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Estimating the functional topology of a network from multivariate observations is an important task in
nonlinear dynamics. We introduce the nonparametric partial directed coherence that allows disentanglement of
direct and indirect connections and their directions. We illustrate the performance of the nonparametric partial
directed coherence by means of a simulation with data from synchronized nonlinear oscillators and apply it to
real-world data from a patient suffering from essential tremor.
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I. INTRODUCTION

First-principles modeling allows gaining of insights into
the characteristics of dynamic processes, especially when it
comes to understanding complex dynamic networks gener-
ated by synchronized self-sustained oscillators �1�. For solv-
ing the inverse problem, i.e., inferring the model from mea-
surements, semiparametric and nonparametric techniques
developed to infer the network structure based on interacting
signals of nonlinear origin have been shown to be very
promising. We focus on interactions between coupled non-
linear oscillators that exhibit synchronization, such as phase
synchronization �2�, lag synchronization, or complete syn-
chronization �3�. To detect the interaction structure of non-
linear systems, measures based on coherence �4�, phase, or
lag synchronization �3,5,6�, or on recurrences �7� are avail-
able. Some of these measures can be partialized such that
they can distinguish direct and indirect connections but then
they cannot resolve the direction of information flow. Meth-
ods to detect the direction of coupling in bivariate systems
based on phases �8� or on joint recurrence plots �9� have
been presented.

Partial directed coherence �PDC�, a parametric method
that is able to infer directed influences in multivariate—
strictly speaking linear—systems, has been widely applied in
many fields of time series analysis, i.e., in econometrics, bi-
ology, and neuroscience �10–15�. Partial directed coherence
analysis is based on the notion of Granger causality, which
applies the principle of prediction �10,16–18�. If past obser-
vations of a signal x�t� can significantly increase prediction
of another signal y�t� given all the information of the remain-
ing possibly multivariate processes, then x�t� is said to
Granger cause y�t�.

The partial directed coherence, even though it is based on
a linear model, has been successfully applied to signals of
nonlinear origin �19�. Typically, the parametric partial di-
rected coherence performs well on nonlinear systems only
for certain coupling strength. To increase the robustness of

partial directed coherence analysis is thus mandatory to guar-
antee a wide-spread applicability of partial directed coher-
ence to real-world data. In this paper we introduce such a
robust extension, a nonparametric measure to infer the causal
network structure from multivariate nonlinear possibly cha-
otic time series: the nonparametric partial directed coher-
ence.

The paper is structured as follows. In the next section the
method of nonparametric partial directed coherence is intro-
duced. A significance level based on block bootstrap is de-
rived. The simulation study in Sec. III demonstrates the abili-
ties of nonparametric partial directed coherence when
applied to nonlinear synchronizing possibly chaotic systems.
An application to human tremor data complements this pa-
per.

II. METHODS

To measure Granger causality, commonly vector autore-
gressive �VAR� models of order p �VAR�p��

x�t� = �
m=1

p

a�m�x�t − m� + ε�t� �1�

of the real-valued multivariate stochastic process with D
components x�t�= �x1�t�x2�t�¯xD�t��T, where � · �T denotes
vector transposition, are investigated. The D�D matrices
a�m� are the VAR parameter matrices, whose elements aij�m�
govern the interactions from the lagged process components
xj�t−m�, m=1, . . . , p to xi�t�. The noise process ��t� is
Gaussian distributed with covariance function �ε�t�εT�t
−m��=��m0, where �= �ε�t�εT�t�� is the noise covariance
matrix and �m0 is the Kronecker delta.

The Fourier transform of the VAR coefficients of Eq. �1�
Aij���=�ij −�m=1

p aij�m�e−im� leads to the definition of the
partial directed coherence

�i←j
�p� ��� =

�Aij����

	�
k=1

D

�Akj����2
, �2�

a measure for Granger causality in the frequency domain
�12�. It indicates a causal influence from process xj�t� to xi�t�.
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The PDC is normalized as �i←j
�p� ���� �0,1�, the term �i←i

�p� ���
quantifies influences on xi�t�, which cannot be explained by
other components xj�t�, j� i. To estimate the PDC, a VAR
model is fitted to the observed time series and the VAR pa-
rameters are plugged into Eq. �2�. Various parameter and
order estimators for VAR models have been proposed �20�.
For the analysis of the interaction structure of nonlinear pro-
cesses, the choice of the model order p is not clear; usually a
very high order is prescribed to approximate the signal spec-
tra in detail �13,18�.

A. Nonparametric PDC

Since partial directed coherence is restricted to parametric
VAR processes, the choice of the model order p considerably
influences the results obtained. If, for instance, p is chosen
too small, wrong causal networks might arise. If the order p
is chosen too large, highly fluctuating results might prevent a
sensible interpretation of partial directed coherence spectra.
Moreover, high model orders usually require large data sets
to reliably estimate the VAR parameter matrices. To over-
come these limitations we investigate the causal nonparamet-
ric model

x�t� = �
m=0

�

h�m�ε�t − m� , �3�

characterized by the impulse response h�m�, which is nor-
malized to h�0�=ID. The Fourier transform of the impulse
response yields the transfer function, which is given by
H���=F
h�m��. The nonparametric model of Eq. �3� is
equivalent to a VAR ��� model. Thus H��� can be related to
H�p����=A−1��� in Eq. �1�. The nonparametric PDC �np-
PDC� can consequently be defined as

�i←j
�n� ��� =

�Gij����

	�
k=1

D

�Gkj����2
, �4�

where Gij��� is the �i , j� element of G���=H−1���. For the
nonparametric PDC the same normalization properties as for
the parametric PDC of Eq. �2� hold.

Based on Eq. �3� the spectral matrix reads S���
= �X���XH����=H����HH���. In �16,21,22� an iterative
method, the Wilson algorithm, factorizing the spectral matrix
by means of a linearization argument and applying Newton’s
method of obtaining square roots has been proposed. This
algorithm computes the unique minimum-phase transfer

function H��� given a spectral matrix estimate Ŝ��� with
quadratic convergence. As a spectral estimator we propose to
average periodograms of blocks of the observed signal x�t�,
t=0, . . . ,N−1. The signal is cut into nonoverlapping blocks
of length NB, thus integer K= � N

NB
� signal blocks are found.

For each block x�k��t�, k=1, . . . ,K the periodogram
X�k�����X�k�����H is computed. The spectral estimate is ob-
tained by averaging the block periodograms

Ŝ��� =
1

K
�
k=1

K

X�k�����X�k�����H. �5�

This block-averaging spectral estimator reduces the spectral
resolution, which could be obtained by the smoothing
method �23�. However, this decreased resolution enables a
rigorous statistical assessment of the results as presented in
the next section. Below we also discuss how to estimate the
optimal block length, which guarantees sufficient resolution
and thus, maximum stability based on the data itself.

B. Significance level

To derive a significance level for the proposed method, a
block-bootstrap approach �24,25� is introduced here. In order
to generate a set of M resampled spectral matrices, the indi-
vidual blocks of the ith component of X���, which are

Xi

�1���� , . . . ,Xi
�k���� , . . . ,Xi

�K�����, are shuffled with replace-
ment for all i=1, . . . ,D. Using this procedure, the interaction
structure is destroyed but the other signal characteristics are
preserved. Repeating this procedure M times leads to M
spectral matrices. Thereby, M estimates for the nonparamet-
ric PDC under the null hypothesis of absent coupling can be
computed. The �1−�� quantile of the distribution of Eq. �4�
generated out of the M samples, which are consistent with
the null hypothesis, serves as the significance level.

For univariate processes x�t�, a method to estimate the
optimal block length based on the decay of the autocorrela-
tion function �ACF� of x�t� has been derived �26�. Fitting an
exponential law �	 to the ACF r�	�, the optimal block length
for nonoverlapping blocks is given by

NB = �4N
 �

1 − �
+

�2

�1 − ��2�2
1 +
2�

1 − �
�−2�1/3

. �6�

Since we are interested in interactions between processes
here, we extend this approach to the correlation matrix of
x�t� by fitting ��	−	0� to all ACFs and normalized cross-
correlation functions. The maximum of NB derived based on
the full correlation matrix of x�t� is considered the optimal
block length.

Please note that this optimal block length is estimated to
be purely data driven by exploiting the decay properties of
the autocorrelation and cross-correlation functions. Thus,
also the spectral resolution is determined by this optimal
block length. Although one could in principle increase the
resolution in the frequency domain by increasing the block
length compared to the optimal one, this procedure would
hamper the statistics derived based on this shorter block
length. Confidence would be based on correlated data, which
would render them useless. If the statistical stability should
be increased, increasing the recording length of the data is
the only apt solution.

III. SIMULATIONS

The performance of smoothed partial directed coherence
and the validity of the significance level are assessed by
power and coverage analysis for simulated dynamical pro-
cesses. The power of a statistical test quantifies the ability to
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detect a violation of the null hypothesis while the coverage
controls the fraction of false positive errors, i.e., � errors. We
present two stochastically driven coupled nonlinear systems
for which we analyze power and coverage of the npPDC and
its significance level.

The first process is a two-dimensional stochastically
driven van-der-Pol oscillator

ẍ1 = 
�1 − x1
2�ẋ1 − �1

2x1 + �1, �7�

ẍ2 = 
�1 − x2
2�ẋ2 − �2

2x2 + �2 + ��x1 − x2� , �8�

with N=50 000, where x1�t� drives x2�t� with a varying dif-
fusive coupling strength given by �. The van-der-Pol differ-
ential equations describe limit cycle oscillators governed by
the nonlinearity parameter 
=5 with frequencies �1=2�
and �2=1.03�1. The system is driven by Gaussian white
noise �1,2 with zero mean and variance of two. The coupling
strength � is varied between zero and three.

Further, the x components of two coupled stochastic
Rössler oscillators with N=50 000 defined by

� ẋi

ẏi

żi
� = �− �iyi − zi + �

j�i

�i,j�xj − xi� + �i

�ixi + ayi

b + �xi − c�zi

� , �9�

i , j=1,2, have been analyzed. The parameters that govern
chaotic behavior are set to a=0.15, b=0.2, and c=10. The
respective frequencies are �1=2�, �2=1.03�1, and the driv-
ing white Gaussian white-noise processes �1,2 are zero mean
with variance of four to obtain satisfactory mixing properties
�27�. The coupling parameter �=�2,1 is varied between 0 and
0.10 while �1,2=0.

For these two systems we simulated 100 realizations for
each chosen value of �. Numeric integration of the nonlinear
stochastic systems has been performed by an Euler method
with integration step of 0.001 and a sampling step of 0.1. At
the frequency �0=2� we evaluated the nonparametric PDC
and tested it for significance. A significant value of �2←1

�n� ��0�
indicates a true positive while a significant value of
�1←2

�n� ��0� is a false positive. In Fig. 1 the power curve, i.e.,
the percentage of detected connections from x1�t� to x2�t�
�bold line� as well as from x2�t� to x1�t� �thin line� for vary-
ing coupling strength is shown.

The coverage of the bootstrap is shown for zero coupling,
where connections in both directions are detected in not
more cases than expected for the significance level of 5%.
The power is verified for a certain minimal-coupling strength
where the nonparametric PDC detects the connection x1�t� to
x2�t� almost surely for both systems. The connection x2�t� to
x1�t� is detected in 
5% of all cases regardless of the cou-
pling strength, which is again expected for the 5% signifi-
cance level.

To characterize the synchronization regimes of the oscil-
lators in more detail, we analyzed both systems for synchro-
nization of phases by the mean phase coherence �MPC� �2�
and for lag synchronization by the lag synchronization index
�3�. For the noise-free van-der-Pol system lag synchroniza-
tion starts for a coupling value of �L�0.3, while the onset of

complete synchronization is at �C�2.1. For the noise-free
Rössler system phase synchronization starts at �P�0.06 and
the onset of lag synchronization is at �L�0.20. For the noisy
van-der-Pol system, the npPDC can correctly find the inter-
action up to the maximum coupling value of �max=3, for
which the average MPC is 0.7. For the noisy Rössler system
the npPDC provides correct results up to �max=0.1, which
corresponds to an average MPC of 0.75. At �max, both the
noise-free and the noiseless systems are in lag synchroniza-
tion. Thus, for both systems, applicability of the npPDC is
provided for a coupling strength corresponding to a coupling
regime that can reach beyond the onset of phase synchroni-
zation or even to moderate lag synchronization. If however
the coupling is higher than �max, the coupling is expectedly
too strong and the npPDC is significant in both directions.
This is a well-known issue and has been addressed by several
authors. See for instance �19�.

To investigate the performance of the nonparametric PDC
and its significance level, a stochastically driven Rössler pro-
cesses with four components, N=100 000, and a=0.15, b
=0.2, c=10 is simulated �cf. Eq. �9��. The frequencies are
�1=2�, �2=1.02�1, �3=1.04�1, and �4=1.06�1, and the
driving noise processes are with variance of four. The cou-
pling parameters are �1,2=0.05, �2,1=0.05, �4,2=0.05, �3,4
=0.05, and �2,3=0.05, and all others are zero. This model
exhibits a bidirectional interaction between x1�t� and x2�t�,
and a loop of unidirectional interactions x2�t� to x4�t�, x4�t� to
x3�t�, and x3�t� to x2�t�. The optimal block length is NB
=4000 such that 25 blocks resulted. In Fig. 2 the nonpara-
metric PDC estimates are shown. The simulated interaction
structure has correctly been revealed by the nonparametric
PDC together with the significance level.

IV. APPLICATION TO TREMOR DATA

To show the applicability of the nonparametric PDC to-
gether with its significance level to real-world data, we
present an analysis of the causality structure of a recording
from a patient suffering from essential tremor. This common
movement disorder is characterized by a postural tremor of

FIG. 1. �Color online� Percentage of detections for �a� van-der-
Pol oscillators, and �b� Rössler oscillators. Bold line: x1�t� to x2�t�
�true positives�, thin line: x2�t� to x1�t� �false positives�. With in-
creasing coupling strength the connection x1�t� to x2�t� is detected
more often but the absent connection x2�t� to x1�t� is detected with
an error level of 5%, which corresponds to the significance level
�indicated by a gray dashed line�.
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the arms and possibly other body parts. The trembling fre-
quency usually is between 4 and 8 Hz.

Tremor-correlated activity has been found in cortical
structures �28�, where it was shown that the electromyogram
�EMG� of flexor and extensor muscles of the trembling hand
is coherent to the electroencephalogram �EEG� of the con-
tralateral sensori-motor cortex at the tremor frequency. It re-
mains an open question whether the cortex imposes its oscil-
latory behavior onto the muscles or whether the muscles
send feedback to the cortex. This question can be addressed
using the nonparametric PDC.

To this aim, on-scalp EEG has been recorded together
with the EMG of the extensor and flexor muscles. The EEG
over the right sensori-motor cortex, the EEG over the left
sensori-motor cortex, and the EMG from the wrist extensor
of the left hand are analyzed with a sampling frequency of
100 Hz. For a data segment with N=30 000, the EMG has
been rectified, filtered, and the mean has been subtracted
�28�.

Figure 3 shows the traces of the signal and in Fig. 4 the
nonparametric PDC including the autospectra on the main
diagonal are shown. Connections from the left extensor to

the right sensori-motor cortex at the tremor frequency of 5
Hz are detected, whereas the direction from left extensor to
the left sensori-motor cortex does not show a significant in-
teraction at the tremor frequency. The presence of a har-
monic component in the tremor signal indicates a nonlinear
signal generation mechanism of second order. It can be con-
cluded that the measured data display the feedback of the
muscle to the motor cortex.

For the results depicted in Fig. 4 the variances of the three
signals were equalized to one to increase numeric stability.
We did not observe different results for cases where the vari-
ances differed by one order of magnitude.

V. DISCUSSION AND CONCLUSION

In summary, we introduced an alternative approach for the
inference of frequency-resolved direct directed interaction
structures based on nonparametric spectral estimation. A ma-
jor advantage of the proposed significance level is that it
provides information about its applicability. Imagine that the
estimated minimal block length NB is of the order of the
available data points N, then the proposed block-averaging
procedure is not applicable. This indicates that the amount of
data is too small to reliably estimate the interaction structure
of the network. In this case, it is also possible to use the
block-length estimator �Eq. �6�� to estimate the minimal re-
cording length needed since as a rule of thumb the number of
blocks K should at least be ten to get a reliable estimate. The
proposed interaction measure can also be readily applied to
point process data or hybrids of time series and point pro-
cesses since only differences in the Fourier transform for
both types of processes have to be taken into account. The
nonparametric partial directed coherence can successfully

FIG. 2. �Color online� Nonparametric PDC of the Rössler sys-
tem. Gray lines indicate bootstrapped significance levels. The con-
nections 1←2, 2←1, 4←2, 3←4, and 2←3 are significant. The

spectra Ŝ are displayed in arbitrary units.

FIG. 3. Tremor data, zoomed segment of 5 s. The first and
second traces are the EEG signals while the third trace is the recti-
fied and filtered EMG. The traces are rescaled to equalize their
variances and are depicted in arbitrary units.

FIG. 4. �Color online� Nonparametric PDC of the tremor data
set and the block-averaged periodograms in logarithmic scale. It
shows a connection from the left extensor to the right EEG, espe-
cially at the tremor frequency of 5 Hz. At 10 Hz, there is a first
harmonic of the tremor EMG indicating a nonlinear signal genera-
tion mechanism.
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infer direct directed interactions from multivariate nonlinear
possibly chaotic dynamical systems.
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