmad3:ppSmad3, ppSmad2:

Smad4:Smad4, and ppSmad2:ppSmad3:Smad4 complexes in

Hepa1-6 cells is sufficient to link complex formation to gene

expression.

Modulation of TGF-b-Induced Gene Expression by
Changing the Abundance of the Smad Molecules
The analysis of transcription factor binding sites in the promoter

region of the selected Smad target genes revealed that most of

the target genes contained experimentally validated (Figure 4A,

dashed lines) or expert-curated (Figure 4A, solid lines) transcrip-

tion factor binding sites for at least one of the considered Smad

proteins. For Dusp5 and Pdk4, no transcription factor binding

site for Smad2, Smad3, or Smad4 was reported, indicating indi-

rect regulation.

To elucidate in Hepa1-6 cells the impact of the identified

trimeric Smad complexes on the dynamics of TGF-b-induced

gene expression, we perturbed the system with target-specific

small interfering RNA (siRNA) against Smad3 and Smad4 and

measured the knockdown efficiency for Smad3 and Smad4

by quantitative IB (Figures 4B and S3A). Possibly due to the

high expression level of Smad2 in Hepa1-6 cells, only a mar-

ginal knockdown effect could be achieved for Smad2. To

assess in silico the potential impact of the knockdown of

Smad proteins on the TGF-b-induced formation of the three

Smad complexes, we adjusted in our mathematical model the

initial amounts of Smad3 and Smad4 according to the experi-

mentally measured knockdown efficiency (Figures 4B and

S3A) and performed model simulations to predict the time
Figure 4. Influence of Smad Protein Abundance on the Dynamics of Sm
(A) Analysis of the connection between Smad2 (red), Smad3 (green), Smad4 (blue

System (GePS). Dashed lines, experimentally validated; solid lines, expert-cura

chevrons, phosphatases; stars, co-factors; arrows, activation; diamonds, Smad

(B) Smad3 protein was downregulated using two different concentrations of targe

were performed in biological triplicates and means and SD are shown.

(C) Model simulations of the dynamics of complex abundance after Smad3 knoc

(D) TGF-b-induced gene expression after Smad3 knockdown in Hepa1-6 cells det

means and SD are shown.

(E) Overexpression (OE) of FLAG-tagged Smad2, Smad3, and Smad4 proteins in

(F) Model simulations of the dynamics of complexes upon overexpression of diff

(G) Analysis of TGF-b-induced expression of the selected target genes in Smad-o

SE resulting from scaling of the experimental data by a mixed effects alignment
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courses of the formation of the three Smad complexes (Figures

4C and S3B). The model predictions suggested that knock-

down of Smad3 had a strong negative impact on the formation

of the ppSmad2:ppSmad3:ppSmad3 and of the ppSmad2:

ppSmad3:Smad4 complex in a dose-dependent manner of

the siRNA, but only a minor effect on the formation of the

ppSmad2:Smad4:Smad4 complex. A similar effect was

observed in response to the knockdown of Smad4, which re-

sulted in a negative effect on the ppSmad2:ppSmad3:Smad4

and the ppSmad2:Smad4:Smad4 complexes, and only minor

effects were observed on the formation of the ppSmad2:

ppSmad3:ppSmad3 complex.

The experimental results shown in Figure 4D revealed that

Smad3 knockdown altered the expression of all target genes.

Positively regulated Smad target genes were suppressed

(e.g., Ski, Skil, Klf10, and Sox4), whereas the expression of

target genes that are repressed by TGF-b stimulation were up-

regulated upon Smad3 knockdown (e.g., Cxcl15, Dusp5, and

Bmp4) (Figure 4D). Comparable effects were observed upon

Smad4 knockdown (Figure S3C), confirming the dependency

of the expression of the 12 selected target genes on Smad

signaling.

To examine the specific impact on the identified trimeric

Smad complexes, we established Hepa1-6 cells overexpress-

ing Flag-tagged Smad2, Smad3, or Smad4, and measured

the total amounts of Smad proteins by quantitative IB (Fig-

ure 4E). A 2-fold increase of Smad2, a 14-fold increase of

Smad3, and a 3-fold increase in the total amount of Smad4

compared with wild-type Hepa1-6 cells were obtained. We

observed that overexpression of one of the Smad proteins

had no major impact on the expression levels of the other two

Smad proteins.

We performed model simulations by adjusting our mathemat-

ical model to the measured overexpression levels to predict the

time courses of the formation of the three Smad complexes (Fig-

ure 4F). Themodel predictions suggested that overexpression of

Smad3 affects the formation of the ppSmad2:ppSmad3:

ppSmad3 and of the ppSmad2:ppSmad3:Smad4 complexes,

while it negatively affects the dynamics of the ppSmad2:Smad4:

Smad4 complex. The model predicted a positive influence

of Smad4 overexpression on the formation of the ppSmad2:

Smad4:Smad4 complex and, to a lesser extent, on the dynamics

of the ppSmad2:ppSmad3:Smad4 complex. On the contrary,

themodel predicted that Smad2 overexpression had little impact

on Smad complex formation. These insights suggest that alter-

ations in the total amount of Smad proteins, in particular of
ad Complexes and TGF-b-Induced Gene Expression
), and the 12 selected TGF-b target genes (yellow) by the Genomatix Pathway

ted connections; rounded rectangles, proteins; right chevrons, kinases; left

binding sites.

t siRNA. Lysates of Hepa1-6 were subjected to Smad3 IP and IB. Experiments

kdown. Continuous lines, model simulations; WT, Hepa1-6 wild-type.

ermined by qRT-PCR. Experiments were performed in biological triplicates and

Hepa1-6 cells analyzed by IB.

erent Smad molecules.

verexpressing Hepa1-6 cells by qRT-PCR (n = 3). The error bars represent the

model.
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Figure 5. Mathematical Model-Based Determination of the Impact of Single Smad Complexes on Gene Expression

Prediction of the influence of the single Smad complexes on TGF-b-induced gene expression. Left panel: regulation relative to gene expression at time point

0 min. Green, positive regulation; red, negative regulation; black, marginal impact. Uncertainties of the predictions are visualized by the thickness of the lines.

Right panel: normalized area under the curve of the trajectories (log2), with median and SD. The color code of both panels was normalized for each gene

individually.
Smad4 and Smad3, change the extent to which the three rele-

vant complexes are formed.

The time course experiments (Figure 4G, data points) showed

that Smad2 overexpression positively influenced the TGF-

b-mediated induction of Ski, Skil, Dnmt3a, and Sox4. Smad3

overexpression increased the expression of Klf10 and Dnmt3a

at earlier time points, whereas the expression of Sox4 and

Jun was affected at later time points and the expression of

Ski, Skil, Smad7, and Bmp4 was altered during the entire obser-

vation period. Conversely, the TGF-b-induced downregulation

of Cxcl15, Dusp5, Tgfa, and Pdk4 expression was augmented

by Smad3 overexpression. Smad4 overexpression resulted in

an increased upregulation of Klf10 expression and an

augmented repression of Cxcl15 and Dusp5. Our mathematical

model adjusted to the observed overexpression levels of the

Smad2, Smad3, and Smad4 was able to quantitatively describe

the majority of the observed gene expression profiles (Fig-

ure 4G, solid lines). For Dnmt3a, Jun, Klf10, and Cxcl15, the

model trajectories were not able to describe the experimental

data, which might be due to the absence of interactions be-

tween the identified Smad complexes or with co-factors in

our mathematical model.

In sum, the mathematical model was capable of correctly

quantifying the connection between Smad2, Smad3, and

Smad4 levels, the formation of Smad complexes, and the

expression dynamics of the majority of the representative

TGF-b target genes. Since upon overexpression or knockdown

of Smad proteins the dynamics of themajority of genes remained

in the same cluster (Figure S3D), we concluded that, while the

TGF-b-induced expression dynamics is a property of each
gene, the dynamics can be modulated by a change in the abun-

dance of Smad pathway components.

Model-Based Analysis of the Contribution of the
Individual Smad Complexes to TGF-b-Induced Gene
Expression
To quantify the influence of each Smad complex on TGF-

b-induced gene expression, we used our mathematical model

to predict the expression profiles of the TGF-b-induced genes

in the presence of only one of the three Smad complexes

(Figure 5, left panel). We utilized the area under the curve of

the model-predicted gene expression profiles as a quantitative

measure for the extent of gene activation represented by a heat-

map (Figure 5, right panel). In our mathematical model, the rela-

tive influence of each Smad complex on the extent of gene

expression is determined by the activation and inhibition param-

eters multiplied by the complex concentrations and further

modulated by the turnover rates (Figure S4A). To analyze which

activation and inhibition parameter contributed most to the

expression dynamics of the respective gene, we performed a

sensitivity analysis (Figure S4B). These model-based studies

suggested that the ppSmad2:ppSmad3:ppSmad3 complex pri-

marily has a positive influence on the expression of Jun, and a

weakly positive impact on Smad7 which is due to a negligible in-

hibition parameter. The activation parameters of ppSmad2:

ppSmad3:ppSmad3 for Ski, Dnmt3a, Sox4, Klf10, Cxcl15,

Dusp5, Tgfa, and Pdk4 are estimated as zero. On the contrary,

the model predicted that the ppSmad2:Smad4:Smad4 complex

induces the expression of Ski, Skil, Sox4, Jun, and Smad7, and

represses Cxcl15, Dusp5, Tgfa, and Pdk4. For Smad7, the
Cell Systems 6, 75–89, January 24, 2018 83



A Bprimary mouse hepatocytes

Smad
2

Smad
3

Smad
4

primary human hepatocytes

Smad
2

Smad
3

Smad
4

HepG2 cells

Smad
2

Smad
3

Smad
4

m
ol

ec
ul

es
/c

el
l (

x1
04 )

m
ol

ec
ul

es
/c

el
l (

x1
04 )

m
ol

ec
ul

es
/c

el
l (

x1
04 )

time (min) time (min) time (min)

primary human hepatocytesprimary mouse hepatocytes HepG2 cells

experimental data (untreated)
experimental data (TGFβ-treated)

model prediction (untreated)
model prediction (TGFβ-treated)

TGFA

0 200 400 600 0 200 400 6000 200 400 600

SKI

0 200 400 600 0 200 400 600 0 200 400 600

DNMT3A

0 200 400 600 0 200 400 600 0 200 400 600

SOX4

0 200 400 600 0 200 400 600 0 200 400 600

SMAD7

0 200 400 600 0 200 400 600 0 200 400 600

KLF10

0 200 400 600 0 200 400 600 0 200 400 600

−4

−2

0

2

−2

0

2

−4
−2

0
2

−2

0

2

0

2

4

−2
0
2
4

−4
−2

0
2
4

BMP4

−4

−2

0

2

−2

0

2

−4
−2

0
2

−2

0

2

0

2

4

−2
0
2
4

−4
−2

0
2
4

0 200 400 600 0 200 400 600 0 200 400 600

−4

−2

0

2

−2

0

2

−4
−2

0
2

−2

0

2

0

2

4

−2
0
2
4

−4
−2

0
2
4

ge
ne

 e
xp

re
ss

io
n

(lo
g 2

)
ge

ne
 e

xp
re

ss
io

n
(lo

g 2
)

ge
ne

 e
xp

re
ss

io
n

(lo
g 2

)
ge

ne
 e

xp
re

ss
io

n
(lo

g 2
)

ge
ne

 e
xp

re
ss

io
n

(lo
g 2

)
ge

ne
 e

xp
re

ss
io

n
(lo

g 2
)

ge
ne

 e
xp

re
ss

io
n

(lo
g 2

)

1

0.1

10

1

0.1

10

1

0.1

10

Figure 6. Conservation of Connection of Smad Complexes and TGF-b-Induced Target Genes in Primary Hepatocytes and Hepatoma Cells

(A) Smad protein abundance in primary mouse hepatocytes, HepG2 cells, and primary human hepatocytes determined by mass spectrometry and IB. Error bars

represent SEM (n = 4).

(B) Model simulations of TGF-b-induced gene expression in primary mouse hepatocytes, HepG2 cells, and primary human hepatocytes. Smad2, Smad3, and

Smad4 protein abundance was incorporated in the model. Conserved model parameters linking the three Smad complexes to gene expression were assumed

and cell type-specific TGF-b signaling dynamics were estimated based on the qRT-PCR data (dots, n = 3). Continuous lines, model simulations; shaded area,

estimated error.
inhibitory parameter of the ppSmad2:Smad4:Smad4 complex

was in agreement with zero. Our mathematical model indicated

that the ppSmad2:ppSmad3:Smad4 complex has the strongest

activation parameter for 7 out of the 12 genes and also the

largest inhibitory parameter for Dusp5 and Pdk4.

In summary, the integrative mathematical model enabled

us to dissect the individual contribution of the three

Smad complexes to TGF-b-induced target gene expression.

While expression of most target genes was positively

influenced by the ppSmad2:ppSmad3:Smad4 complex,

Dusp5 and Pdk4 were transcriptionally repressed by this com-

plex. Possibly the ppSmad2:ppSmad3:Smad4 complex is an

activating transcription factor that exerts its downregulating

function by inducing a transcriptional repressor.
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Protein Abundance-Dependent Model Predictions and
Validation in Different Liver Cell Types
To evaluate Smad complex formation in other liver cells that

potentially harbor different amounts of Smad proteins, we exam-

ined primary mouse hepatocytes, the human hepatoma cell line

HepG2, and primary human hepatocytes.

The abundance of Smad2, Smad3, and Smad4 in these cells

was determined by quantitative IB and quantitative mass spec-

trometry (Figures S5A–S5D). Compared with Hepa1-6 cells (Fig-

ures 1A and 1B), the abundance of Smad2, Smad3, and Smad4

(Table S1) was substantially different in primary mouse hepato-

cytes, HepG2 cells, and primary human hepatocytes (Figure 6A).

Compared with Hepa1-6 cells (Figures 1A and 1B), in primary

mouse hepatocytes the expression of Smad2 was 8-fold lower,



Smad3 was 3-fold lower, and Smad4 was 5-fold lower. Overall

the abundance of Smad proteins in HepG2 cells was similar to

that in primary mouse hepatocytes, but showing a similar

approximately 10:1 ratio between Smad2 and Smad3 proteins

as in Hepa1-6 cells. Primary human hepatocytes harbored com-

parable amounts of Smad2, Smad3, and Smad4, and the Smad2

concentration was lower by one order of magnitude compared

with HepG2 cells.

To assess the impact of these differences in abundance of

Smad proteins on Smad complex formation, we utilized the

experimentally established cell-type-specific concentration of

Smad2, Smad3, and Smad4 as starting values in our mathemat-

ical model, and predicted the dynamics of the TGF-b-induced

formation of the three Smad complexes for each of the studied

cell types. The model predicted that changes in the total

amounts of Smad2, Smad3, or Smad4 altered the dynamics

of the formation of ppSmad2:ppSmad3:ppSmad3, ppSmad2:

Smad4:Smad4, and ppSmad2:ppSmad3:Smad4 complexes

(Figures S5E–S5G). To experimentally test if these differences

propagate to the expression of Smad target genes, we treated

primary mouse hepatocytes, HepG2 cells, and primary human

hepatocytes with 1 ng/mL TGF-b for up to 10 hr and determined

the dynamics of the expression of the representative Smad

target genes by qRT-PCR analysis (Figure 6B, filled circles,

and Figure S6, open circles). To analyze the obtained data with

our mathematical model, we adjusted the model to the cell

type-specific abundance of Smad proteins. Since we observed

differences in the dynamics of gene activation in the different

cell types, the model parameters of TGF-b receptor activation

and Smad complex formation were newly estimated, while the

model parameters linking the respective Smad complexes to

gene expression were retained. We omitted the mouse-specific

gene Cxcl15 from this analysis. The resulting model simulations

correctly described for each cell type the specific dynamics of

the TGF-b-induced expression of SKI, DNMT3A, SOX4,

SMAD7, KLF10, BMP4, and TGFA (Figure 6B, continuous lines).

DUSP5 was not detectable in primary human hepatocytes and

HepG2 cells, and PDK4 was not detectable in HepG2 cells (Fig-

ure S6). While a transcriptional response of SKIL and JUN to

TGF-b was observed, the cell type-specific expression dy-

namics was not in line with the predicted model trajectories (Fig-

ure S6, continuous lines). The qualitative differences between

the model trajectories and the experimental data for these four

Smad target genes might be explained by cell-type-specific

epigenetic modifications or co-factors that are currently not

considered in our mathematical model.

Our result showed that adjusting our mathematical model to

the measured cell-type-specific abundance of Smad2, Smad3,

and Smad4 was sufficient to predict the dynamics of TGF-

b-induced target gene expression. This supports our hypothesis

that the link between the identified Smad complexes and the

regulation of the expression of themajority of TGF-b target genes

is conserved among the four liver cell types studied.

Gene Expression-Based Prediction and Experimental
Validation of Dysregulation of the Abundance of Smad
Proteins in Hepatocellular Carcinoma
An important role in progression of hepatocellular carcinoma

(HCC) has been attributed to Smad signal transduction (Dzieran
et al., 2013). Currently, primarily genome-wide expression

studies are available for patients with HCC. Therefore, we tested

whether a reverse approach can be used to predict the abun-

dance of Smad proteins present in patient samples on the basis

of gene expression data.

We analyzed tumor-free and tumor tissue samples from 30

patients with HCC (Figure 7A, cohort A). By qRT-PCR the

expression of the 12 TGF-b target genes, except for the

mouse-specific gene Cxcl15 and TGFA, which was not detect-

able in human liver tissue, was analyzed. The remaining ten

selected TGF-b target genes showed major alterations in their

expression levels (Figure 7B), with SKI, SKIL, DNMT3A, and

SOX4 being significantly upregulated in tumor samples. Cirrhotic

or non-cirrhotic origin of the tumor samples had no impact on

gene expression, except for BMP4, DNMT3A, and DUSP5,

which were upregulated in cirrhotic compared with non-cirrhotic

tissue.

For each patient, we incorporated the differences in the

expression level of the selected Smad target genes between

the tumor and the tumor-free samples in our mathematical

model and predicted the corresponding alterations of the three

Smad complexes, as well as TGF-b receptor activation required

to achieve the observed expression pattern. Our analysis indi-

cated that no major difference in the formation of the ppSmad2:

Smad4:Smad4 complex occurred in the tumor compared with

the tumor-free samples. However, the model predicted a signif-

icantly higher abundance of the ppSmad2:ppSmad3:ppSmad3

and ppSmad2:ppSmad3:Smad4 complexes in the tumor sam-

ples (Figure 7C).

Because of the model-predicted increase of the Smad com-

plexes in the tumor context, we calculated the total abundance

of Smad2, Smad3, and Smad4 proteins in the tumor-free and

tumor samples on the basis of the predicted amounts of the three

Smad complexes. The mathematical model predicted a signifi-

cant increase in the mean of the sum of all Smad proteins in

the tumor samples (Figures 7D and S7A). By quantitative IB we

determined the abundance of Smad2, Smad3, and Smad4 pro-

teins in the patient samples (Figure S7B). An upregulation of

Smad2, Smad3, and Smad4 (Figure S7C), as well as a significant

increase in the sum of all Smad proteins, was observed in the tu-

mor samples compared with the tumor-free samples (Figure 7E).

We confirmed that in the tissue setting, the TGF-b-induced acti-

vation of the Smad signaling pathway and of Smad target gene

expression are far from saturation (Figure S7D).

The mathematical model predicted that activation of the

TGF-b receptor is significantly elevated in the tumor compared

with the tumor-free samples (Figure 7F). Since it is currently tech-

nically not possible to directly quantify the activation status of the

TGF-b receptor, we used Smad2 phosphorylation as a proxy to

analyze the pathway activation. We collected a new cohort of

fresh patient material (cohort B), and determined Smad2 phos-

phorylation in these samples by quantitative IB (Figure S7E). In

line with the model prediction, a significant increase in Smad2

phosphorylation was observed in the HCC samples (Figure 7G)

and Smad2 protein levels were significantly increased in the

tumor tissue samples (Figure S7F).

In sum, these observations underscore that our reverse

modeling approach is capable of inferring quantitative informa-

tion on the abundance of Smad proteins from gene expression
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Figure 7. Prediction of Changes in Smad Abundance Based on Gene Expression in HCC Tissue Samples

(A) Histological images (magnification, 3100) of tumor-free (left) and tumor tissue (right) from a patient with cirrhosis who developed HCC.

(B) Expression of TGF-b target genes in tumor-free and tumor tissue samples determined by qRT-PCR (n = 30).

(C) Model-based prediction of the relative amounts of the Smad complexes based on target gene expression shown in (B) (n = 30).

(D) Prediction of amounts of Smad2, Smad3, and Smad4 based on the abundance of the Smad complexes shown in (C.) (n = 30).

(E) Determination of the amount of Smad2, Smad3, and Smad4 for each patient by quantitative IB. Mean signal of tumor-free samples was adjusted to molecules

per cell measurements in primary human hepatocytes (n = 29).

(F) Prediction of the amount of TGF-b receptor phosphorylation by the mathematical model based on the Smad complexes shown in (C) (n = 30).

(G) Determination of the amount of phosphorylated Smad2 by IB for each patient in an independent cohort B (Figure S7E). Different blots were scaled to each

other relative to the amount of phosphorylated Smad2 in TGF-b-treated HepG2 cells (Figure S7E) (n = 12).

All data are shown relative to the mean of the tumor-free samples. Horizontal lines indicate mean values. *p < 0.05; **p < 0.01; ***p < 0.001; paired t tests.
data, and that elevated phosphorylation of Smad2 as well as

elevated expression of Smad2, Smad3, and Smad4 proteins is

characteristic for HCC.

DISCUSSION

In this study, we predicted and provided evidence for the three

most relevant Smad complexes formed in response to TGF-b
86 Cell Systems 6, 75–89, January 24, 2018
stimulation, and utilized a broadly applicable mathematical

modeling approach to dissect the impact of these complexes

on target gene expression.

Upon TGF-b stimulation only doubly phosphorylated Smad2

and Smad3 engage in complex formation. This notion is in agree-

ment with the crystal structure of the doubly phosphorylated

Smad2 homodimer, which revealed an essential role of both

phosphoserine residues in stabilizing the complex (Wu et al.,



2001b). Our results showed that only a minor fraction of the

Smad2 and Smad3 molecules present in a cell contribute to

complex formation. Likewise, it was shown that only minor

amounts of Smad3 associate with Smad2 (Wu et al., 2001b).

Out of 84 possible combinations of complexes of non-phos-

phorylated and phosphorylated Smad2, Smad3, and Smad4,

we predicted, by combining quantitative experimental data with

thedevelopmentofamathematicalmodel, the threemost relevant

trimeric Smad complexes in primary hepatocytes and hepatoma

cells: ppSmad2:ppSmad3:ppSmad3, ppSmad2:Smad4:Smad4,

and ppSmad2:ppSmad3:Smad4. These results extend previous

insights obtained by crystallographic studies showing that the

C-terminal domain of Smad4 and the C-terminal domain of phos-

phorylated Smad2 have the capacity to form homotrimers (Wu

etal., 2001a, 2001b).Sedimentationstudiesexaminingphosphor-

ylation-induced Smad complex formation with a pseudo-phos-

phorylated Smad3 showed that Smad3 heterotrimer formation

is favored over homotrimer formation (Chacko et al., 2001). In

line with the ppSmad2:ppSmad3:Smad4 complex that we de-

tected in our study, an in situ proximity ligation assay showed

that TGF-b stimulation induced the formation of complexes con-

sisting of Smad2, Smad3, and Smad4 (Zieba et al., 2012).

Despite chromatin IP and microarray studies (Qin et al., 2009;

Zhang et al., 2011), it was not possible to define the specific

contribution of individual trimeric Smad complexes to gene

expression. By overexpression and knockdown of individual

Smad proteins, and a mathematical model that links the TGF-

b-induced activation of signal transduction to target gene

expression, we dissected the contribution of the identified

Smad complexes to target gene expression and revealed their

positive or negative regulatory effect.

Our analysis indicated that the ppSmad2:ppSmad3:Smad4

complex is the most important complex involved in TGF-

b-induced gene expression with a positive influence on most

of the genes, and that ppSmad2:ppSmad3:Smad4 and

ppSmad2:Smad4:Smad4 complexes repress the expression of

DUSP5 and PDK4. Our transcription factor and simulation

analyses suggested an indirect regulation, possibly mediated

by cell-type-specific co-factors, such as STAT3, GATA4, and

C/EBPb (Qin et al., 2009).

A similar approach was used to investigate erythropoietin-

induced heterodimer formation between Stat5a and Stat5b

(Boehm et al., 2014). In general, our technology combining IP,

quantitative mass spectrometry, and mathematical modeling

with L1 regularization, can be used to quantitatively investigate

protein-protein interactions and thereby add quantitative infor-

mation to protein-protein interactions that were mapped on a

genome-wide scale (Li et al., 2017).

Our systems biology approach enabled us to quantitatively

link the total amount of Smad proteins and Smad-regulated

gene expression in hepatoma cells and in primary hepatocytes.

We provided evidence that alterations in the abundance of Smad

proteins do not change the type but the amount of the three

Smad complexes formed. Our studies show that the link

between the dynamics of Smad complex formation and the

regulation of gene expression is mostly conserved in primary

hepatocytes and hepatoma cells.

Microarray studies of gene expression in HCC are well estab-

lished (Hao et al., 2011). We demonstrated that, with the aid of
our mathematical model, it is possible to predict the expression

of TGF-b-induced genes based on protein data and to use gene

expression data to predict total levels of Smad proteins.

In the presented study, predictions of the mathematical model

indicated that the abundance of Smad2, Smad3, and Smad4, as

well as Smad2 phosphorylation, are increased in HCC tissue,

which was experimentally confirmed in liver samples from HCC

patients. Congruently, a previous study showed that mutations

in the Smad2 and Smad4 genesmight contribute to the develop-

ment of HCC (Yakicier et al., 1999).

As TGF-b can exert multiple functions depending on the

cellular context, it is tempting to speculate that cell-type-specific

abundance of Smad proteins might be key to explain pleiotropic

effects of TGF-b signaling. Therefore, HCC-specific alterations in

the abundance of Smad proteinsmight affect the extent to which

the three complexes are formed, and increase or decrease the

expression of target genes contributing to tumor progression.

Our approach represents a generally applicable framework

that establishes a quantitative link between complex formation

of transcription factors, signaling dynamics, and gene expres-

sion. With this approach it is not only possible to use protein

information to predict the dynamics of gene expression as

commonly practiced, but conversely enables to predict up-

stream protein abundance based on gene expression

dynamics.
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pMOWS-Flag-Smad4 This paper N/A

Software and Algorithms

Xcalibur Version 3.0.63. Thermo RRID:SCR_014593

MaxQuant http://www.biochem.mpg.de/5111795/

maxquant

version 1.5.0.12

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

R Project for Statistical Computing https://www.r-project.org/ RRID:SCR_001905

Data2Dynamics modeling environment Raue et al., 2015

Bioinformatics 31(21):3558-60.

https://doi.org/10.1093/bioinformatics/btv405

http://data2dynamics.org

MetaCore Thomson Reuters version 6.31 build 68930

Ingenuity IPA Qiagen build 441680M

Matlab The Mathworks R2016b
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Ursula

Klingm€uller (u.klingmueller@dkfz.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Culture of Cell Lines and Primary Cells
The mouse hepatoma cell line Hepa1-6 (ATCC CRL-1830, female) and the human hepatoma cell line HepG2 (ATCC HB-8065, male)

were cultivated in Dulbecco’s modified Eagle’s Medium (DMEM, Gibco) supplemented with 10% (v/v) fetal bovine serum (FBS, Life

Technologies), 1% 1003 penicillin/streptomycin (Gibco) and 1% 200 mM glutamine (Gibco). Primary human hepatocytes were iso-

lated from macroscopically healthy tissue that remained from resected human liver of three patients with primary or secondary liver

tumors or benign local liver diseases by a two-step EDTA/collagenase perfusion technique (Kegel et al., 2016). Informed consent of

the patients for the use of tissue for research purposes was obtained according to the ethical guidelines of the Charité University

Medicine Berlin. Detailed donor anamnesis of the three patients providing primary human hepatocytes is stated in the table below.

Primarymouse hepatocytes were isolated as previously described (Mueller et al., 2015) from 8- to 12-week-oldmale C57BL/6Nmice

(Charles River) housed at the DKFZ animal facility under a constant light/dark cycle, maintained on a standard mouse diet, and

allowed ad libitum access to food and water were used. All animal experiments were approved by the governmental review commit-

tee on animal care of the state Baden-W€urttemberg, Germany (reference number A-24/10). Primary mouse hepatocytes and primary

human hepatocytes were cultivated in phenol red-free Williams E medium (Biochrom) supplemented with 10% (v/v) fetal bovine

serum (FBS, Life Technologies), 0.1 mM dexamethasone, 10 mg/ml insulin (Sigma-Aldrich), 2 mM L-glutamine (Gibco) and 1% (v/v)

penicillin/streptomycin 1003 (Gibco) using collagen I-coated cell dishes (BD Biosciences). 24 hours before the experiment,

1.23106 Hepa1-6 cells and 23106 HepG2 cells, primary mouse and primary human hepatocytes (for IB and qRT-PCR experiments)

and 7.53106 cells (for mass spectrometry experiments) were seeded. 4 hours before the experiment, the different cell types were

washed three times with PBS and kept in growth factor depleted medium supplemented with 1% penicillin/streptomycin (Gibco)

and 1% glutamine (Gibco).
Donor anamnesis of the three patients providing primary human hepatocytes

Donor Age (years) Sex BMI Diagnosis

1 58 female 24.7 Liver metastases

2 65 female 22.6 Liver metastases

3 75 male 27 Liver metastases
Hepatocellular Carcinoma and Tumor-free Tissue Samples
A first cohort (Cohort A) of samples from liver tumor patients and corresponding tumor-free liver tissue were provided by the Charité

University Medicine Berlin. Informed consent of the patients for the use of tissue for research purposes was obtained corresponding

to the ethical guidelines of Charité University Medicine Berlin. Detailed donor anamnesis is stated in the table below.
Donor anamnesis of HCC and tumor-free tissue samples (Cohort A)

Donor Cirrhosis Age (years) Sex

A1 No 71 M

A2 No 74 M

(Continued on next page)
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Continued

Donor anamnesis of HCC and tumor-free tissue samples (Cohort A)

Donor Cirrhosis Age (years) Sex

A3 No 58 F

A4 No 78 F

A5 No 58 F

A6 No 68 M

A7 No 66 M

A8 No 87 M

A9 No 76 M

A10 No 76 M

A11 No 71 M

A12 No 61 F

A13 No 61 M

A14 No 73 M

A15 No 65 M

A16 Yes 66 M

A17 Yes 79 M

A18 Yes 56 F

A19 Yes 76 M

A20 Yes 70 F

A21 Yes 67 M

A22 Yes 69 M

A23 Yes 59 M

A24 Yes 76 M

A25 Yes 71 F

A26 Yes 57 F

A27 Yes 71 M

A28 Yes 71 M

A29 Yes 67 M

A30 Yes 63 M
A second cohort (Cohort B) of freshly frozen samples from liver tumor patients and corresponding tumor-free liver tissue were pro-

vided by the University Hospital Heidelberg and University of Basel to measure phosphorylation of Smad proteins. Informed consent

of the patients for the use of tissue for research purposes was obtained corresponding to the ethical guidelines of University Hospital

Heidelberg and University of Basel. Detailed donor anamnesis is stated in the table below.
Donor anamnesis of HCC and tumor-free tissue samples (Cohort B)

Donor Cirrhosis Age (years) Sex

B1 Yes 66 M

B2 Yes 72 M

B3 No 68 M

B4 No 75 M

B5 No 80 M

B6 Yes 55 W

B7 No 73 M

B8 Yes 64 M

B9 Yes 57 M

B10 No 58 M

B11 No 59 M

B12 No 82 W
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METHOD DETAILS

Stimulation, Lysis and SDS-PAGE
Cells were stimulated with 1 ng/ml of TGFb1 (R&D Systems, Cat #240-B-010) for up to 10 hours. For IP, Hepa1-6 cells (23106) were

lysed in total cell lysis buffer (1% NP40, 150 mM NaCl, 20 mM Tris-HCl pH 7.4, 10 mM NaF, 1 mM EDTA pH 8.0, 2 mM ZnCl2 pH 4.0,

1 mM MgCl2, 2 mM Na3VO4, 20% glycerol, 2 mg/ml aprotinin and 200 mg/ml AEBSF). Lysates were rotated for 30 minutes at 4�C,
sonicated and centrifuged for 10 minutes at 20 800 3 g and 4�C. The supernatant was subjected to IPs with anti-Smad2/3, anti-

Smad2, anti-Smad3, anti-Smad4 or anti-Flag antibodies (BD-610843, Cell Signaling #5339; #9523; #9515, Rockland 600-401-383

respectively, dilution 1:100), supplemented with Protein A sepharose (GE Healthcare) and recombinant calibrator proteins. The

IPs were rotated overnight at 4�C. Immunoprecipitated proteins were separated by SDS-PAGE. Gels used for mass spectrometry

were washed three times with water for 5 minutes and Coomassie stained for 1 hour according to the SimplyBlue SafeStain (Invitro-

gen) instructions. For IB, proteins were transferred to nitrocellulose membranes. IB was performed with anti-pSmad2 (Cell Signaling,

#3108), anti-pSmad3 (Cell Signaling, #9520), anti-Smad4 (Santa Cruz, sc-7966), anti-Smad2/3 antibodies (BD-610843) and anti-Flag

(Rockland 600-401-383) antibodies. Horseradish peroxidase (HRP) conjugated anti-mouse IgG HRP (Dianova 115-035-146), anti-

rabbit IgG HRP (Dianova 111-035-144) and anti-Protein A HRP (GE Healthcare NA9120) secondary antibodies were used for

chemiluminescence detection employing ECL substrate (GE Healthcare). Chemiluminescence was measured with an ImageQuant

LAS 4000 device (GE Healthcare) utilizing a CCD-camera allowing the detection in a broad linear range. Band intensities were quan-

tified using the ImageQuantTL Software (GE Healthcare).

Quantitative Mass Spectrometry
After Smad protein enrichment by IP, the following sample preparation steps were performed: purification per 1D SDS-PAGE, stain-

ing with Coomassie, gel band extraction, destaining, reduction with dithiothreitol (Sigma) and alkylation with iodoacetamide (Sigma).

To analyze the Smad2 and Smad3 degree of phosphorylation and relative protein abundance, both proteins were cut out together

and digested with LysC (Roche Diagnostics). To analyze the relative protein abundance of Smad4, extracts of these gel bands were

additionally subjected to tryptic digestion (Trypsin Sequencing Grade from bovine pancreas, Roche Diagnostics). The digestion

buffer was 100 mM NH4HCO3 in 5% acetonitrile. Following overnight incubation, peptide extraction was performed by transferring

the supernatant to an extra vial and performing three further extraction steps with acetonitrile, 5% formic acid and again acetonitrile.

Samples were concentrated in a Speedvac (Eppendorf) and desalted with C18 Ziptips (Millipore) applying a protocol based on water,

acetonitrile and trifluoroacetic acid. To equalize the recovery of peptides and corresponding phosphopeptides from the LC system,

we added citrate to a final concentration of 20mM to LysC digested samples. Samples were measured by nanoUPLC (nanoAcquity

UPLC, Waters) coupled to an LTQ-Orbitrap XL mass spectrometer (Thermo Scientific). We applied a precolumn setup and acetoni-

trile based gradients (0-40% in < 1 hour). Smad2 and Smad3 protein ratios as well as degrees of phosphorylation were analyzed by

manual peak integration using Thermo Xcalibur Version 3.0.63. Relative protein abundances of Smad2, Smad3 and Smad4 were

analyzed using peptide raw intensities generated by MaxQuant (1.5.0.12).

For pairwise relative Smad2/Smad3 isoform quantification by mass spectrometry, bands from 1D-PAGE were excised, ensuring

that both Smad2 and Smad3 are quantitatively present in one band. Because both isoforms exhibit a high degree of sequence sim-

ilarity, digestion of Smad2 and Smad3 using LysC leads to three categories of peptides. One category consists of identical peptides

for Smad2 and Smad3, the next comprises highly similar peptides that differ only in one or a few amino acids and the third category is

formed by completely different peptides for both isoforms. The isoform abundance for Smad2 and Smad3 can be determined by

comparing the signal intensities within pairs of highly similar peptides. For accurate relative quantification we analyzed two

such pairs. Each pair (Smad2 vs. Smad3) differed in just one amino acid: acSSILPF-pT-PPVVK vs. acSSILPF-pT-PPIVK and

(K)TGRLDELEK vs. (K)TGQLDELEK. All signals detected from these peptides, such as different charge states, threonine phosphor-

ylation (first pair) and deamidation for the second pair as well as versions with and without N-terminal lysine (second pair) were

considered. By applying this strategy, the quantification of the isoform abundances were highly precise (SD < 2%, n = 13, biological

replicates). Isoform ratios calculated from both peptide pairs showed good agreement within 5%. The Smad2 and Smad3 ratio used

for mathematical modeling is the mean of both pairs.

For bulk-based relative Smad4 quantification by mass spectrometry, a lower molecular weight region was additionally excised

from the 1D-PAGE gel. Regarding the amino acid sequence, Smad2 and Smad3 are much more similar to each other than to

Smad4. Therefore, following digestion no highly similar peptides are formed that would be suitable for a pairwise relative quantifica-

tion between Smad4 and Smad2/3. For this reason, the selected quantification strategy relied on the accumulated intensities of all

peptides detectable for each Smad protein. To maximize the number of peptides, tryptic digestion was performed. For relative pro-

tein quantification among all three Smad proteins, the sum of all Smad4 peptide intensities (up to 27 peptides) was compared to the

sum of all Smad2 and Smad3 peptides (up to 16 unique Smad2 peptides, 12 unique Smad3 peptides and 11 common Smad2 and

Smad3 peptides). After that, the highly accurate Smad2 to Smad3 ratio from a corresponding LysC-digested and pairwise relatively

quantified aliquot was used to adjust the accurate ratio among all three Smad proteins.

Relative quantification of Smad2 and Smad3 phosphorylation occupancies was performed by analyzing non-phosphorylated,

singly phosphorylated and doubly phosphorylated C-terminal LysC peptides. The amino acid sequences of the peptides from

both isoforms differ only in exchange of two amino acids (ppSmad2: VLTQMGSPSVR-camC-S-pS-M-pS, ppSmad3:

VLTQMGSPSIR-camC-S-pS-V-pS). Among all detected Smad2 and Smad3 peptides, these C-terminal LysC-fragments showed
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the most abundant signals. To equalize recovery of the different phospho-forms from the LC, samples were injected in 20mM citrate.

For the standard-free quantification method applied, signal intensities of all detectable charge states were taken into account.

Cysteine residues were present as carbamidomethylated (cam) modified residue, because samples were treated with dithiothreitol

and iodoacetamide during the workflow. An additional frequent modification within the analyte peptide is methionine oxidation. This

modification turned out to be phosphorylation-independent. A different methionine oxidation status leads to a retention time shift

(C18 column) of up to several minutes. For Smad2 and Smad3 standard-free phosphorylation status determination of the three

different phospho-forms (non-oxidized, singly oxidized for Smad2 and Smad3 and additionally a doubly oxidized version for

Smad2) showed no significant difference in degrees of phosphorylation, confirming a correct quantification with low random and sys-

tematical errors.

Validation of Complex Formation by Sequential Immunoprecipitations
7.53106 Hepa1-6 cells were stimulated with 1 ng/ml of TGFb for 60minutes or were left untreated. Cells were lysed and processed as

described above. For Smad3 or Smad4 depletion, three sequential IPs were performed with anti-Smad3 (Cell Signaling #9523) or

anti-Smad4 antibodies (Cell Signaling #38454), respectively. The lysates and the depleted supernatants were subjected to an

anti-Smad4 or anti-Smad3 IP, respectively, and IB was performed with an anti-Smad2 (Cell Signaling #5339) antibody, followed

by an anti-Smad4 (Santa Cruz sc-7966) antibody or an anti-Smad3 (Cell Signaling #9523) antibody.

For the validation of the heterotrimeric complex, the lysates were first subjected to an IP with anit-Smad3 (Cell Signaling #9523).

After overnight incubation, bead-bound proteins were dissociated by the addition of a Smad3 blocking peptide (Cell Signaling

#1933S) with a 5-fold excess by weight compared to the antibody. The obtained supernatants were subjected to an IP with an

anti-Smad4 antibody (Cell Signaling #38454). Quantitative IB was performed with an anti-Smad2 antibody (Cell Signaling #5339).

For the detection of the immunoblots chemiluminescence in combination with a CCD camera based device, ImageQuant, was used.

Microarray Analysis of Gene Expression Data
23106 Hepa1-6 cells were stimulated with 1 ng/ml of TGFb for 0, 1, 3, 6 and 10 hours in biological duplicates. As controls, the same

time points were evaluated in duplicates without TGFb treatment. RNA was extracted using the RNeasy Mini Plus Kit (Qiagen) ac-

cording to the manufacturer’s instructions. High-throughput quantification of the gene expression induced by TGFb was performed

using Affymetrix Mouse genome 430 2.0 microarrays according to the manufacturer’s instructions. For preprocessing the R statis-

tical computing environment was used and the robust multiarray average (RMA) algorithm was applied as implemented in the sim-

pleaffy package. The expression data were deposited in the Gene Expression Omnibus (GEO) database under the accession number

GEO: GSE90954.

The selection criterion for the TGFb target genes was a significant (p<0.01) and more than 1.5-fold induction compared to un-

treated controls. For this analysis, a linear model accounting for time and treatment effects was applied and p-values were calculated

based on the t-statistic. Genes that were not constant over time, i.e. showing a maximal regulation of more than 1.5-fold at one point

in time in the untreated controls were discarded from further analyses. The duplicates were averaged and standard errors of the

means were calculated. Since it is not feasible to reliably calculate standard errors from duplicates, the median over all standard

errors was used as uncertainty for further analyses. The dynamics of the induced gene expression as shown in Figure 3D was

then estimated by fitting a five parameter transient function

fðtÞ=Asus

�
1� e

� t
t1

�
+Atrans

�
1� e

� t
t1

�
e
� t

t2 +p0 (Equation 2)

to the time courses for each gene and both treatment conditions.

The first term represents a sustained response with amplitude Asus and time constant t1. The second term accounts for transient

up- or down-regulation with amplitude Atrans with the same time constant t1 for induction and a second time scale t2 for relaxation.

The last parameter p0 is the offset which is specified during fitting primarily by themeasurement at t=0. To prevent overfitting, only the

two mentioned time scales were allowed and the parameters were restricted to reasonable ranges. For both time scales, it was

assumed that they are smaller than two times the whole measurement interval, i.e. t1, t2 < 2 tmax = 20 hours. As lower bounds for

the two time scales, one half of the smallest sampling time interval, i.e. (t2 � t1)/2 = 0.5 hours was assumed. Smaller time scales,

i.e. a faster dynamics could not be resolved by the available experimental data and would therefore lead to overfitting of the data

and to large uncertainties of the predicted dynamics. For the amplitudes, the interval [1310-10, 2 Dy] was used as constraint where

Dy denotes the observed range of themeasurements. For the offset, p0˛ [min(y)�Dy/2, max(y)] was allowedwheremin(y) andmax(y)

denotes the smallest and the largest observation. All five parameters were estimated by maximum likelihood. Optimization was per-

formed on the logarithmic parameter scale. Next, k-means clustering with k = 12 was performed as implemented in MATLAB using

Euclidean distances. For this purpose, the dynamics estimated for the treated and untreated conditions were merged. Therefore,

genes with a similar dynamics after treatment but with a distinct basal expression could be assigned to different clusters.

For the selection of a representative gene for each cluster, we performed literature mining using the software suites MetaCore

(version 6.31 build 68930) and Ingenuity IPA (build 441680M) to identify potential Smad2-, Smad3-, Smad4- and TGFb-specific target

genes.
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RNA Extraction and Quantitative Real-time PCR
23106 Hepa1-6 cells, HepG2 cells or primary mouse hepatocytes were stimulated with 1 ng/ml TGFb for up to 10 hours in biological

triplicates. Primary human hepatocytes were seeded on collagen-coated 6-well-plates (BD Biosciences) and cultivated as described

for primary mouse hepatocytes (Mueller et al., 2015). Briefly, cells were cultured in full medium at 37�C, 5%CO2 in a humidified incu-

bator for 24 hours. For Hepa1-6 and HepG2 cells, medium was then changed to serum-free medium for additional 24 hours. Prior to

TGFb treatment, cells were cultured for 4 hours in serum and dexamethasone-free medium for equilibration. Primary human hepa-

tocytes were then incubated with 1 ng/ml TGFb for 30, 60, 120, 240 and 600 minutes. Cells without TGFb treatment served as nega-

tive control. For the experiments with SB-431542 (Sigma Aldrich, S4317), Hepa1-6 cells were pre-treated for 30 minutes with 5 mM

SB-431542 prior to TGFb stimulation. For samples treated with TGFb alone, as solvent control the same amount of DMSO was

applied. RNA was extracted using the RNeasy Mini Plus Kit (Qiagen) according to the manufacturer’s instructions. Complementary

DNAwas generatedwith the High Capacity cDNAReverse Transcription Kit (Applied Biosystems) and analyzed using the LightCycler

480 with the hydrolysis-based Universal Probe Library (UPL) platform (Roche Diagnostics). Gene-specific primers and UPL probes

are displayed in the table below. Crossing point values were calculated using the second-derivative-maximum method of the Light-

Cycler 480 Basic Software (Roche Applied Science). PCR efficiency correction was performed for each PCR setup individually.

mRNA data was normalized against HPRT.
Gene-specific mouse (m) and human (h) primers and UPL probes

Gene Forward primer Reverse primer UPL

mBmp4 gaggagtttccatcacgaaga gctctgccgaggagatca 89

mCxcl15 tgctcaaggctggtccat gacatcgtagctcttgagtgtca 18

mDnmt3a aaacggaaacgggatgagt actgcaattaccttggctttct 75

mDusp5 gatcgaaggcgagagaagc ggaagggaaggatttcaacc 102

mHprt cctcctcagaccgcttttt aacctggttcatcatcgctaa 95

mJun tttgattcaaa agggacccatggaag 12

mKlf10 agccaaccatgctcaacttc ggcttttcagaaattagttccatt 67

mPdk4 cgcttagtgaacactccttcg cttctgggctcttctcatgg 22

mSki gagaaagagacgtccccaca tcaaagctcttgtaggagtagaagc 33

mSkil gacagggaggccgagtatg ccgctcctgtctgagttcat 96

mSmad7 acccccatcaccttagtcg gaaaatccattgggtatctgga 63

mSox4 ctcgctctcctcgtcctct cgtcttcgaactcgtcgtc 63

mTgfa cctggtggtggtctccatt cagtgtttgcggagctga 81

hBMP4 ctgcaaccgttcagaggtc tgctcgggatggcactac 17

hDNMT3A cctgaagcctcaagagcagt tggtctccttctgttctttgc 46

hDUSP5 caaatggatccctgtggaa cccttttccctgacacagtc 5

hHPRT tgaccttgatttattttgcatacc cgagcaagacgttcagtcct 73

hJUN ccaaaggatagtgcgatgttt ctgtccctctccactgcaac 19

hKLF10 tctgaaggcccacacgag acctcctttcacaacctttcc 2

hPDK4 cagtgcaattggttaaaagctg ggtcatctgggcttttctca 31

hSKI gaagcaggaggagaagctcag ccacgcgtaggaactcca 22

hSKIL gaggctgaatatgcaggacag cttgcctatcggcctcag 13

hSMAD7 acccgatggattttctcaaa aggggccagataattcgttc 69

hSOX4 caacgccaactccagctc accgaccttgtctcccttc 25

hTGFA ttgctgccactcagaaacag atctgccacagtccacctg 63
Mathematical Model
Development of the mathematical model based on ordinary differential equations (ODEs) and model simulations were performed

using the MATLAB-based modeling environment D2D (www.data2dynamics.org) (Raue et al., 2015). All reactions at the pathway

level were implemented as mass-action kinetics and the impact of the Smad complexes was described by Michaelis-Menten

kinetics. Parameters that were estimated to be very low were set to zero without changing the fit nor the predicted dynamics. Esti-

mated model parameters for the reduced model extended to gene expression are shown in Table S2. The mathematical model and

the data sets are open source and available to the public at www.data2dynamics.org.
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Description of the Comprehensive Mathematical Model
TGFb is binding to the TGFb receptor and is subsequently leading to its activation. In addition the activated receptor can be down-

regulated by degradation (Derynck and Feng, 1997; Itoh and ten Dijke, 2007). The non-phosphorylated Smad2 and Smad3

monomers are susceptible to be double phosphorylated by the active receptor (Massague et al., 2005). The active double phosphos-

phorylated Smad monomers can be inactivated by a two-step dephosphorylation into single phosphorylated and afterwards in non-

phosphorylated Smad monomers. The dissociation of each trimeric Smad complex is dependent on the dephosphorylation of the

double phosphorylated Smad2 and Smad3 in the heterotrimeric Smad complexes or on the dissociation of the homotrimeric

Smad4 complex. The double phosphorylated Smad2/Smad3 and Smad4 are able to form different complexes (Wrana, 2002). The

active Smad complexes activate or inhibit target gene expression (Levy and Hill, 2006; Qin et al., 2009; Zhang et al., 2011).

Reactions of the Comprehensive Mathematical Model
The comprehensive model contains the following reactions:

v1 = ½Rec�$Recact$½TGFb� (Equation 3)
v2 = ½TGFb pRect�$Rec degind (Equation 4)
v3 = k on 222$½ppS2�3 (Equation 5)
v4 = 3$S dephosphos$½ppS2 ppS2 ppS2� (Equation 6)
v5 = k on 333$½ppS3�3 (Equation 7)
v6 = 3$S dephosphos$½ppS3 ppS3 ppS3� (Equation 8)
v7 = ½S4�3$k on 444 (Equation 9)
v8 = ½S4 S4 S4�$kdiss SS (Equation 10)
v9 = ½S2�$S phos$½TGFb pRec� (Equation 11)
v10 =S dephosphos$½ppS2� (Equation 12)
v11 =S dephos$½pS2� (Equation 13)
v12 = ½S3�$S phos$½TGFb pRec� (Equation 14)
v13 =S dephosphos$½ppS3� (Equation 15)
v14 =S dephos$½pS3� (Equation 16)
v15 = k on 223$½ppS2�2$½ppS3� (Equation 17)
v16 = 2$S dephosphos$½ppS2 ppS2 ppS3� (Equation 18)
v17 =S dephosphos$½ppS2 ppS2 ppS3� (Equation 19)
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v18 = ½S4�$k on 224$½ppS2�2 (Equation 20)
v19 = 2$S dephosphos$½ppS2 ppS2 S4� (Equation 21)
v20 = k on 233$½ppS2�$½ppS3�2 (Equation 22)
v21 =S dephosphos$½ppS2 ppS3 ppS3� (Equation 23)
v22 = 2$S dephosphos$½ppS2 ppS3 ppS3� (Equation 24)
v23 = ½S4�$k on 334$½ppS3�2 (Equation 25)
v24 = 2$S dephosphos$½ppS3 ppS3 S4� (Equation 26)
v25 = ½S4�2$kon 244$½ppS2� (Equation 27)
v26 =S dephosphos$½ppS2 S4 S4� (Equation 28)
v27 = ½S4�2$kon 344$½ppS3� (Equation 29)
v28 =S dephosphos$½ppS3 S4 S4� (Equation 30)
v29 = ½S4�$k on 234$½ppS2� $½ppS3� (Equation 31)
v30 =S dephosphos$½ppS2 ppS3 S4� (Equation 32)
v31 =S dephosphos$½ppS2 ppS3 S4� (Equation 33)

For the model extension, the genes are linked to the complexes with the following reactions:

v32 =
gene turn+gene act1$½ppS2 ppS3 ppS3�+gene act2$½ppS2 S4 S4�+ gene act3$½ppS2 ppS3 S4�

gene inh1$½ppS2 ppS3 ppS3�+gene inh2$½ppS2 S4 S4�+gene inh3$½ppS2 ppS3 S4�+ 1
(Equation 34)
v33 = ½gene�$gene turn (Equation 35)

with ‘‘gene’’ representing SKI, SKIL, DNMT3A, SOX4, JUN, SMAD7, KLF10, BMP4, CXCL15, DUSP5, TGFA and PDK4 and

‘‘gene_turn’’ describing the gene-specific and TGFb-independent gene turnover.

ODE System of the Comprehensive Mathematical Model
The ODE system of the comprehensive model determining the time evolution of the dynamical variables is given by:

d½TGFb�=dt = � v1 (Equation 36)
d½Rec�=dt = � v1 (Equation 37)
d½TGFb pRec��dt = + v1 � v2 (Equation 38)
Cell Systems 6, 75–89.e1–e11, January 24, 2018 e8



d½S2�=dt = � v9 + v11 (Equation 39)
d½S3�=dt = � v12 + v14 (Equation 40)
d½S4�=dt = � 3$v7 + 3$v8 � v18 + v19 � v23 + v24 � 2$v25 + 2$v26 � 2$v27 + 2$v28 � v29 + v30 + v31 (Equation 41)
d½ppS2 ppS2 ppS2��dt = + v3 � v4 (Equation 42)
d½ppS3 ppS3 ppS3��dt = + v5 � v6 (Equation 43)
d½S4 S4 S4�=dt = + v7 � v8 (Equation 44)
d½pS2�=dt = + v4 + v10 � v11 + v16 + v19 + v21 + v26 + v30 (Equation 45)
d½pS3�=dt = + v6 + v13 � v14 + v17 + v22 + v24 + v28 + v31 (Equation 46)
d½ppS2�=dt = � 3$v3 + 2$v4 + v9 � v10 � 2$v15 + v16 + 2$v17 � 2$v18 + v19 � v20 + v22 � v25 � v29 + v31 (Equation 47)
d½ppS3�=dt = � 3$v5 + 2$v6 + v12 � v13 � v15 + v16 � 2$v20 + 2$v21 + v22 � 2$v23 + v24 � v27 � v29 + v30 (Equation 48)
d½ppS2 ppS2 S4��dt = + v18 � v19 (Equation 49)
d½ppS2 ppS2 ppS3��dt = + v15 � v16 � v17 (Equation 50)
d½ppS2 ppS3 ppS3��dt = + v20 � v21 � v22 (Equation 51)
d½ppS3 ppS3 S4��dt = + v23 � v24 (Equation 52)
d½ppS2 ppS3 S4��dt = + v29 � v30 � v31 (Equation 53)
d½ppS3 S4 S4�=dt = + v27 � v28 (Equation 54)
d½ppS2 S4 S4�=dt = + v25 � v26 (Equation 55)
d½gene�=dt = + v32 � v33 (Equation 56)

with ‘‘gene’’ representing SKI, SKIL, DNMT3A, SOX4, JUN, SMAD7, KLF10, BMP4, CXCL15, DUSP5, TGFA and PDK4. The ODE

systemwas solved by a parallelized implementation of the CVODES algorithm (Hindmarsh et al., 2005). It also supplies the parameter

sensitivities utilized for parameter estimation.

Identification of the Occurring Smad Complex Using L1 Regularization
L1 regularization is a general methodology to establish models with a minimal number of parameters, i.e. to reduce the complexity of

models down to a level which is required to explain the data. In the context of ODE models of signaling pathways, L1 regularization

was applied to determine the cell-type specific parameters (Merkle et al., 2016) and was described in detail in the setting of ODE

models (Steiert et al., 2016).
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The idea of L1 regularization is to minimize an objective function c2
pen = c 2

data + c 2
l1 which is a sum of a term c 2

data =Si (yi – gi)
2/s2

assessing agreement of the data yi, i=1,.,ndata with the model gi and a second term c 2
l1 = l Sj j qj j penalizing parameters

qj, j=1,.,npara, which are different from zero. Since the penalty terms in c2
l1 have a non-vanishing gradient ±l for all values unequal

to zero, parameters which improve c2
data less than lq are estimated equals to zero.

In our context, L1 regularization is applied to identify the complexes which are required to describe the coIP data. For these com-

plexes, c2
pen is optimal for non-vanishing association rates. For complexes which are not required, the penalty c2

l1 dominates the

data contribution c2
data and therefore the association rates are estimated to zero.

Model Prediction and Experimental Validation of mRNA Half-lives
mRNA half-lives were calculated based on the gene-specific turnover parameters, with half-life = ln(2)/turnover. The mRNA turnover

of each gene was classified as fast (half-life < 10 minutes), intermediate (half-life between 10 and 100 minutes) or slow (half-life >

100 minutes). The confidence interval of each gene-specific turnover parameter was determined by the profile likelihood method

(Raue et al., 2009). To experimentally determine mRNA stability, Hepa1-6 cells were cultivated and growth factor depleted as

described above and were stimulated with 1 ng/ml TGFb for 2 hours followed by treatment with 1 mg/ml Actinomycin D to inhibit tran-

scription. Total RNA was extracted at specific time points and was analyzed using qRT-PCR. The mRNA half-life was estimated by

fitting the mRNA expression to a 3-parameter exponential decay function: y = y0+a exp(-b x). mRNA half-lives were calculated as:

half-life=ln(2)/b. Confidence intervals were calculated based on the standard errors of the estimates.

Gradual Knock-down of Smad Proteins
0.5x106 Hepa1-6 cells were cultivated in DMEM (Gibco) supplemented with 10% (v/v) FBS (Life Technologies) and 1%200mMgluta-

mine (Gibco) for 24 hours and siRNA transfection was performed according to the Lipofectamine RNAiMax protocol (Invitrogen,

Cat. #13778-150). SMARTpool siRNA against Smad2 (L-040707-00-0005), Smad3 (L-040706-00-0005) and Smad4 (L-040687-00-

0005) was obtained from Dharmacon. ON-TARGETplus Non-targeting pool (D-001810-10-20) served as siRNA control. After 24

hours, medium was exchanged with fresh medium containing 1% 100x penicillin/streptomycin (Gibco) for another 24 hours. Growth

factor depletion was performed as described before. Hepa1-6 cells were treated with 1 ng/ml TGFb and RNA was harvested at the

indicated time points as described above. Additionally, unstimulated cells were lysed as described above to access the knock-down

efficiency. IP was performed with specific antibodies against Smad2 (Cell Signaling, #5339), Smad3 (Cell Signaling #9523)

and Smad4 (Cell Signaling #38454). Quantitative IB was performed with anti-Smad2 (Cell Signaling #5339), anti-Smad3 (Cell

Signaling #9523) and anti-Smad4 (Cell Signaling #38454) antibodies, respectively. Knock-down efficiency was assessed by immun-

blotting relatively to the impact of control siRNA.

Overexpression of Smad Proteins
Mouse Smad2, -Smad3 and -Smad4 inserts were obtained from total RNA of primary mouse hepatocytes. The RNA was reverse-

transcribed into cDNA. The insert was re-cloned into the retroviral expression vector pMOWS-Flag-MCS using PacI and EcoRI re-

striction sites. Transfection of Phoenix eco packaging cell line was performed by using calcium phosphate precipitation. Transducing

supernatants were generated 24 hours after transfection by passing through a 0.45 mm filter, supplemented with 8 mg/ml polybrene

(Sigma). Stably transduced Hepa1-6 cells were selected in the presence of 1 mg/ml puromycin (Sigma) 24 hours after transduction.

Transcriptional Activity of Smad Complexes
The mathematical model was utilized to assess the gene regulatory impacts of the individual Smad complexes ppSmad2:

ppSmad3:ppSmad3, ppSmad2:Smad4:Smad4 and ppSmad2:ppSmad3:Smad4. For this purpose, the transcriptional activities of

all complexes except a single complex of interest cwere virtually prohibited in themathematical model by setting the respective acti-

vation- and inhibition parameters to zero. For quantitative assessment, the areas under the curves

AUCc;gðpÞ= 1

tmax

Z tmax

t = 0

log2

�
xgðt;pÞ

��
xgð0;pÞ dt (Equation 57)

of the log2-ratios of the concentrations xg(t,p) after TGFb stimulation relative to the steady state expression at time point t=0 were

calculated for all genes g, each individual complex, and a given parameter vector p. Negative AUCc,g indicates negative regulation

of the respective Smad complex c on gene g, a positive AUCc,g is obtained for positive regulators. To translate uncertainties in the

estimated parameters p toAUCc,g(p), the analysis was repeated for all statistically valid parameters obtained for the profile likelihood.

Analysis of Hepatocellular Carcinoma Samples
Each liver tissue piece (Cohort A) was cut into 20-30mg pieces and homogenized in total cell lysis buffer for protein analysis or in lysis

buffer RA1 (Macheroy & Nagel) for RNA isolation in a Precellys 24 homogenizer (VWR Life Science). Protein lysates were rotated for

30 minutes at 4�C, sonicated and centrifuged for 10 minutes at 20 800 3 g and 4�C. Supernatants were subjected to IPs with anti-

Smad2/3 (BD-610843) or anti-Smad4 (Cell Signaling #9515) antibodies and supplemented with Protein A sepharose (GE healthcare

17-0963-03) and 1 ng GST-Smad3 or 1 ng SBP-Smad4 calibrators, respectively. Lysates were rotated overnight at 4�C and analyzed

by quantitative IB. Protein signals were determined as described before and normalized against the respective calibrator signal to
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compare samples from different IBs. Subsequently, themean of the tumor-free samples was set to the absolute value determined for

the molecules per cell of Smad2, Smad3 and Smad4 in primary human hepatocytes. Accordingly, the relative signal intensities were

translated into molecules per cell values for each sample. RNA was isolated from the homogenized samples according to the man-

ufacturers protocol (Macheroy &Nagel). RNA integrity number (RIN) wasmeasured to assess the quality of the isolated RNA revealing

a RIN value of 7-9 for all samples. Samples were further subjected to qRT-PCR analysis as described above.mRNAdata was normal-

ized against the geometric mean of TBP and UBE2R2.

Phosphorylation of Smad2was detected in human tissue samples fromCohort B. Samples were homogenizedwith a plastic pestle

and were processed as described before. Lysates of tissue samples (1000 mg protein) as well as of reference samples from unstimu-

lated or stimulated (1 ng/ml TGFb for 60 minutes) HepG2 cells (100 mg protein) were subjected to IP experiments with an anti-Smad2

(Cell Signaling #5339) antibody andwere supplemented with Protein A sepharose (GE healthcare 17-0963-03). IPs were rotated over-

night at 4�C and were analyzed by quantitative IB. Protein signals were determined as described above and normalized against the

TGFb-stimulated reference sample from the HepG2 cell line.

Prediction of Complexes and Total Amounts
The integrative dynamic model for TGFb-induced Smad complex formation and the subsequent effect on target genes was used to

predict the regulation at the level of the Smad complexes from observed gene expression level in patients suffering from hepatocel-

lular carcinoma. As a first step in this analysis, the steady state concentrations of the genes and the complexes were calculated for

the parameters fitted for Hepa1-6. For this purpose, a receptor activity of 10% relative to the estimated maximal activity after the

treatment of Hepa1-6 with 1 ng/ml TGFb was assumed. Then, the observed fold-changes at the gene expression level for an indi-

vidual patient relative to the average over all tumor-free samples were added to the gene expression level in themathematical model.

Next, three parameters for concentration fold-changes of ppSmad2:ppSmad3:ppSmad3, ppSmad2:Smad4:Smad4 and

ppSmad2:ppSmad3:Smad4 were introduced and estimated for a single patient while keeping all other parameters fixed. For this

step, only the part of the model linking the complexes to the genes was required. Structural identifiability was checked using the pro-

file likelihood approach (Raue et al., 2009). In addition, a weak prior log10 fold� N(m,s2) with m=0 and s2=4 was used to decrease the

variability of the estimates in the case of weakly informative expression data. In analogy to the analysis for the Smad complexes, the

observed regulation at the gene expression level was also used to predict regulation at the level of the total Smad concentrations.

Again, the steady states for the gene expression were calculated for the model fitted for Hepa1-6 and by assuming 10% of the

maximal experimentally observed receptor activity for the cell line. Three fold-parameters S2fold, S3fold, S4fold were introduced rep-

resenting the alteration in Smad2, Smad3, and Smad4 abundances. Then, the measured fold-changes for the gene expression in

tumor-free and tumor tissue in individual patients relative to the average over all tumor samples were added to the steady state levels

of the model. For these changes at the gene expression level, the corresponding four parameters were then estimated to predict

altered activation levels of TGFb receptors and fold-changes of Smad2, Smad3, and Smad4.

QUANTIFICATION AND STATISTICAL ANALYSIS

Microarray expression data was considered significantly regulated if p<0.01 as tested by a two-factorial linear model and if they

showed an at least 1.5-fold increase compared to untreated controls. The dynamics of gene expression was estimated based on

amathematical function approximating the trajectories for all genes. Transcripts that were not constant over time (higher fold-change

than 1.5) in the untreated control were discarded and transcripts were considered as significantly regulated if p<0.01 (two-factorial

linear model) and if they showed an at least 1.5-fold increase compared to untreated controls.

qRT-PCR data and predicted Smad complexes from paired tumor-free and tumor tissue (n=29) were expressed as log2 values with

the average of the tumor-free value set to zero. Here, significance was tested by paired two-sided t-tests, with significances defined

as *, p<0.05; **, p<0.01; ***, p<0.001. The predicted and measured sum of Smad2, Smad3 and Smad4 from paired tumor-free and

tumor tissue (n=29) were expressed as molecules/cell with the average of the tumor-free value set to the measured values in primary

human hepatocytes. Significance was tested by paired two-sided t-tests, with significances defined as *, p<0.05; **, p<0.01.

Significance of IB data of Smad2 phosphorylation amounts (n=12) was tested by paired two-sided t-tests, with significances defined

as *, p<0.05; **, p<0.01; ***, p<0.001.

DATA AND SOFTWARE AVAILABILITY

The modeling framework, the mathematical model and the data sets are open source and are available here: http://www.

data2dynamics.org.

The microarray expression data were deposited in the Gene Expression Omnibus (GEO) database under the accession number

GEO: GSE90954: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90954.
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