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Summary

Hidden Markov models were successfully applied in various fields of time series analysis, especially
for analyzing ion channel recordings. The maximum likelihood estimator (MLE) has recently been
proven to be asymptotically normally distributed. Here, we investigate finite sample properties of the
MLE and of different types of likelihood ratio tests (LRTs) by means of simulation studies. The MLE
is shown to reach the asymptotic behavior within sample sizes that are common for various applica-
tions. Thus, reliable estimates and confidence intervals can be obtained. We give an approximative
scaling function for the estimation error for finite samples, and investigate the power of different LRTs
suitable for applications to ion channels, including tests for superimposed hidden Markov processes.
Our results are applied to physiological sodium channel data.

Key words: Hidden Markov model; Ion channel analysis; Parameter estimation;
Maximum likelihood estimator; Likelihood ratio test; Finite sample
properties; Asymptotic normality; Superposition of Markov processes;
Power of test; Sodium channel.

1. Introduction

Hidden Markov models (HMM) were successfully applied in various fields of statis-
tical time series analysis, e.g. in ion channel analysis (Chung et al., 1990; Fredkin
and Rice, 1992; Becker et al., 1994; Milburn et al. 1995; Chung and Kennedy,

1996; Michalek et al. 1999), protein and nucleic acid sequence analysis (Krogh

et al., 1994; Durbin et al., 1998), communication technology (Elliott et al., 1995),
econometrics (Hamilton, 1990) and speech recognition (Rabiner, 1989).
In biological applications, it is often difficult to keep the experimental condi-

tions fixed. Therefore, there is often a limited amount of data available from these
experiments. Although maximum likelihood parameter estimation is commonly
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used, the applicability of asymptotic statistical properties in terms of confidence
intervals and likelihood ratio tests (LRTs) has been doubted (Fredkin and Rice,
1992; Rosales, 1999).
The maximum likelihood estimator (MLE) for parameter estimation in HMM

has only recently been proven to be asymptotically normal under moderate condi-
tions (Bickel et al., 1998). The aim of the simulation study presented in this
paper is to investigate finite sample properties of the MLE. Following a short
overview of HMM theory (Section 2), we examine bias and variance of the esti-
mator and confidence regions (Section 4; simulation settings in Section 3). We
also investigate the power of likelihood ratio tests in different cases (Section 5 and
Appendix) and apply parameter estimation as well as model selection by LRTs to
measured biological data from sodium channels (Section 6).

2. Theory of Hidden Markov Models

2:1 Parameterized HMM

A parameterized discrete-time hidden Markov model MðJÞ ¼ ðA;p;m; sÞ is re-
lated to two stochastic processes X ¼ ðXtÞ1�t�N and Y ¼ ðYtÞ1�t�N : The back-
ground process X of transitions between the m background states is a homoge-
neous Markov process which is governed by the m� m stochastic matrix A of
transition probabilities aij ¼ PðXt ¼ j j Xt	1 ¼ iÞ. Its initial distribution is given by
pi ¼ PðX1 ¼ iÞ, the stationary distribution will be denoted by ðpiÞ. The real-valued
output Y follows Yt ¼ mðXtÞ þ sðXtÞ Et with state-dependent expectation value and
standard deviation, and i.i.d. random variables Et 
 Nð0; 1Þ. The parameter vector
is denoted by J 2 Q 
 Rn. The log-likelihood LMðJÞðYÞ can be calculated effi-
ciently by the forward-algorithm (Baum et al., 1970; Rabiner, 1989).

2:2 Asymptotic properties of the MLE

Under mild regularity conditions, the MLE ĴJ for the true parameter vector J0 is
asymptotically unbiased, normally distributed and consistent (Leroux, 1992; Bickel
et al., 1998):ffiffiffiffi

N
p
ðĴJ	 J0Þ 
 N 0;Sð Þ for N!1 ; ð1Þ

with

S	1 ¼ lim
N!1

	 1
N

@2

@Ji @Jj
LMðJÞðYÞ

����
J¼J0

" #
ij

:

Thus,
@2

@Ji @Jj
LMðJÞðYÞ

����
J¼ĴJ

is an estimate of the inverse covariance matrix of ĴJ.

The asymptotic normality yields the following asymptotic distribution for the LRT
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test statistics (Giudici et al., 2000): LetM1;M2 be two nested models with param-
eter spaces Q1 
 Rn1 ;Q2 
 Rn2 ;Q1 � Q2. Then under the null hypothesis
J0 2 Q1, we have

2
�
LM2ðYÞ 	 LM1ðYÞ

�

 c2n2	n1 :

Identifiability of parameters as they occur for HMMs which model aggregated
processes as well as problems due to boundaries of the parameter space have been
studied elsewhere (Kienker, 1989; Wagner et al., 1999).

3. General Simulation Settings and Notations

We will use the following conventions for HMMs: Parameters for A are either the
off-diagonal elements themselves or, in general, the entries of A are functions of the
parameters. The diagonal elements are obtained by row normalization to unity. The
output levels m are parameterized by a parameter m1 defining the lowest level and by
offset-parameters D2; . . . ;Dm defining the differences to the remaining levels.
For all simulations in this paper, we used the pseudo random number generator

ran2 (Press et al., 1992). The parameter estimation was performed by some initial
steps of the EM algorithm, followed by a numerical optimization using NAG rou-
tine e04ucf (The Numerical Algorithms Group Ltd, Oxford, GB). The EM-algo-
rithm for improved parameter re-estimation in parameterized HMM is given in
Michalek and Timmer (1999). During estimation, the general symmetry of chan-
ging the state numbering is broken by forcing the levels to stay in order.
The simulation parameters are denoted by J0i , the ML-estimates of the n-th

simulation replication by ĴJn
i and their estimated standard deviation by ŝsn

i . When
model parameters are kept fixed during the estimation, this is marked by under-
lining the respective parameter in the description of the simulation setting, e.g.
p1 ¼ 1.

4. Consistency of the MLE

In this section, we investigate the finite sample properties of the MLE. We regard
the bias b, the square root r of the mean square error (mse) and the coverage c of
the 95%-confidence interval based on the estimated standard deviation of the esti-
mator.

4:1 Two-state model

In our simulation study, we refer to the basic two-state model using the following
generating parameters J0: p1 ¼ 1;m1 ¼ 0;D2 ¼ 1. The transition probabilities
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a12; a21 as well as the noise level parameter s ¼ s1 ¼ s2 are chosen in the follow-
ing range: a12; a21 ¼ 0:01; 0:05; 0:1; s ¼ 0:4; 1:0; 2:0; 4:0; 8:0, see Tables 1 and 2.
Note that with a12 ¼ a21 the marginal distribution of Yt becomes unimodal for
s � 0:5. For n ¼ 2500 replications for each setting, we estimated the bias

b̂b :¼ 1

n

Pn
n¼1
ðĴJn

i 	 J0i Þ, the mse r̂r2 :¼ 1

n

Pn
n¼1
ðĴJn

i 	 J0i Þ
2 and the coverage

ĉc :¼ 1

n

Pn
n¼1

1fJ0i 2 ½ĴJ
n
i 	 1:96 ŝsn

i ; ĴJn
i þ 1:96 ŝsn

i �g (where 1f�g is an indicator func-

tion) related to both J � a12 and J � D. For n ¼ 2500, their respective standard
errors, se ð:Þ, are se ðr̂rÞ � 0:014 r̂r, se ðb̂bÞ � 0:02 seðr̂rÞ, and, for ĉc ¼ 0:95,
se ðĉcÞ � 0:004.
We observe a general tendency of overestimating a12, i.e. the estimates tend to

assume more transitions than actually happened. If a12 is small or s is large, the
relative bias can exceed 100%, even for sample sizes of several thousand data
points. Estimates of D are also positively biased. Only if a12 is very small, the
opposite tendency can be observed for small samples. The bias can exceed 100%
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Fig. 1. The scaling behavior of the square root r of the mean square error, with N the
length of the time series, s the noise standard deviation, a12 the transition probability, and
p1 the stationary probability of X ¼ 1. All values from Tables 1 and 2 are plotted, with lines
connecting series of increasing N. Only those points are marked, where a coverage of
c > 0:933 indicates that an asymptotical behavior already is given. The dashed line is
2:3
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a12= Np1ð Þ
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for large values of s. For s ¼ 0:4, the coverage frequency of the confidence inter-
vals is close to the nominal level even for small sample sizes; however, we can
observe an anti-conservative tendency. For s � 1, large sample sizes are necessary
for a sufficient approximation. This holds for both a12 and D.
We also investigated HMM with m ¼ 4 states and p1 ¼ 1; m1 ¼ 1; D2 ¼ 1;

D3 ¼ 2; D4 ¼ 3. The results were comparable to the two-state case.

4:2 Scaling of the estimation errors

The rate of convergence of the MLE is asymptotically given by equation (1). How-
ever, the finite-sample scaling behavior as well as the absolute estimation variance
depend on the true parameters. In order to give a helpful a-priori appraisal of the
estimation accuracy which one can expect for a time series of certain length, we
investigate the scaling behavior of the mse. Figure 1 shows r=s plotted vs. Np1=a12.
Thus, over a wide range of parameters, the expected root mean square error of

âa12 is proportional to s
ffiffiffiffiffiffi
a12
p

=
ffiffiffiffiffiffiffiffi
Np1
p

: the mse decreases linearly with the total
number of time points where the process occupies the respective state, Np1, multi-
plied by 1=a12, which is the mean occupancy time ti. It also increases linearly
with the noise variance. For the constellations considered, the proportionality fac-
tor was between 1.5 and 4.

5. Applicability of the LRT

In the following simulations, we examine the properties of the LRT. We investi-
gate (a) the percentage of rejection under the null hypothesis, and (b) the power
against violations of the null hypothesis. The nominal significance level of the
applied tests was always a ¼ 0:05. The settings of the test situations are moti-
vated by ion channel analysis, see e.g. Klein et al. (1997); Timmer and Klein

(1997).

5.1 Testing for equality of transition probabilities

The model parameters for simulating were: m ¼ 3, p1 ¼ 1, m1 ¼ 1, D2 ¼ 1,
D3 ¼ 2, s2 ¼ 1. The transition probabilities were aij ¼ 0:05 or aij ¼ 0:025. The
two fitted models assumed all aij to be equal (null hypothesis), and arbitrary en-
tries for aij (alternative hypothesis), respectively. Thus, the rejection range for the
twofold log-likelihood difference starts at c25; 0:05 ¼ 11:07. Table 3 gives the fre-
quency of rejections for n ¼ 2500 replications for different s; aij and N; the accu-
racy is 0.004 for a rejection frequency of 0.05. Actual and nominal level are close
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together, at least for N � 5000. For large values of s, we observe a conservative
behavior in smaller samples.
The power of this LRT is investigated for the case s ¼ 1:0; aij ¼ 0:05 with

N ¼ 2500 and N ¼ 10000. The following violation of the null hypothesis is exam-
ined: The mean occupancy time t1 of state 1 is changed to t01 ¼ Et0, while t3 is
changed to t03 ¼ t0=E and t2 ¼ t0 stays unchanged. The frequency of rejections of
the null hypothesis is plotted in Figure 2 for different values of E in the neighbor-
hood of 1. We conclude that we have – for N ¼ 10000 – sufficient power to
detect even small deviations from the null hypothesis.
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Table 3

Estimated actual level of the LRT for equality of all transition probabilities, using different
parameters for the noise level s, the mean occupancy time 1=aii and different data length N.
The nominal level was 0.05

s aii N ¼ 1000 N ¼ 5000 N ¼ 10000 N ¼ 50000

0.4 0.9 0.052 0.050 0.050 0.042
0.95 0.061 0.046 0.050 0.050

1.0 0.9 0.053 0.048 0.051 0.048
0.95 0.066 0.057 0.055 0.053

2.0 0.9 0.016 0.042 0.060 0.055
0.95 0.024 0.049 0.050 0.056
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Fig. 2. Power of the LRT in the three-state HMM for the case of different mean occupancy
times t1 ¼ Et0; t2 ¼ t0; t3 ¼ t0=E for two different data lengths. The dashed line marks the
nominal test size of 5%



5:2 Testing in the case of superimposed Markov processes

In this section, we examine the superposition of two HMMs with each m ¼ 2
states. We denote their parameters by superscripts i and ii, respectively. In the
sequel we also write ai=ii :¼ ai=ii12 ; b

i=ii :¼ ai=ii21 , and �aa :¼ 1	 a for probabilities a.

As their independent superposition, we obtain a new HMM ~MM with ~mm ¼ 4,
~mm1 ¼ mi

1 þ mii
1,

~DD2 ¼ Di
2,

~DD3 ¼ Dii
2,

~DD4 ¼ Di
2 þ Dii

2, ~ss
2 ¼ si2 þ sii2, and transition

matrix ~AA. The superposition model is shown in Table 4 together with ~AA. Under
the null hypothesis for the following tests the two processes have the same param-
eters. In this case, ~MM can be replaced by an equivalent model ~MM0 with m0 ¼ 3,
~mm01 ¼ 2mi

1,
~DD0
2 ¼ Di

2,
~DD0
3 ¼ 2Di

2, ~ss0 ¼
ffiffiffi
2
p

si that produces the same observable

process when ~AA is replaced by ~AA0 (see Table 4).
For the simulations, we choose under H0: p1 ¼ 1, m1 ¼ 1, a ¼ 0:05, b ¼ 0:09,

D2 ¼ 1:0, ~ss ¼ 1:0, and N ¼ 10000. Under the alternative, the parameters a; b;D2

of the two models may be different.

5:2:1 Testing for identical parameters

We first consider the test of ~MM (possibly differing parameters) vs. ~MM0 (identical
parameters). The rejection range for the LRT starts at c23; 0:05 ¼ 7:8147. The first
violation of the null hypothesis regarded assumes one Markov process to exhibit
shorter dwell times than the other. With ai ¼ Ea; bi ¼ Eb; aii ¼ a=E; bii ¼ b=E, the
stationary distributions are unchanged, and so is the stationary distribution of the
superposition. Also, the mean occupancy times of the three resulting states are
unchanged (see Appendix). The LRT is less sensitive to such a change in the
dynamics (Figure 3).
Another violation of the null hypothesis assumes the two Markov processes

possess different output levels. With Di
2 ¼ ED2;Di

2 ¼ D2=E, the intermediate level
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Table 4

The superposition of two hidden Markov models: The resulting output levels dependent on
the background states Xi

t , X
ii
t of the two processes, and the resulting transition matrix ~AA. The

transition matrix is also given for the special case of identical parameters which is the null
hypothesis for the investigated tests ( ~AA0). ‘x’ denotes the diagonal entries obtained by nor-
malization.

Xi
t ;X

ii
t level

2; 2 	mi
1 þ mii

1 þ Di
2 þ Dii

2

2; 1 	mi
1 þ mii

1 þ Dii
2

1; 2 	mi
1 þ mii

1 þ Di
2

1; 1 	mi
1 þ mii

1

; ~AA ¼

x ai�aaii �aaiaii aiaii

bi�aaii x biaii �bb
i
aii

�aaibii aibii x ai �bb
ii

bibii �bb
i
bii bi �bb

ii
x

0
BBBB@

1
CCCCA; ~AA0 ¼

x 2a�aa a2

�aab x a�bb

b2 2b�bb x

0
B@

1
CA



splits up into two separate levels. The LRT is rather sensitive to such a change in
the stationary output distribution (Figure 4).
In both cases, actual and nominal level are close together under H0.
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5:2:2 Testing for independence of superpositions

The following violation of the above null hypothesis allows for dependent dy-
namics of the two Markov process, assuming that m and s still coincide: The
transition probability a is changed to a0 ¼ Eaa if the other process is in its state
2 (this is relevant for the states 1,2 and 2,1 of the superposition), and also b is
changed to b0 ¼ Ebb if the other process is in its state 2 (relevant for state 2,2
of the superposition). We investigate the power of the corresponding LRT by
varying the single parameter E ¼ Ea ¼ 1=Eb in the neighborhood of 1. We use
for the superposition model ~MMalt with m ¼ 3;m1 ¼ 1, D2 ¼ 1, D3 ¼ 2, s ¼ 1.
The transition matrix for the simulation as well as for the alternative hypothesis
is:

~AAalt ¼
X 2a�aa a2

�aa0b X a0 �bb

b02 2b0 �bb0 X

0
B@

1
CA :

For estimation under the alternative, a; a0; b; b0 are free parameters, thus the
quantile for testing ~MMalt vs. ~MM0 is c22; 0:95 ¼ 5:991. Under this alternative, the
mean occupancy times as well as the stationary distribution are changed compared
with the null hypothesis. As we can conclude from Figure 5, the LRT is rather
sensitive.
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6. Application to Measured Time Series from Sodium Channels

Recordings of single human muscle Naþ-channels were analyzed using a general-
ized HMM incorporating filtered noise. The F1473S mutant was expressed stably
in a cell line (Fleischhauer et al., 1998). The so-called cell-attached patches were
measured using a voltage protocol of hyper-polarization changing to depolariza-
tion, which was applied for several hundred repetitions. The generalized model
was necessary in order to handle the high level of observational noise together
with the filtering of this physiological measurements (Michalek et al., 2000).
Some traces of the data are shown in Figure 6, the recording procedure is de-
scribed in Michalek et al. (1999). The physiological interest in the behavior of
single ion channels arises from their fundamental role in the cell’s interaction with
its environment as well as from their responsibility for certain muscle diseases
(Hoffmann et al., 1995).
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Fig. 6. (above) Representative raw cur-
rent traces of single channel recordings.
Openings (plotted downwards) occur
within the first two milliseconds of
traces 2 and 5. (below) Theoretical time
course of the average current from the
fitted generalized HMM (smooth) for
comparison with the average over the
600 recorded traces (vertical line at
start of depolarization). The theoretical
curve is scaled for equal peak height



The main characteristics of ion channel behavior can be described by Markov
processes of transitions between classes of molecular conformations, called states.
Thus, the interest is to identify the so-called gating-scheme, which governs the
connectivity of the Markov states together with the respective rate constants of the
transitions (Michalek and Timmer, 1999). This task was performed by subsequent
LRTs, here.
A simple model that has often been used in the past to describe the channel

gating contains one open, one inactivated and several closed states (Horn and
Lange, 1983; Horn and Vandenberg, 1984; Patlak, 1991; Chahine et al.,
1994), see model number 2 in Table 5: Due to the experimental preparation, the
channels are forced to start from the outmost left closed state at each repetition of
the voltage protocol. The so-called inactivated states are closed as well. They are
nearly absorbing in terms of the Markov dynamics. However, the number of
closed states and the number of different open states which contribute to the ob-
served dynamics is not known beforehand. We subsequently tested against simpler
and more complex models by means of LRTs. The resulting log-likelihood values
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Table 5

Log-likelihood values for different gating schemes as described in the text.

gating scheme log-likelihood

no. transition graph

1 C  ! O
#" #"
I

	52383.45

2 C1  ! C2  ! O
#" #"
I

	52366.32

3 C1 ! C2  ! O
# "
I

	52367.04

4 C1 ! C2 ! C3  ! O
# "
I

	52367:99

5 O1
#" #"

C1 ! C2  ! O
#" #"
O2

	52364.33



are given in Table 5 and the resulting decisions are:

4
#

1! 2!&3 .

"
5

Each arrow indicates a LRT with a significant result for the more complex mod-
el or, otherwise, the case that the null hypothesis could not be rejected and that
the less complex model is sufficient for the statistical description of the data. De-
tails of the analysis, tests of the method’s consistency and physiological interpreta-
tions are described in Michalek et al. (1999). The best model number 3 was able
to reproduce the current time course of the data, see Figure 6.

7. Conclusions

We investigated the finite sample size properties of maximum likelihood estima-
tors and likelihood ratio tests for hidden Markov models: (a) For a wide range of
parameter values, we give an approximative scaling behavior for the accuracy of
parameter estimates. (b) The results of several likelihood ratio tests do allow for a
comparison of the test’s power under different violations of the null hypothesis.
The likelihood ratio tests are more sensitive for changes in the stationary output
distribution as well as in the mean occupancy times of the levels. It is less sensi-
tive for higher-order changes, i.e. if only the correlations between pairs of adjacent
occupancy times are affected.
We successfully applied our results to data measured from sodium channels of

human skeletal muscle. With those criteria concerning the applicability of likelihood
methods, hidden Markov models together with proposed extensions (Hamilton,

1994; Albertsen and Hansen, 1994; Kim, 1994; Venkataramanan et al., 1998;
Michalek et al., 1999, 2000) allow for investigating dynamical systems that can-
not be observed directly in a statistically reliable way.

Appendix

The E-parameterized matrix ~A0A0ðEÞ used for the simulations in Section 5.2.1 has the
following derivative with respect to E:

@

@E
~AA0ðEÞ ¼

	ai þ aii=E2 ai 	aii=E2 0

bi 	bi þ aii=E2 0 	aii=E2

	bii=E2 0 bii=E2 	 ai ai

0 	bii=E2 bi bii=E2 	 bi

0
BBBBB@

1
CCCCCA;
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and for E � 1 (and therefore ai ¼ aii ¼ a, bi ¼ bii ¼ bÞ:

�

0 a 	a 0

b 	bþ a 0 	a
	b 0 b	 a a

0 	b b 0

0
BBBB@

1
CCCCA : ð19Þ

Thus, the only effects for small E are (a) that the occupancy time distribution for
the intermediate level 2 splits up and is now governed by two different time con-
stants (for a 6¼ b) while the mean occupancy time is nearly unchanged, and (b)
that the probability for subsequent transitions from the lowest level 1 to level 2
and back increases compared to 1! 2! 3. The same is true for level 3 (highest)
! 2! 3 compared to 3! 2! 1.
The log-likelihood is less sensitive to such changes compared e.g. to changes in

mean occupancy times or in the probability for direct transitions. Thus, the power
of the LRT is poor, here.
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Fleischhauer, R., Mitrović, N., Deymeer, F., George, A. L., Lehmann-Horn, F., and Lerche, H.,

1998: Effects of temperature and mexiletine on a sodium channel mutation causing paramyotonia
congenita. Pfl. Arch. 436, 757–765.

Fredkin, D. R. and Rice, J. A., 1992: Maximum likelihood estimation and identification directly from
single-channel recordings. Proc. R. Soc. Lond. B 249, 125–132.

Giudici, P., Rydén, T., and Vandekerkhove, P., 2000: Likelihood-ratio tests for hidden Markov mod-
els. Biometrics 56, 742–747.

Hamilton, J., 1990: Analysis of time series subject to changes in regime. J. Econometrics 45, 39–70.
Hamilton, J., 1994: Time Series Analysis. Princeton University Press.
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