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For  the first  time,  robust  statistics  is  possible  due  to  our  new  method.
The  proposed  method  outperforms  conventional  methods.  It renders  confidence  intervals  as  small  as  possible.
The  new  method  precludes  false  positive  conclusions.
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a  b  s  t  r  a  c  t

Background:  Statistical  inference  of  signals  is  key  to  understand  fundamental  processes  in  the  neu-
rosciences.  It  is essential  to distinguish  true from  random  effects.  To  this  end,  statistical  concepts  of
confidence  intervals,  significance  levels  and  hypothesis  tests  are  employed.  Bootstrap-based  approaches
complement  the  analytical  approaches,  replacing  the  latter  whenever  these  are  not  possible.
New  method:  Block-bootstrap  was  introduced  as  an adaption  of  the  ordinary  bootstrap  for  serially  corre-
lated  data.  For  block-bootstrap,  the  signals  are cut into  independent  blocks,  yielding  independent  samples.
The key parameter  for block-bootstrapping  is  the block  length.  In the  presence  of noise,  naïve  approaches
to  block-bootstrapping  fail. Here,  we  present  an  approach  based  on block-bootstrapping  which  can  cope
even with  high  noise  levels.  This  method  naturally  leads  to  an algorithm  of  block-bootstrapping  that  is
immediately  applicable  to observed  signals.
Results:  While  naïve  block-bootstrapping  easily  results  in  a misestimation  of the block  length,  and  there-
fore  in  an  over-estimation  of  the confidence  bounds  by  50%,  our new  approach  provides  an  optimal
determination  of these,  still keeping  the  coverage  correct.
Comparison  with  existing  methods:  In several  applications  bootstrapping  replaces  analytical  statistics.
Block-bootstrapping  is  applied  to serially  correlated  signals.  Noise,  ubiquitous  in the  neurosciences,  is

typically  neglected.  Our  new  approach  not  only  explicitly  includes  the  presence  of  (observational)  noise
in  the  statistics  but  also  outperforms  conventional  methods  and  reduces  the  number  of false-positive
conclusions.
Conclusions:  The  presence  of  noise  has  impacts  on  statistical  inference.  Our  ready-to-apply  method
enables  a  rigorous  statistical  assessment  based  on block-bootstrapping  for  noisy  serially  correlated  data.
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Tremor is characterised by an involuntary oscillating movement
of extremities. In essential tremor, a hereditarian form of patholog-
ical tremor, typically, the hands tremble at a frequency at around

a

b
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. Introduction

In the neurosciences, concepts, mechanisms, and characteris-
ics often need to be inferred from measured signals. This typically
enders powerful means for statistical evaluation necessary to pre-
lude erroneous conclusions. For several data analysis approaches
nalytic evaluation schemes have been developed. For others,
umerical Monte-Carlo based approaches are used to evaluate the
tatistical significance of the findings. The bootstrap has emerged as

 powerful tool for this (Efron, 1979; Arndt et al., 1996; Davison and
inkley, 1997; Foster and Bischof, 1987; Hentschke and Stüttgen,
011; Zoubir and Boashash, 1998).

The general idea of bootstrap is to provide the distribution of a
tatistics based on the measured signals alone, when the analytic
erivation of the statistics is not known. The distribution is sam-
led by randomly drawing with replacement from the measured
ata (Efron and Gong, 1983; Hall et al., 1995). Once this empirical
istribution is obtained from the bootstrap, confidence intervals
an be derived and hypothesis tests can be performed based on
he empirical ˛-quantiles. Bootstrapping leads to a valid approx-
mation of the true distribution of the test statistics under some
ssumptions (Mammen, 1992).

Among others, independence of the sampled data points is one
ssumption that has to be fulfilled in order to render bootstrapping
ensible. When investigating time series as often measured in the
eurosciences, this fundamental prerequisite for the applicability
f bootstrap is violated. The temporal correlation, which charac-
erises the dependence of the random variables of the time series,
an be quantified by the autocorrelation function. This insight has
ed to the idea of block-bootstrapping (Carlstein, 1986; Hall et al.,
995; Künsch, 1989).

For temporally correlated data, block-bootstrapping draws with
eplacement from a set of independent blocks, i.e. snippets of the
ata (Davison and Hinkley, 1997). The appropriate choice of the
lock length is a key parameter and does not only depend on the
easured time series but also on the analysis technique that is

pplied. “Optimality” in case of block-bootstrapping refers to the
inimal squared distance between the true and the estimated

uantity, yielding a trade-off between squared bias and variance
Peifer et al., 2005; Percival and Walden, 1993; Schelter et al., 2007).

The decay rate of the autocorrelation function as a measure
f dependence in the data is the vital parameter in block-
ootstrapping, as has been shown for the variance (Peifer et al.,
005) and mean phase coherence (Schelter et al., 2007), explicitly.

t needs to be estimated as reliably as possible in order to render
he segments as short as possible but long enough to guarantee
ndependence. The decay rate in the autocorrelation can either be
stimated by fitting an exponential function to the envelope of the
mpirical autocorrelation function or alternatively it can be esti-
ated by modelling the process as an autoregressive one. While

he latter is sensible only for small orders of the autoregressive
odel, the former provides a robust means for more complicated,

otentially nonlinear dynamics as well.
A naïve choice of block length yields a bias or high variance of

he statistics, and eventually fails in providing an optimal estimate
or the block length. This is due to the influence of noise, becoming
articularly important in the case of measurement noise or in cases

n which the signal itself is modulated noise. While for the former
he electroencephalography (EEG) is a prototypical example, the
lectromyography (EMG) is genuine for the latter.

As we demonstrate in this manuscript, the presence of these two
ypes of noise strongly influences the determination of the optimal

lock length. A modification of conventional methods is necessary
therwise sub-optimal or even anti-conservative statistics can be
btained due to an underestimation of the block lengths. As we
emonstrate here by both analytic calculations and simulations,
e Methods 219 (2013) 285– 291

the amount to which the length is underestimated is a function
of the noise to signal ratio. We  provide a modified block length
selection approach that is robust with respect to the presence of
a range of noise levels. We demonstrate the benefit of this new
approach not only in model systems but also by investigating con-
fidence intervals for the tremor amplitude based on EMG  activity.
The amplitude provides a measure for tremor severity and is there-
fore key to support physicians in the various tasks, such as the
diagnosis or treatment of tremor. However, we emphasise that the
proposed approach is not confined to EMG  recordings and tremor
data. Neither does it depend on recording modalities, such as EEG,
EMG or fMRI, nor on scientific fields, such as tremor or epilepsy.
Examples of its applicability are seizure detection as initiated by
Gotman (1982), various studies concerned with network estima-
tion, e.g. by the mean phase coherence (Schelter et al., 2007), or
resting state studies (Bellec et al., 2010).

The manuscript is structured as follows. In Section 2 we present
the EMG  data of a tremor patient and the systems used to model
them. We  first (Section 2.1) introduce the EMG  data that we  aim to
analyse and specify the impacts of noise onto the analysis. Based
on the EMG  data, parameters of the model system are adapted.
As a second step (Section 2.2) we demonstrate the weaknesses of
conventional block length selections in the presence of noise. We
analytically derive how this can be overcome with our new robust
block-bootstrapping. In Section 3 we  apply block-bootstrapping to
both the model system and the measured EMG  signals of a tremor
patient, deriving confidence intervals. We  compare the confidence
intervals obtained from the modified block length selection to the
unmodified version, showing the superior efficiency of our method.

2. Material and methods

To motivate and illustrate the new approach to block-
bootstrapping, we  use an example of a representative recording of
the wrist muscle activity of a tremor patient measured by EMG  (see
Fig. 1a). We  model the EMG  by autoregressive processes (Fig. 1b) in
order to analytically show the effect of noise onto the block length
selection.

2.1. Tremor example
Fig. 1. Short section of data from a rectified EMG  (a), and an autoregressive process
(b) with parameters a1 = 1.9975 and a2 = −0.9987, intrinsic noise variance �2 = 0 .052

and measurement noise variance ˙2 = 302 (see Eqs. (1) and (2)).
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Fig. 2. Estimated autocorrelation function of the EMG  data (a) and the AR[2] (b),
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hich models the EMG  recordings. Both signals are influenced by noise and there-
ore have a discontinuity at time lag 0.

–7 Hz. The corresponding tremor amplitude, which is quantified
y the variance of the signal, is far stronger than physiological trem-
ling. The muscle activity is recorded at a sampling rate of 1000 Hz
y EMG. A short epoch of rectified EMG  data is depicted in Fig. 1a.
f particular interest in tremor is the progression of the disease.

t is, e.g., still under debate whether tremor becomes more severe
ith age. One measure of severity is the amplitude of the trem-

ling, which is typically measured as the variance of the signal in a
iven frequency band. To be able to study the potential long term
hanges in amplitude, a reliable approximation of the confidence
ntervals for the variance are needed. In Peifer et al. (2005), block-
ootstrapping was suggested to approximate the statistics of the
ariance.

For EMG  signals, the patho-physiological basis of tremor investi-
ations, the approach suggested in Peifer et al. (2005) is not directly
pplicable. The envelope of the autocorrelation function is not just
n exponential decay (Fig. 2a). Since the EMG  is modulated noise,
here is a discontinuity at time lag zero. In the following, we will
uggest a block-bootstrapping approach that is not influenced by
uch a discontinuity. Before discussing the novel approach to block-
ootstrapping, we introduce a rough model, which we  will utilise

n the following to substantiate our numerical results by analytic
erivations.

Interestingly, the nonlinear rectified EMG  (Jachan et al., 2009)
an be roughly modelled by a so-called autoregressive process of
rder p, AR[p],

t =
p∑

i=1

aixt−i + �t. (1)

he order p, coefficients ai and dynamical Gaussian white noise
erm �t with zero-mean and variance �2

t can be chosen such that the
requency and second order properties, i.e. autocorrelation proper-
ies, model the second order properties of the EMG  except for the
iscontinuity at lag 0.

In the example of Fig. 1a, the tremor frequency was  5.59 Hz.
he parameters of a low order autoregressive process (p = 2) cap-

ures the main oscillation of the EMG  tremor signal for the process
arameters a1 = 1.9975 and a2 = −0.9987, and intrinsic noise vari-
nce �2 = 0 .052. The EMG  is modulated noise such that the noise
trength is roughly of the same order as the signal. In the model
e Methods 219 (2013) 285– 291 287

system (Eq. (1)) the modulated noise of the EMG  can be modelled
as

yt = xt + �t, �t∼N(0,  ˙2) (2)

by adding approximately 100% measurement noise with variance
˙2 = 302 to the AR[2] model data xt derived from Eq. (1). This cor-
responds to a 1:1 noise to signal ratio defined as the variance of the
measurement noise divided by the variance of the signal. The cor-
responding autocorrelation functions are shown in Fig. 2 for both
the EMG  (Fig. 2a) and the described AR[2] model (Fig. 2b). The qual-
itative agreement warrants usage of this simplified model for the
theoretical considerations.

2.2. Block-bootstrapping in the presence of noise

Block-bootstrapping is based on segmenting the data into inde-
pendent blocks of optimal length. The temporal correlation in a
stationary process is quantified by the autocorrelation function,

�� = E[xtxt+�]
Var[x]

, (3)

for time lags �, where Var[·] denotes the variance and E[·]  the
expected value of the respective zero-mean process. An estimate
of the autocorrelation function is

�̂� = 1
ˆVar[x]

1
N

N−�∑
t=1

xtxt+� . (4)

For exponentially mixing processes, as typically present in applica-
tions, the envelope of the autocorrelation function, Eq. (3), is of the
form �� . We  define the decay rate � : = exp(−1/�) < 1 where � is the
relaxation time or time constant of an exponential decay. For a cor-
rect statistics of the variance estimation, the optimal block length
(Peifer et al., 2005),

lopt =
[

N
(
∑∞

�=−∞|�|��)
2

(
∑∞

�=−∞��)
2

]1/3

, (5)

is a function of the decay rate �, leading to

lopt =
[

4N
(�/(1 − �)2)

2

(1 + 2(�/(1  − �)))2

]1/3

(6)

for non-overlapping blocks (Peifer et al., 2005).
As motivated by the EMG  and the AR[2] example (Fig. 2), noise

leads to a discontinuity of the autocorrelation function at � = 0. To
briefly discuss the reason for this discontinuity, consider an autore-
gressive process of order one, AR[1],

xt = axt−1 + �t. (7)

The autocorrelation function of this process with parameter |a| < 1,
for stationarity, and Gaussian white noise �t∼N(0,  �2) with zero-
mean and variance �2 is

�� = E[xtxt−�]
Var[x]

= E[a�xt−�xt−�]
Var[x]

= a�. (8)

Note that this process is not only exponentially mixing but there is
also an immediate link of the decay rate to the process parameter,
� = a.

Adding Gaussian measurement noise �t∼N(0,  ˙2) to the pro-
cess in Eq. (7) according to Eq. (2) the autocorrelation function
becomes ⎧

E[ytyt−�]

Var[y]
(2)=

⎨⎪⎩ Var[y]
+

Var[y]
if � = 0

E[xtxt−�]
Var[y]

else
(9)
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Fig. 3. Block length simulation for AR[1] with varying parameters a and noise to
signal ratios NSR. The colour encodes the block length, which was estimated fitting
the  model �� to the autocorrelation function. Block lengths are highly dependent
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Fig. 4. Block length simulation for AR[1] with varying parameters a and noise to
signal ratios as in Fig. 3. The colour encodes the block length, which was  esti-
mated fitting the model A�� to the autocorrelation function. Block lengths are not
dependent on the noise to signal ratio anymore. They only depend on the dynamical

is fit to the data. Eq. (11) is the dynamical equation, which models
the underlying process xt as an autoregressive process with param-
eters a1 and a2, and dynamical Gaussian white noise �t∼N(0,  �2)
with variance �2. Eq. (12) is the observation equation. It models the
n  the noise to signal ratio, no matter which parameter, block lengths become small
or  high noise to signal ratios. (For interpretation of the references to color in this
gure legend, the reader is referred to the web  version of this article.)

{
1 if � = 0
Var[x]
Var[y]

E[xtxt−�]
Var[x]

= Aa� else
(10)

ith A = [1 + (Var[�]/Var[x])]−1. Eqs. (9) and (10) make use of the
ndependence of measurement noise �t and the dynamics xt, such
hat Var[y] = Var[x] + Var[�]. The measurement noise contributes to
he autocorrelation function of the process at � = 0, but not at any

 > 0. Therefore, the autocorrelation function drops from time lag
 = 0 to � = 1 by a factor A, cf. Eq. (10), which depends on the noise to
ignal ratio, NSR=Var[�]/Var[x].  Consequently, the factor A has to be
ntroduced to model the decay properties, notably the discontinuity
t time lag � = 0. Such a discontinuity appears also in the autocorre-
ation function of the EMG  and the AR[2] with measurement noise
Fig. 2).

When fitting an exponential decay �� to the autocorrelation
unction in Eq. (10), the decay rate is estimated inadequately such
hat a systematic error occurs in the block length selection, cf. Eq.
6). In Fig. 3 the impact of the measurement noise on the block
ength estimation when assuming the autocorrelation function to
e �� = �� in Eq. (5) instead of A�� , as proposed by Eq. (10), is
hown for different process parameters a and different noise to
ignal ratios Var[�]

Var[x] . The optimal block length of the underlying pro-
ess x with respective parameters a = � is given for NSR = 0. Block
engths decay with increasing noise to signal ratio for all parame-
er values a. With measurement noise the optimal block length is
nderestimated.

To prevent this, the assumptions of the exponential decay have
o be modified, such that in the optimal block length equation the
utocorrelation function is modelled by A�� instead of �� . Anal-
gously to the optimal block length for non-overlapping blocks
erived in Peifer et al. (2005), the optimal block length is derived
rom Eq. (5) by inserting A�� instead of �� . Using �� = �−� and

 < 1 in the geometric series
∑∞

�=0�� = 1/(1 − �) and its deriva-

ive
∑∞

�=0���−1 = 1/(1 − �)2 leads to Eq. (6) as before. Note that
he term for � = 0 enters the geometric series. Therefore the optimal
lock length is estimated from the decay rate � only. The differ-
nce is that the autocorrelation function is modelled incorporating

he constant A such that the decay property � for � > 0 can be fit
orrectly. The factor A itself eliminates.

Fig. 4 shows the block lengths estimated based on this modifi-
ation. For all parameters a the obtained block lengths are, other
parameter a. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

than for the conventional method (Fig. 3), independent of the noise
influence. This independence of the block length from the noise to
signal ratio shows that the modification renders the block length
selection robust to noise influences.

In Figs. 3 and 4 the block lengths are colour coded based on the
noise to signal ratio and the parameter values of the processes. Both
figures show the median optimal block length of three realisations,
in order to remove outliers for robustness. Since a fit is not guaran-
teed to converge to the global optimum, but may  end in a local one,
non-optimal estimates of the envelope of the autocorrelation func-
tion may  occur. They result in outliers of the optimal block length.
Therefore, the median has been chosen to calculate the final opti-
mal  block length. We  want to stress that this is not an issue inherent
to the method proposed, but to every fit algorithm.

Two methods are conceivable in order to obtain the optimal
block length based on the decay properties of the autocorrelation
function. Either the decay rate � is fit to the envelope of the autocor-
relation function according to the model A�� as shown in Fig. 5 for
the tremor data. Alternatively, an autoregressive process of order
two (AR[2]) in the state space model (Honerkamp and Stüttgen,
2012),

xt = a1xt−1 + a2xt−2 + �t t = 1, . . .,  N, (11)

yt = xt + �t t = 1, . . .,  N, (12)
Fig. 5. Estimated autocorrelation function of EMG  data of a trembling patient (blue)
and the fit A�� of its envelope (black). It yields an optimal block length of lopt = 9143.
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easurement yt by the underlying process xt and additive measure-
ent noise �t∼N(0,  	2). Once the model (Eqs. (11) and (12)) is fit,

he decay rate can be derived from the parameters, as follows.
An AR[2] is linked to a damped harmonic oscillator with driv-

ng noise, when setting the parameters (Honerkamp and Stüttgen,
012)

1 = 2e−1/� cos
(

2


T

)
(13)

2 = −e−2/� , (14)

here � is the relaxation time and T is the period of the oscillator.
rom the relaxation time the decay rate � = exp(−1/�) can be deter-
ined. Given the parameter a2 of an AR[2] process, the decay rate

an be obtained from

 = √−a2. (15)

Once the decay rate is estimated, either by fitting A�� to the
utocorrelation function or by fitting an AR[2] and determining
he decay rate from the parameter a2, cf. Eq. (15), the bootstrap
s conduced as follows:

. Compute the optimal block length lopt for your statistic, e.g. for
the variance according to Eq. (6).

. Cut data into non-overlapping blocks of length lopt.

. Estimate the variable of interest, here the variance, from each
block separately, and from the whole set of data under investi-
gation.

. Randomly draw the estimated variable with replacement from
the ensemble of the blocks.

. Sample the distribution of the variable of interest from the ran-
dom draws.

. Compare the variable of interest derived from the whole set of
data, see 3., to the distribution sampled by the blocks.

Here, we sample the distribution by estimating the standard
eviation of blockwise variances from the random draws. From the
tandard deviation, confidence intervals are derived. If the quan-
iles of the distribution are needed, the distribution can be sampled
rom the bootstrap by building the histogram from the independent
raws of the bootstrap. Quantiles then can be estimated from the
istogram.

. Results

In order to illustrate the effect of noise on the choice of the opti-
al  block length, we simulated N = 308,960 samples of an AR[2], as

n Eqs. (11) and (12). The number of data points N and the parame-
ers ai were chosen such that the autoregressive process modelled
he EMG data of the tremor patient according to frequency, decay
roperties and noise to signal ratio (Appendix A). This yielded a
rue decay rate of the AR[2], � = 0.999364, and a respective optimal
lock length, lopt = 9143 data points according to Eq. (6).

To compare the performance of the proposed modification to
he conventional method, we compared the decay properties and
he resulting block lengths. From the two approaches proposed in
ection 2.2, we chose the first. Thus, instead of fitting an AR[2] to
he data as the second approach suggests, we fit an exponential
ecay to the envelope of the autocorrelation function. The latter
as estimated from the simulated AR[2] both without and with
easurement noise, i.e. xt and yt in Eqs. (11) and (12). For the results
f the conventional method the envelope of the estimated auto-
orrelation function was fit by �� . For the modification, the decay
as fit by A�� . The decay rates were used to estimate the optimal

lock lengths according to Eq. (6). Different settings, summarised
Fig. 6. Decay of estimated autocorrelation function (blue) and the estimate of its
envelope (black) without (top) and with (bottom) the proposed modification.

in Table 1, were investigated to compare the conventional method
to the proposed modification.

First, the optimal block length was  estimated from the adapted
fit of the estimated autocorrelation function of the simulated AR[2]
without measurement noise, i.e. xt in Eq. (11). The parameters of
the AR[2] were chosen as described in Appendix A, such that the
optimal block length was  known. This yielded a relative deviation
(|lopt − l̂opt|)/lopt = 4.2% of the true optimal block length lopt = 9143
data points to the estimated optimal block length l̂opt = 9527 data
points. The relative deviation is a measure of accuracy for the
adapted fit.

Second, the optimal block length was estimated from the mea-
surement yt (Eq. (12)), instead of xt. Adapted fitting yields a
relative deviation |lopt − l̂opt|/lopt = 2.5% of the estimated block
length l̂opt = 9357 data points to lopt. However, when ignoring
the modification, the relative deviation of the estimated optimal
block length, l̂opt = 5235 data points, to lopt is 42.7%. In Fig. 6 the
estimated autocorrelation function (blue) of the simulated autore-
gressive process yt with measurement noise as well as both the
unadapted (�� , Fig. 6a, black) and the adapted (A�� , Fig. 6b, black)
fits are shown.

To summarise, the relative deviation of estimated and true opti-
mal  block length of the AR[2] contaminated with measurement
noise is one order of magnitude higher for the conventional than for
the adapted method. In contrast, the relative deviations obtained
from the adapted fit of the estimated autocorrelation functions of
the measured signal yt and the one of the underlying process xt are
comparable.

Once optimal block lengths are derived, they can be used to
determine the confidence bounds of the estimated variance V̂ of
a signal. For this, the variance needs to be estimated on each block,
yielding V̂block. The standard deviation �̂V of the variance V̂ is esti-
mated by the standard deviation of randomly chosen blockwise
estimated variances V̂block.

In our simulation study the estimated variance of the AR[2] is
V̂ = 1638 (in a.u.). For the bootstrap, 20 independent choices of
the blockwise variances were drawn based on the optimal block
lengths estimated as above. Block lengths were estimated from the
underlying process (Table 1, row 1), from the measured process
with (Table 1, row 2) and without (Table 1, row 3) adaption of the

fit. The estimated standard deviation based on the optimal block
length according to the adapted fit was �̂V = 230 (in a.u.). The
relative deviation of the halfwidth of the 95% confidence interval
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Table  1
Simulation results of optimal block length selection based on a fit of the envelope of the estimated autocorrelation function of the underlying process xt (underlying, 1st
row),  adapted fitting of the autocorrelation function of the measured data yt (adapted, 2nd row) as proposed here, and the unadapted fitting results from the measured
data  yt (unadapted, 3rd row). Simulation results are the estimated block length l̂opt from the autocorrelation function fit, relative deviation (lopt − l̂opt)/lopt from the true

optimal  block length lopt = 9143, bootstrapped standard deviation of the variancê�Var,  and relative 1.96-fold standard deviation of variance to its absolute estimated variance

1.96 ˆ�Var/V̂ar. For comparability, the variance V̂ar is the variance of the process with measurement noise, even for the row of the underlying process. For the latter the
known measurement variance is added to the estimated underlying process variance. The 1.96-fold of the standard deviation constitutes the 95%-confidence interval about
the  estimated variance. The last column indicates (Eqs. (11) and (12)), whether the optimal block length was estimated from the autocorrelation function of the process
without  measurement noise xt or with measurement noise yt .

lopt = 9143 l̂opt (lopt − l̂opt)/lopt (%) V̂ar ̂� Var (1.96 ·̂� Var)/ V̂ar (%) Process

Underlying 9527 4.2 1642 230.1 27.5 xt

Adapted 9357 2.5 1638 217.9 26.1 y
1638 
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Unadapted 5235 42.7 

nd the estimated variance was 1.96�̂V/V̂ = 27.5%. The estimated
tandard deviation based on the optimal block length which was
erived from adapted fitting is in the same range: �̂V = 218 (in
.u.), with a similar relative deviation 1.96�̂V/V̂ = 26.1% as for the
rue optimal block length. However, the unadapted block length
election yields a 50% larger estimate of the standard deviation
V̂  = 348 (in a.u.) with a relative deviation 1.96�̂V/V̂ = 41.7%.
To test the power of the confidence bounds obtained by block-

ootstrapping, we compared them to the true variance. For an
R[2], the latter can be computed from the process parameters a1,
2, and the variances �2 and 	2 (Appendix B).

All confidence intervals obtained by block-bootstrapping
nclude the true value of the variance V = 1704 (in a.u.), but the

odification of the block length selection renders the confidence
nterval as small as possible.

As an example for the applicability of this method, the strength
f tremor is quantified by the variance of the EMG  recording. The
ptimal block length for the EMG  data was determined from the
dapted fit, see Fig. 5. For tremor patients, the variance of the EMG
s used as a measure of tremor strength. As for the simulated data,
he variance V̂ = 921 (in a.u.) was estimated from the data. The
tandard deviation �̂V = 142 (in a.u.) was estimated from block-
ootstrapping using the modified block length selection framework
roposed. This yielded an optimal block length of 9143 data points.
he relative halfwidth of a 95%-confidence interval to the estimated
ariance is 1.96�̂V/V̂ = 30.1%.

. Discussion and conclusion

We  proposed a crucial modification of the optimal block length
stimation in the framework of block-bootstrap when noise is
resent. Guided by an example of electromyographic (EMG) recor-
ings of a trembling tremor patient, we simulated the impact
f noise onto the statistics by autoregressive processes. This
nabled us to compare the true optimal block length to the esti-
ated (a) based on the unadapted block length selection and (b)

ased on our proposed modification. The adapted version is com-
arable to the true optimal block length while the unadapted
lock length selection deviates from the true block length by
lmost 50% in our simulation. As a second step we  compared the
erformances of the different block length selection algorithms
ith respect to the statistics. The adapted block length selection
ethod performs just as good as the true block length does. The

nadapted method is imprecise and leads to a 50% larger confidence
nterval.
The results are useful whenever the block length selection is
etermined by the decay properties of the autocorrelation func-
ion. This is commonly the case except for processes like fractional
aussian noise.
t

348.1 41.7 yt

The method can be applied for processes contaminated with any
noise that is independent of the process – even for coloured noise,
as e.g. in-band noise. Moreover, noise which is correlated to the pro-
cess can be treated, if the time-scale on which the autocorrelation
function of the noise decays is sufficiently small. For an oscillating
process, e.g., this time scale must be smaller than the period of the
process.

We propose two  approaches to derive the decay properties: (1)
The envelope of the autocorrelation function is fit by an exponential
decay A�� , with � < 1, and � > 0 the time lags. (2) The data is fit by an
AR[2] in the state space model. From the parameters of the process,
the decay rate � can be determined. For our results we used the
first approach. However, we used the idea of the second approach
to compare the results from our fit to the true parameters derived
from the process and its parameters.

From our simulations we conclude that the modification
improves the statistics tremendously and should be used when-
ever the decay of the autocorrelation function is used for the block
length selection.

In neuroscientific applications, often nonstationary processes
are investigated. Typically local stationarity is assumed, when
analysing these processes. The duration for which the process is
treated as stationary can be related to the typical time scale of
the process. Based on this time scale, i.e. the decay constant of
the autocorrelation function, the optimal block length is deter-
mined. If this block length is estimated to be in the order of the
duration during which the process is considered stationary, the
block-bootstrap based statistics cannot be meaningfully applied.
While other statistical tests, such as the t-test (Student, 1908)
would provide a potentially wrong result, the proposed method
of block-bootstrapping makes a reliable statement upon its appli-
cability.

Acknowledgement

We thank Bernhardt Hellwig and Florian Amtage for the tremor
data and the fruitful discussions.

Appendix A. Choice of simulation parameters

Autoregressive processes of order 2 (AR[2]) are the discrete ana-
logue to damped stochastic driven harmonic oscillators. Rewriting
the parameter Eqs. (13) and (14) to

a1 = � cos(2
f ) (A.1)

a2 = −�2 (A.2)
the parameters are linked to the frequency f = 1/T  as the inverse of
the period, and the decay rate � = e1/� as a function of the relaxation
constant �. For the first parameter a1, we chose the frequency f from
the tremor application. The frequency of the tremor was 5.59 Hz,
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hich corresponds to 0.01118 of the Nyquist frequency 500 Hz. The
ime scale of autoregressive processes is sample points. In order
o define a frequency, a reasonable assumption is to define one
ample as one second. This yields a sampling rate of 1 Hz and thus

 Nyquist frequency of 0.5 Hz. According to the tremor data, we
hose 2
f = 0.01118
 in Eq. (A.1).

To obtain the decay rate �, used for both the first and the sec-
nd autoregressive parameter, a1 (Eq. (A.1)) and a2 (Eq. (A.2)), we
t A�� to the estimated autocorrelation function (Eq. (4)) of the
MG-recording. This yielded � = 0.999364. These parameters were
sed as true parameters of the simulation studies based on autore-
ressive processes of order 2.

Finally, the variances of the intrinsic noise, �2, and measurement
oise, ˙2, respectively were chosen such that the noise to signal
atio matched the one observed from the EMG. This yielded the
ariances �2 = 0 .052 and ˙2 = 302.

ppendix B. Variance of AR[2]

The variance of an autoregressive process of order two (AR[2])
s

ar [x] = a2
1E[x2

j−1] + a2E[x2
j−2] + 2a1a2E[xj−1xj−2] + E[�2

j ] (B.1)

 a2
1Var[x] + a2Var[x] + 2a1a2E[xj−1xj−2] + �2, (B.2)

here ak, k = 1, 2 are the process parameters, �2 the noise variance,
nd

[xj−1xj−2] = a1E[x2
j−2] + a2E[xj−3xj−2] (B.3)

 a1Var[x] + a2E[xj−1xj−2] (B.4)

 E[xj−1xj−2] = a1

1 − a2
Var[x], (B.5)
he autocovariance function of lag � = 1. With Eq. (B.2), this yields

ar[x] − a2
1Var[x] − a2

2Var[x] − 2a1a2
a1

1 − a2
Var[x] = �2 (B.6)
e Methods 219 (2013) 285– 291 291

and after sorting,

Var[x] = �2

1 − a2
1 − a2

2 − 2(a2
1a2/1 − a2)

. (B.7)
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