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a b s t r a c t

The inference of the interaction structure in networks of dynamical systems promises novel insights into
the functioning or malfunctioning of systems in the neurosciences. This may improve the understanding
of mechanisms underlying several diseases like tremor disorders and might eventually help to cure
patients. Of particular interest is the estimation of the direction of information flow for which different
methods have been suggested and have been applied to data from human tremor. Based on a simulated
system motivated by the human tremor application we analyze the performance of three methods. The
abilities and limitations of the individual techniques are compared and discussed. An application to
essential tremor complements this investigation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of signals in the neurosciences raises several ques-
tions. Of particular importance is the detection of interactions
between signals, as they promise to disclose the biological basis
underlying the normal behavior or the malfunctioning of certain
networks (Grosse et al., 2002; Hellwig et al., 2000, 2001, 2003;
Hesse et al., 2003; Tass et al., 1998; Volkmann et al., 1996). Several
techniques to infer the interaction structure in complex networks
have been proposed (e.g., Dahlhaus et al., 1997; Eichler et al., 2003;
Rosenblum and Pikovsky, 2001; Smirnov and Bezruchko, 2003;
Timmer et al., 1998a). Additionally, an inference towards the direc-
tion of information flow enables deeper insights into the underlying
processes (Müller et al., 2003).

Two main approaches are followed to infer the direction of infor-
mation flow. Firstly, several approaches exist that directly estimate
the direction of information flow. These are methods based on,
for instance, spectral analysis like the slope of the phase spectrum
either preprocessed by subtracting the minimum phase informa-
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tion or not (Müller et al., 2003). Alternatively, several concepts
have been suggested directly applying the concept of Granger-
causality (Granger, 1969), like the Granger-causality index (Hesse
et al., 2003), Geweke’s measure for Granger causality (Geweke,
1982, 1984; Chen et al., 2006; Dhamala et al., 2008), the partial
directed coherence (Baccalá and Sameshima, 2001; Sameshima
and Baccalá, 1999), the directed partial correlation (Eichler, 2006)
or the directed transfer function (Kamiński and Blinowska, 1991)
with several modifications thereof, although the latter strictly
speaking does not resemble Granger-causality (Eichler, 2006). Sec-
ondly, concepts that aim at inferring time lags between signals
can also be utilized to estimate the direction of information flow
by investigating the algebraic sign or signs of the estimated lags.
These techniques include the maximum coherence (Govindan et al.,
2005) approach in the framework of spectral analysis and meth-
ods based on the analytic amplitude or analytic phase of the signal
(Timmermann et al., 2003).

We restrict ourselves here to a comparison of the performance
in detecting the direction of information flow. This restriction is
necessary as without such a restriction a meaningful compari-
son, on the one hand, would not be possible, and, on the other
hand, it should not be considered a drawback per se that a tech-
nique does not provide the time lag between processes. As it
finally turns out, the investigated methods that aim at inferring
the direction based on the time lag of interaction perform actually
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worse than the analyzed technique just aiming at detecting the
direction.

To compare different techniques we have chosen one repre-
sentative of the different classes that was actually used already in
tremor research. From the group of Granger causality measures the
partial directed coherence was chosen because additionally to its
prior application to tremor data it turned out that it performed
well for the systems under investigation in a comparison study of
Granger causality measures (Winterhalder et al., 2005). From the
second class, we picked the maximum coherence approach as it
was claimed to be more reliable in estimating the direction of infor-
mation flow than the phase spectrum estimate and we picked the
analytical signal based method of Timmermann et al. (2003) as a
representative of this wide class of analysis techniques. We like to
point out, that other promising methods for the detection of the
direction of information flow exist. Thus, our conclusions will be
restricted to the methods under investigation here.

The paper is organized as follows. In Section 2 we briefly intro-
duce partial directed coherence, the fundamentals of cross-spectral
analysis, the maximum coherence approach as well as the method
estimating delay times based on analytical signals. Section 3 deals
with a simulation study comparing the performance of the maxi-
mum coherence approach, the method based on analytical signal
and partial directed coherence. We demonstrate the abilities and
limitations also in an application to measured data originating from
human tremor in Section 4.

2. Mathematical background

In this section the mathematical basis of the four techniques is
briefly summarized.

2.1. Partial directed coherence

Vector autoregressive processes of order p (VAR[p]-process)⎛⎝ X1(t)
...

Xn(t)

⎞⎠ = p∑
u=1

a(u)

⎛⎝ X1(t − u)
...

Xn(t − u)

⎞⎠+
⎛⎝ ε1(t)

...
εn(t)

⎞⎠ , (1)

in which the n processes under consideration are represented by
an n-dimensional vector valued process X(t), are often utilized to
model multivariate data. The coefficient matrices akl(u) (k, l = 1, . . .,
n ; u = 1, . . ., p) quantify the influence of process l on process k at a
time lag u in the time domain.

The partial directed coherence |�i←j(ω)| for an n-dimensional
(VAR[p]-process in the frequency domain is defined as (Baccalá and
Sameshima, 2001).

|�i←j(ω)| =
∣∣Aij(ω)

∣∣√∑
m|Amj(ω)|2

(2)

with

A(ω) = I −
p∑

u=1

a(u)e−iωu. (3)

Again, the a(u) are the n×n coefficient matrices of the vector
autoregressive model of order p.

Partial directed coherence |�i←j(ω)| provides a measure for the
directed linear influence of Xj(t) on Xi(t) at frequency ω. It is esti-
mated for realizations xi(t) and xj(t) of Xi(t) and Xj(t), respectively,
by fitting an n-dimensional VAR[p]-model to the data and using
Eqs. (2) and (3) with the parameter estimates âij(u) substituting the
true coefficients aij(u). A pointwise ˛-significance level for partial
directed coherence |�i←j(ω)| is available (Schelter et al., 2005). This

parametric approach is feasible to provide information about the
direction of information flow based on a direct estimation and does
not rely on time lag estimation first (e.g., Baccalá and Sameshima,
2001; Granger, 1969; Sameshima and Baccalá, 1999). Throughout
the simulation studies in this paper we used p = 21. A nonzero entry
in the covariance matrix of the noise term also correlates processes.
Thus, two processes can be correlated even if there is no direct,
causal connection. Since this influence is instantaneous in time,
this correlation should be referred to as instantaneous interaction
(Eichler, 2006; Mader et al., 2008), sometimes misleadingly also
called instantaneous causality. Note that without investigating the
covariance matrix instantaneous interactions cannot be dealt with.

2.2. Cross-spectral analysis

The maximum coherence approach is based on cross-spectral
analysis which is briefly summarized here. The relationship
between two stationary processes Xi and Xj can be investigated
using cross-spectral analysis. For realizations xi(t) and xj(t) of length
T the cross-correlation function estimate

ĈCFxixj
(�) = 〈xi(t + �)xj(t)〉

t
(4)

and the cross-spectrum estimate, which is the Fourier-transform
of the ̂CCF(�)

ĈSxixj
(ω) = 1

�

∫
ĈCFxiyj

(�)eiω�d�, (5)

are used. The linear interaction between the processes can be mea-
sured using the coherence which is the normalized modulus of the
cross-spectrum

Ĉohxixj
(ω) =

∣∣∣ĈSxixj
(ω)

∣∣∣√
Ŝxi

(ω)̂Sxj
(ω)

∈ [0, 1]

and by the phase spectrum

ˆ̊ xixj
(ω) = arctan

ImĈSxixj
(ω)

ReĈSxixj
(ω)

where Ŝxi
(ω) = ĈSxixj

(ω) for i = j are the estimated auto-spectra of
xi(t) and xj(t) and Im(·) denotes the imaginary part while Re(·) the

real part of the complex valued cross-spectrum ĈSxixj
(ω).

The auto- and cross-spectra are estimated by dividing the time
series of length N in l non-overlapping segments of length m. Each
segment is tapered, then auto- and cross-periodograms are cal-
culated and averaged over segments as suggested by (Bloomfield,
1976). Alternatively the auto- and cross-periodograms can be cal-
culated for the whole time series and smoothed afterwards to get
a consistent estimate for the auto- and cross-spectra (Priestley,
1989).

The variance of the coherence

var[Ĉohxixj
(ω)] = 1

�
(1− |Cohxixj

(ω)|2), (6)

where � denotes the number of degrees of freedom, which depends
on the number of segments and the taper window (Bloomfield,
1976), is functionally releated to the true coherence and is there-
fore not directly accessible. An estimator is given by substituting
the estimated coherence in Eq. (6). Under the null hypothesis of
zero coherence a critical value for significance level ˛ is given by

s =
√

1− (1− ˛)1/((�/2)−1).
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Fig. 1. Values of the cross-periodograms at one single frequency estimated from a simulated AR[2]-process and its delayed copy are displayed as asterisks. The mean is
denoted with a circle. (a) The delay between the copies was set to 100 sampling points. (b) The delay between the copies was set to 10 sampling points. In (b) the misalignment
effect is hardly visible, therefore the mean is displayed in red color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of the article.)

2.2.1. Estimation using the maximum coherence approach
To estimate the direction of information flow, the maximum

coherence approach uses the so-called misalignment effect, which
occurs in cross-spectral analysis. Misalignment is caused by a
locally changing phase spectrum, as for instance present for a
delay between the considered time series. It manifests itself in
a spurious reduction of the estimated coherence (Hannan and
Thomson, 1971). This reduction arises in the estimation proce-
dure for instance when the data segments are averaged. Fig. 1
illustrates this scenario: We analyzed a realization of an AR[2]
process and its delayed copy. The normalized values of the cross-
periodograms of the datasets for one single frequency are displayed
(Fig. 1(a)). Due to the large variance of the phase of the estimated
cross-periodograms the values are blurred over a large segment
of the unit circle. The average of these values falls inside the unit
circle and, thus, its absolute value is below the true coherence
value of 1, which we would obtain if there was no time delay
between the time series. Fig. 1(b) shows the effect for a smaller
delay.

The main idea of the maximum coherence approach is to intro-
duce artificial time lags between the time series to compensate for
the true time delay between the time series, until the coherence
takes its maximum. Thus, the coherence Ĉoh(�) is considered as a
function of the time lag � evaluated at a certain frequency ωref. This
leads to the estimator

�̂ = arg max
�

Ĉoh(�)

for the delay between processes Xi and Xj. If the maxi-
mum occurs for positive delays, process Xi(t) influences Xj(t),
while this is the opposite if the maximum is found for neg-
ative delays. Note that the same arguments and ideas also
hold when estimating the spectra based on smoothing the
periodograms.

The maximum coherence method was claimed to be superior to
methods utilizing the phase spectrum because it is still applicable
even if high coherence values are limited to a narrow frequency
band (Govindan et al., 2005).

2.3. Estimation based on the analytic signal

For estimating the direction of information flow based on the
analytic signal as suggested by (Timmermann et al., 2003), both
signals are required to be narrow band pass filtered around the
oscillation frequency of the signal showing a distinct oscillation. We
follow here the procedure of Timmermann et al. (2003) by setting
the bandwidth to ±2 Hz. The Hilbert transform is applied to both
filtered real-valued signals xi and xj leading to the so-called analytic
signal

zj(t) = xj(t)+ ix̃j(t),

where the imaginary counterparts of xi and xj are obtained from the
Hilbert transform. This allows a separation of phase and amplitude
as

zj(t) = xj(t)+ ix̃j(t) = Aj(t)ei˚j(t).

The amplitudes of xi and xj are denoted by Ai(t) and Aj(t), whereby
the phases are denoted by ˚i(t) and ˚j(t), respectively.

Following Timmermann et al. (2003), from the Hilbert ampli-
tude of the signal showing a distinct oscillation, the times of
maximum amplitudes are detected. The instantaneous phase
differences between both signals at these times of maximum ampli-
tude are computed. Phase differences between the two signals are
then transferred into directions of information flow based on the
phase differences. A positive phase difference indicates that process
xi(t) influences xj(t) and vice versa for negative phase differences.
The maximum of the histogram of these phase differences is used
to collapse the whole set of phase differences in one single direction
of information flow.

3. Application to simulated data

To compare the performances of partial directed coherence, the
maximum coherence approach, and the method based on the ana-
lytic signal, we applied them to simulated data. The simulated
systems are motivated by the intention to apply the methods to
data from human tremor.
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Before we discuss the simulations, we mention that for the
methods based on phases, one always obtains both directions of
information flow just due to the fact that the phase is 2� periodic.
Since this 2� periodicity does not reflect actual delays present in
the data, we have decided to focus only on those directions of infor-
mation flow that are associated with delays present in the data. This
can be achieved in our simulations as we know the true directions
and delays.

3.1. Sensory feedback

Here, the motor cortex is assumed to generate the tremor, thus
we assumed a generator x(t) and its projection to the tremorous
muscle y(t). The feedback of the muscle in this simulation is only
received by the sensory part of the cortex and therefore it enters
only the observation and not the dynamics of x(t). Thus, assum-
ing that simultaneously to the motor also the sensory part of the
cortex is measured, y(t) enters the observation of x(t). We consider
this a naive model for human tremor as in this simplified model the
brain does not process the feedback from the muscles. Neverthe-
less, an analysis technique aiming at the estimation of the direction
of information flow should be able to handle this scenario.

For the generator x(t) we choose an autoregressive process of
order two (AR[2]). The projection y(t) is modeled as a time shifted
copy of it

x(t) = a1x(t − 1)+ a2x(t − 2)+ εx(t), (7)

y(t) = c × x(t −�)+ εy(t). (8)

We used standard Gaussian noise εx,y ∈N(0, �2
x,y), �2

x,y = 1, c =
1, a1 = 0.32 and a2 = −0.036. Assuming a sampling rate of 1000 Hz
this corresponds to a driven damped oscillator with characteristic
frequency ω0 = 5 Hz and relaxation time � = 600 ms. We assume that
y(t) enters the observation of x(t) as proprioceptive feedback with
the same delay � = 20 ms, thus

xobs(t) = x(t)+ d× y(t −�) (9)

and

yobs = y(t) (10)

are observed. We choose d between 0 and 1 in steps of 0.1. The sim-
ulated time series had a length of 40 s, with the assumed sampling
rate of 1000 Hz this corresponds to 40,000 data points. For each
parameter d, 100 realizations were simulated.

For d = 0, the system represents a pure signal propagation, where
y(t) is a delayed copy of x(t). As actual signals are not expected to
be completely identical, we added white noise process to y(t). All
techniques are capable of correctly revealing the direction of infor-
mation flow in this case. The results for the maximum coherence
are shown in Fig. 2, those for the analytical signal based technique
are depicted in Fig. 3. For the partial directed coherence the results
are shown in Fig. 4. By choosing parameter d to be non-zero, in the
model xobs(t) contains two terms, one of which is the influencing
dynamics, while the other presents a delayed feedback of y(t) onto
x(t). This delayed feedback, however, does not alter the dynamics
present in x(t). The parameter d quantifies the strength of the feed-
back. All techniques but the partial directed coherence detect only
the dominant direction of information flow, which is for all param-
eters from d = 0 to d = 1 the one from x(t) onto y(t). Only partial
directed coherence is correctly estimating the present directions of
information flow in all cases, i.e., irrespective of whether there is
feedback or not (Figs. 4 and 5).

The maximum coherence approach was claimed to detect both
directions of interaction (Raethjen et al., 2007) if two maxima are
present, one for a positive delay and one for a negative delay. In our
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Fig. 2. Delay times and therefore direction of information flow estimated for the
simulated data using the maximum coherence approach. For each parameter d the
mean of the 100 realizations and its standard deviation are shown. Only the direction
from the x(t) onto y(t) is detected.

simulation, we could not reproduce this result other than in scenar-
ios, in which the fluctuations of the estimated coherence values are
rather high. This can be achieved only for small values of the num-
ber of degrees of freedom (cf. Eq. (6)). To substantiate this, we show
in Fig. 6 the influence of the block length used to estimate coher-
ence on the estimation of the time lag, which is used to estimate
the direction of information flow. As a model system we used here
the illustrative example of an AR[2] process (Eq. (7)) and its driv-
ing noise ε(t) shifted by 400 timesteps. The oscillation frequency of
the AR[2] process was varied between 4 and 5 Hz in steps of 0.1 Hz
to investigate the dependence on the block length for various fre-
quencies. The range between 4 and 5 Hz is again typically found in
pathological tremor. Different lengths of the segments were used
for averaging the periodograms. The segment-length was set to
0.5, 1, 2, 4 and 8 s, respectively. Additionally, a spectral estimator
based on smoothing the periodograms (Priestley, 1989) was used.
For each scenario 10 realizations were simulated.
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Fig. 3. Delay times and therefore direction of information flow estimated for the
simulated data using the analytical signal based techniques. For each parameter d
the mean of the 100 realizations and its standard deviation are shown. Only the
direction from the x(t) onto y(t) is detected.
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Fig. 4. Direction of information flow estimated for the simulated data using the partial directed coherence. For each parameter d the percentage of the 100 realizations with
significant partial directed coherence are shown. A significance-level of 5% was used. The direction from process 1 onto 2 is detected for all values of d, while the opposite
direction is only detected for the non-zero values of d.
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of the processes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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For each frequency and segment-length the mean of 10 realizations and its standard
deviation are shown.

Fig. 6 demonstrates that the lag estimated using the maximum
coherence approach depends on the length of the segments used.
In critical cases for which the lag is close to zero this might lead to a
change in the algebraic sign of the lag and therefore to a false pos-
itive detection of the direction of the information flow. Knowing
that the phase relation between an AR[2] process and its driv-
ing noise has a steep negative slope at the oscillation frequency,
the results can be understood as follows. The segment-length
used for averaging the periodograms determines the frequency
resolution of the spectra. Short segments lead to a rather rough
sampling of the phase relation. Thereby, the steep slope cannot
be resolved – it seems less steep. Since the maximum coher-
ence approach corrects for the slope in the phase spectrum, the
estimated lag increases with increasing resolution of the slope
achieved by longer segments. This in turn is reflected in the esti-
mates of the direction of information flow which is based on the
lags.

Since in applications the “truth” is not known in advance,
an estimator for the time lag and therefore eventually for
the direction of information flow that depends on the chosen
length of the segments is difficult to interpret. As obtained from
the simulations, without a profound knowledge of the optimal
length of the segments no reliable estimation of the direction
of information flow is possible using the maximum coherence
approach.
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Fig. 7. Direction of information flow estimated using maximum coherence and the analytical signal based approach for the reflex model with k = 5 to k = 50 in steps of 5. For
each parameter value the percentage of the 100 realizations detecting the specific direction are shown.

3.2. Dynamic feedback

In a second simulation scenario, the feedback of the muscle
enters also the motor part of the cortex and therefore it enters
the dynamics of x(t). The model represents a reflex mechanism.
As before, the motor cortex x(t) is assumed to generate the tremor
and modeled as an autoregressive process of order two (AR[2]). The
projection to the muscle y(t) is represented as a time shifted copy
of it. The feedback is modeled according to (Timmer et al., 1998b)

x(t) = a1x(t − 1)+ a2x(t − 2)+ εx(t)+ k× tanh(y(t −�feedback)), (11)

y(t) = c × x(t −�projection)+ εy(t). (12)

We used standard εx,y ∈N(0, �2
x,y), �2

x,y = 1, c = 1, a1 =
0.32 and a2 = −0.036. Assuming a sampling rate of 1000 Hz
this corresponds to a driven damped oscillator with characteristic
frequency ω0 = 5 Hz and relaxation time � = 600 ms. The delay
�projection = �feedback = 20 ms was fixed, while we tested different
values of the strength of the reflex k. The simulated time series had
again a length of 40 s, with the assumed sampling rate of 1000 Hz
this corresponds to 40,000 data points. As before, 100 realizations
were simulated.

The maximum coherence approach, estimated again only one
direction of information flow for all 100 realizations (Fig. 7). The
feedback of y(t) to x(t) is not revealed by this analysis methods.
Analogously the method based on the analytic signals only detects
the influence of x(t) onto y(t). Using partial directed coherence, the
connection from x(t) onto y(t) was revealed in 100% of the realiza-
tions for small k = 5 and in more than 85% of the cases for k smaller
than 50, which corresponds to a reflex strength of 10% of the vari-
ance of x(t) without the reflex. The feedback of y(t) to x(t) was also
detected in more than 85% of the realizations for k smaller than 50
(Fig. 8).

Thus, again partial directed coherence is superior to maximum
coherence and the method based on the analytical signal.

4. Application to essential tremor

Essential tremor is a common neurodegenerative disease which
manifests itself mainly in the upper limbs, the tremor frequency of
the hand is 4–8 Hz. To elucidate the tremor generating mechanisms
in essential tremor, relationships between cortical and muscular
activity are of particular interest. Cortical involvement in essen-
tial tremor has been found in various studies (Hellwig et al., 2001;
Raethjen et al., 2007; Schnitzler et al., 2009). The question arises
whether the cortex imposes its oscillatory activity on the muscles
via the corticospinal tract or whether the muscle activity is just
reflected in the cortex via proprioceptive afferences. No consistent
results could be found by analyzing the phase spectra, as discussed
in Hellwig et al. (2000, 2001).

Seven patients (four women, three men) with essential tremor
participated in the study. All patients were selected because they
showed a postural tremor of the arms without significant head
tremor. Patients were on average 60.3 years of age (range 45–73
years). Tremor had been present for at least 5 years (mean 18.7
years; range 5–45 years). Apart from the postural tremor in the
arms, there was no evidence of further neurological abnormalities,
particularly Parkinsonian symptoms. All patients gave informed
consent to participate in the study.

During the recordings, patients were seated in a comfortable
chair inside a dimly lit room with their forearms supported. Surface
EMG electrodes were attached to the wrist flexors and exten-
sors of both arms. EEG recording was done with a 64-channel
EEG system (Neuroscan, Herndon, VA, USA). Patients were asked
to keep their eyes open and to fix their eyes on a point of light
about 1.5 m away. Postural tremor was elicited by unilateral wrist
extension on the right or the left side. To increase the tremor ampli-
tude, some patients were instructed to count backwards mentally.
EEG and EMG signals were sampled at 1000 Hz and band-pass fil-
tered (EEG 1–200 Hz, EMG 50–200 Hz). The EMG was full-wave
rectified.

parameter kparameter k

1→ 2 2→ 1

1010 2020 3030 4040 5050
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Fig. 8. Direction of information flow estimated using partial directed coherence for the reflex model with k = 5 to k = 50 in steps of 5. For each parameter value the percentage
of the 100 realizations with significant partial directed coherence are shown. A significance-level of 5% was used.
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Table 1
Directions estimated using maximum coherence, the method based on the analytical signal and partial directed coherence. For the maximum coherence approach two
different segment-lengths were used. ‘–’ indicates that no maximum was found in the range of ±300 ms. n.s. denotes that coherence was not significant at the tremor
frequency. For the analytical signal based approach a spectral estimator based on smoothing periodograms with a smoothing width of 0.2 Hz was used. Partial directed
coherence was check for significance at the tremor frequency using 5%-significance level and a model order of p = 100.

Patient Trial Maximum coherence Analytical signal PDC

1 s segments EMG–EEG 2 s segments EMG–EEG EMG–EEG EMG–EEG

1 1 ↔ → → →
1 2 → → ← ↔
2 1 ↔ ← → ↔
2 2 → ← ← ↔
3 1 → n.s. ← →
3 2 ← – ← →
3 3 n.s. n.s. n.s. →
4 1 → → → →
4 2 → n.s. ← ↔
4 3 → → ← ↔
4 4 → ← ← →
5 1 ← n.s. ← →
5 2 n.s. n.s. n.s. →
5 3 n.s. n.s. n.s. ←
6 1 – n.s. n.s. →
6 2 – – → →
7 1 → n.s. n.s. ↔
7 2 → → ← →
7 3 n.s. ← ← ↔

EMG–EEG EMG–EEG EMG–EEG EMG–EEG

For each patient a different number of trials was analyzed
depending on the tremor activity. Whether tremor was dominant
in the left and/or right side was determined by the auto-spectra of
the EMG channels. A prominent peak in the range of 4–8 Hz was
used as an indicator of dominant tremor.

To demonstrate that the results obtained in the simulation
study are actually valid for the tremor study investigated here, the
maximum coherence approach was applied to the data using two
different segment-lengths, 1 and 2 s, respectively. The estimated
directions for all methods are summarized in Table 1. The results for
1 and 2 s windows are not consistent with one another. Frequently,
directions of information flow for the 1 s window are not present in
the 2 s window analysis or in some cases even reversed. This unex-

pected behavior, which renders the results of techniques hardly
interpretable, can be understood from the simulation studies and
resembles the results found in Section 3.1.

Using the method based on the analytical signal, for each trial
only the most prominent peak was evaluated disregarding sec-
ondary peaks due to the 2� periodicity. All trials were analyzed
at the tremor frequency determined by the auto-spectra. As dis-
cussed in Section 3 the analytical signal based approach can only
detect one direction of influence. We found an influence from EMG
to EEG in four of the 19 trials. The opposite direction was found
in ten of the trials. The ramaining five trails showed no significant
coherence at the tremor frequency using a spectral estimator based
on smoothing periodograms with a smoothing width of 0.2 Hz.
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Fig. 9. Exemplary results of the partial directed coherence analysis for the left EMG and the right EEG channel of trial 3 of patient 4. A model order of p = 100 was used.
The 5%-significance level is depicted in red. For both directions partial directed coherence exceeds the significance level at the tremor frequency of approximately 7 Hz. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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Partial directed coherence was estimated for EMG and the cor-
responding contra lateral EEG with model order p = 100. Data were
down-sampled to a sampling rate of 100 Hz. A 5%-significance level
was used. In Table 1 the results for all seven patients are summa-
rized.

In Fig. 9, exemplary results of the partial directed coherence
analysis of trial 3 of patient 4 are shown. Significant partial directed
coherences at the tremor frequency are detected for the direction
from the left EMG to the right, contra lateral EEG, and vice versa.

For both directions of interaction we tested for significant partial
directed coherence at the tremor frequency. In 18 of the 19 analyzed
trials a significant influence of EMG on the contra lateral EEG was
found. In 9 trials we detected also the direction from EEG to EMG.
In Fig. 9 the partial directed coherence indicating a causal influence
from EMG to EEG is much higher than the partial directed coherence
indicating a causal influence from EEG to EMG. This is a general
observation that is also reflected in the number of trials in which
we found a directed influence from the cortex to the muscles which
is lower than the number of trials with a directed influence from
the muscles to the cortex. As discussed in Schelter et al. (2005) this
is due to the the different signal-to-noise-ratios of the individual
signals.

In summary, since causal influences from the EEG to the corre-
sponding contra lateral EMG are present, participation of the motor
cortex in tremor generation is strongly indicated. Moreover, there
is also a significant partial directed coherence from the EMG to the
contra lateral EEG at the tremor frequency. This corresponds to a
feedback from the muscles to the sensorimotor cortex.

5. Conclusion

We compared the maximum coherence, a method based on ana-
lytical signal, and partial directed coherence, as measures for the
direction of information flow. Based on a simulation study moti-
vated by an actual application, we demonstrated that if for two
processes both directions of interaction are present the maximum
coherence approach as well as the method based on analytical
signals lead to erroneous results. From the methods investigated
here, only partial directed coherence was able to detect all interac-
tions present reliably. Moreover, we could show that the maximum
coherence approach strongly depends on the estimation procedure,
which we consider a severe problem in applications.

We presented an application to data measured from human
tremor. Using partial directed coherence we found both directions
of interaction in almost every second analyzed trial of the seven
patients. This suggests a feedback loop from the cortex to the mus-
cles via the corticospinal tract and from the muscles to the cortex
via somatosensory afferences. The existence of this feedback loop
indicates that the cortex is a recipient of proprioceptive input and
contributes actively to the clinical expression of tremor.

In conclusion, several techniques exist to estimate the direc-
tion of information flow. Some of these even promise to infer the
time lag between the influencing and influenced process. From the
simulation studies presented here, one can infer that the specific
techniques are not able to provide the actual direction of informa-
tion flow. Thus, it is mandatory to perform a tailored simulation
study before applying the techniques to actual signals. Such a per-
formance test allows rigorous conclusions from the results of the
analyses applied to measured data.
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Kamiński MJ, Blinowska KJ. A new method of the description of the information flow
in the brain structures. Biol Cybern 1991;65:203–10.

Mader W, Feess D, Lange R, Saur D, Glauche V, Weiller C, et al. On the detec-
tion of direct directed information flow in fMRI. IEEE J Sel Top Signal Process
2008;2:965–74.

Müller T, Lauk M, Reinhardt M, Hetzel A, Lücking C, Timmer J. Estimation of time-
delays in biological systems. Ann Biomed Eng 2003;31:1423–39.

Priestley MB. Spectral analysis and time series. London: Academic Press; 1989.
Raethjen J, Govindan RB, Kopper F, Muthuraman M, Deuschl G. Cortical involvement

in the generation of essential tremor. J Neurophysiol 2007;97:3219–28.
Rosenblum MG, Pikovsky AS. Detecting direction of coupling in interacting oscilla-

tors. Phys Rev E 2001;64, 045202(R).
Sameshima K, Baccalá LA. Using partial directed coherence to describe neuronal

ensemble interactions. J Neurosci Methods 1999;94:93–103.
Schelter B, Winterhalder M, Eichler M, Peifer M, Hellwig B, Guschlbauer B, et al.

Testing for directed influences among neural signals using partial directed
coherence. J Neurosci Methods 2005;152:210–9.

Schnitzler AC, Münks MB, Timmermann L, Gross J. Synchronized brain network
associated with essential tremor as revealed by magnetoencephalography. Mov
Disord 2009;24:1629–35.

Smirnov DA, Bezruchko BP. Estimation of interaction strength and direction from
short and noisy time series. Phys Rev E 2003;68:046209.

Tass P, Rosenblum MG, Weule J, Kurths J, Pikovsky AS, Volkmann J, et al. Detection
of n:m phase locking from noisy data: application to magnetoencephalography.
Phys Rev Lett 1998;81:3291–5.

Timmer J, Lauk M, Pfleger W, Deuschl G. Cross-spectral analysis of physiological
tremor and muscle activity. I. Theory and application to unsynchronized EMG.
Biol Cybern 1998a;78:349–57.

Timmer J, Lauk M, Pfleger W, Deuschl G. Cross-spectral analysis of physiological
tremor and muscle activity. II. Application to synchronized EMG. Biol Cybern
1998b;78:359–68.

Timmermann L, Gross J, Dirks M, Volkmann J, Freund H-J, Schnitzler A. The cerebral
oscillatory network of Parkinsonian resting tremors. Brain 2003;126:199–212.

Volkmann J, Joliot M, Mogilner A, Ioannides AA, Lado F, Fazzini E, et al. Central
motor loop oscillations in Parkinsonian resting tremor revealed by magnetoen-
cephalography. Neurology 1996;46:1359–70.

Winterhalder M, Schelter B, Hesse W, Schwab K, Leistritz L, Klan D, et al. Com-
parison of linear signal processing techniques to infer directed interactions in
multivariate neural systems. Signal Process 2005;85:2137–60.


