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. Abstract. We investigate physiological, essential and
- parkinsonian hand tremor measured by the acceleration
- of the streched hand. Methods from the theory of
~ dynamical systems and from stochastics are used. It
| turns out that the physiological tremor can be described
- as a linear stochastic process, and that the parkinsonian

tremor is nonlinear and deterministic, even chaotic. The
essential tremor adopts a middle position, it is nonlin-
ear and stochastic.

"1 Introduction

Tremor time series are usually analyzed by estimating
the power spectrum. Such an analysis of the power
spectrum is well established for any kind of time series
if they can be considered as stationary. The analysis
determines the dominant periodicities, but there are
many other features that describe a time series and may
hence serve as a characterization of tremor.

Within the general context of time series analysis
one distinguishes between deterministic and stochastic
processes. A deterministic process can be described by a
mathematical equation which determines a value of a
quantity by previous values. For such processes the
future behavior can be predicted in principle com-
pletely. There are, however, systems for which this is
impossible in practice, these deterministic processes are
called chaotic. Their specific property is their sensitivity
to small influences: if one considers two time series of
such a process which may be identical up to a certain
time and, if one changes the value of one time series by
an arbitrary small amount, then in the future the two
time series will differ more and more. The difference of

the time series can be shown to increase locally expo-
“nentially, and time series recorded from chaotic pro-
| cesses show always irregular behavior. Hence, because
in reality any system is measurable only with finite

| precision, chaotic processes are unpredictable in spite of
- being deterministic.

Besides the deterministic approach in describing
phenomena in nature there is the stochastic ansatz. This
is motivated by the idea, that most systems in nature,
which are complex enough, are always exposed to so
many uncontrollable influences that a mathematical
equation for the dynamics of the system ought to
contain random quantities. Random variables in math-
ematical context are not completely arbitrary but are
characterized by a distribution, so that the characteris-
tic features of the random variables determine the kind
of the external influence. Because of the random char-
acter each realization, i.e. recorded time series, of a
stochastic process looks different.

Given a time series that shows irregular behavior as
€.g. any tremor time series, it is not possible to decide by
visual inspection whether the underlying process should
be described by a deterministic or a stochastic equation.
Such a decision can only be made after a mathematical
analysis of the data. An application of such a test to
tremor time series is the first topic of this paper.

There is another distinction that can be made for
processes, either deterministic or stochastic ones. This
distinction concerns the nature of the mathematical
equation and therefore is a bit more abstract. The value
of the measured quantity may depend linearly or non-
linearly on previous values (and on some random num-
bers if the process is stochastic). This form of
dependence affects the appearance of the time series
and therefore it should be somehow detectable. This is
the second topic of this paper. We applied a test of
linearity to tremor time series.

These two investigations, the analysis on stochastic-
ity, and the test on linearity do not only provide a
characterization of the time series, the finding that a
time series can be considered as a realization of a linear
stochastic process will open the possibility to a much
more detailed description of the dynamics of the pro-
cess. The theory of linear stochastic processes is well
established as well as the methods to identify the pro-
cess from a given time series.

It will turn out that the time series from persons
with physiological tremor can be recognized as realiza-
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tions of a linear stochastic process and therfore these
time series can be analyzed in detail.

The time series of parkinson patients on the other
side are identified as signals of chaotic systems, which
are nonlinear and deterministic. Because methods for
analyzing the dynamics of such nonlinear systems are
not yet developed we must be satisfied with calculating
the correlation dimension and the Lyapunov exponents
of such signals.

Finally the essential tremor will adopt a position in
the middle between the two extremes, the physiological
and the parkinsonian tremor. It corresponds to a non-
linear stochastic system, which up to now can not be
analyzed further.

The paper is organized as follows. In Sect. 2 the
data material is described. Section 3 is devoted to a
brief description of the methods, without going too
much into mathematical detail. In Sect. 4 the results
are reported.

2 The data

The time series are recordings of the acceleration of a
hand. The sampling rate is 300 Hz. The hand is
stretched out and either unloaded or loaded with
weights of 500 g or 1000 g. The length of the recording
is about 35s so that 10240 data points were obtained.

The measurements were obtained from persons,
who exhibit physiological tremor (normal persons) and
persons with clinically diagnosed essential or parkinso-
nian tremor. The time series were recorded at the
Neurologische Universitatsklinik of Freiburg and the
data were kindly made available to us by Professors
Liicking and Deuschl. Examples of the time series to be
analyzed are shown in Fig. la—c.

The data are contaminated with noise produced by
the electronics. Because the variance of the noise is
constant, the signal-to-noise ratio depends on the vari-
ance of signal. In case of the physiological tremor,
which shows the lowest variance among the kinds of
tremor, the noise contributes up to 30% of the variance
of the observed time series.

3 The methods

In this section we will briefly report the three methods
we have applied to the tremor time series. The first
method, the calculation of the correlation dimension,
which provides a test on stochasticity, originates from
the theory of chaotic systems, whereas the other two
belong to the field of stochastics and are used in the
time series analysis of stochastic signals.

3.1 Correlation dimension

By calculating the correlation dimension one is enabled
to decide whether a time series is generated by a dy-
namics with a few or with many degrees of freedom. In
the first case the dynamics is called low dimensional
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Fig. 1. Acceleration of the hand in case of physiological tremor (8);
essential tremor (b) and parkinsonian tremor (c)
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and the time series originates from a deterministic
system. It is then possible to distinguish between regu-

- lar (i.e. periodic) and chaotic dynamic, because a regu-
. lar  dynamics
. dimension, whereas a chaotic dynamics results in a
~ noninteger correlation dimension. In case of many de-

results in an integer correlation

grees of freedom it is adequate to model the time series
by a stochastic process, for stochastic processes have an

~ infinite number of degrees of freedom.

The correlation dimension provides an upper bound

- for the number of variables to describe the dynamics of
| the time series. For systems with a dimension of # there
| exists a representation by 2n variables,

In order to calculate the correlation dimension in-

- troduced by Grassberger and Procaccia (Grassberger
- and Procaccia 1983a, b), it is necessary to reconstruct
. the trajectory in phase space from the one dimen-
~ sional time series (x,,¢#=1,..., N). Following Takens
. (1981) this reconstruction is obtained by forming the
i vector X(7):

"xt-#(nfl).r), (l)

 with an appropriate delay time t.

The correlation dimension D is defined by:

e In(C()

D= ey )
with

1 X

| CO) = lim — Z] o — [x(i) — x(j))) . (3)

L=

' The resulting dimension does not depend on the norm

|| chosen. For computational reasons we choose the

- maximum norm. C(r) is called correlation integral and
 is estimated by:

N
Cn(r) =0 z @(r-k Omax ) |xi+k1—xj+kr |) . (4)
Lj=1 = n—

i#j

The dimension is calculated in a range of r, where the
- following scaling law holds:

} In(C,(r)) = D - In(r) + const . (5)

There are two main limitations for this procedure.

One consists in the finite number of available data
L points, which determines an upper bound of the obtain-
E able correlation dimension (Ruelle 1990) and gives a

Testriction to the accuracy of the estimated value

E (Nerenberg and Essex 1990). The other is given by the
| noise, that causes the correlation integrals to behave for
| small values of r as if they were estimated from a pure

 Stochastic time series. If a deterministic process is con-

 taminated by such an amount of noise, that no range of

I exists, where (5) holds, no finite correlation dimension

can be obtained and the system is also considered as
stochastic.
An additional feature to describe deterministic pro-

Cesses is given by the Lyapunov exponents. They quan-
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tify the mean local divergence of nearby trajectories. In
case of regular systems they all are less or equal to zero.
For chaotic systems at least one of them is positive. For
calculating the exponents we used the algorithm devel-
oped by Eckmann and Ruelle (1985).

3.2 Test for linearity

As a linear dynamics we consider here the linear state
space model. This class of models includes the so called
ARMA-processes, but also enables us to model an
additive gaussian observational noise, as produced by
measurement electronics.

The wellknown power spectrum f(w) is given by
the Fourier transform of the autocorrelation function

(D),
() = (x, = <xD) (x50 — <xD)D (6)

1 oo}
f@)=o— ¥ o) exp(—i(w - 1)). (M

1= — o0
Here {x) denotes the expectation of the random
variable x. Since the spectrum is only related to second
moments, it is not sensitive to a possible nonlinearity of
the dynamics. As an extension of the power spectrum
the bispectrum f(w,, ®,) is defined by the Fourier
transform of the triple correlations c(t,, 1,):

oty 1) =<{(x, = {x)) (xr+11 —<x)) - (xl+lz —<x>)>

(8)
1 ® ©
f(wlswz)’zﬂ' _Z; _Z, c(t, ty)
cexp(—i(@; - t; + w, . 1)) 9

In case of a process with a linear dynamics which
is driven by gaussian noise it can be shown that the
triple correlations and hence the bispectrum is zero.
Subba Rao and Gabr (1980) developed a statistical
test that decides whether the estimated bispectrum is
consistent with the hypothesis of the bispectrum being
zero.

The main assumption for the derivation of the
statistic in case of the null hypothesis of linearity is that
the variance of the bispectrum depends only weakly on
the frequencies. To justify the application of the test we
tested the statistics of the zero hypothesis by Monte-
Carlo simulations. The data for these simulations were
obtained from models that show the same power spec-
trum and therefore exhibit the same variance of the
bispectrum (Brillinger 1981) as the time series of the
phsyiological tremor.

Another assumption is that the driving noise of the
process is gaussian. If the time scale of the physical
process, that produces the noise, is small compared
with the sampling time, the noise is averaged and
therefore it becomes gaussian distributed on the time
scale of the sampling. Since we assume the signal of the
motor neurons to be the source of the noise this as-
sumption is satisfied.

Thus this test provides a reliable method to detect
deviations from linearity.
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3.3 Time series analysis by state space models

The linear state space model consists of a hidden multi-
variate AR[1]-process x, that is observed via a matrix
C. The observation y, is disturbed by an additive noise
n,. Hence the equations of dynamics read:

X, =AX, | +¢€
Y =Cx, +1, (10)

We assume that the random variables representing the
noise are normally distributed with mean zero and
variances:

<€r€t7’.> = Q ’ 51‘ v
('7:’7:') =R 5r, v

This model enables us to treat the additive noise of
the electronics explicitly by #,. In case of fitting a pure
AR-process such an additive noise would cause arte-
facts. The dynamics of the system are given by the
multivariate AR[1]-process that can be interpreted as a
system of linear damped oscillators and linear relax-
ators driven by the noise €,. The frequencies v and
relaxation times t of this oscillators resp. relaxators are
given by the eigenvalues A; of the matrix A4:

7, = —2/In(]4;]) (11)
v = arctan( ;((i‘,))> , (12)

where 3(A) denotes the imaginary part and R(4) the
real part of the complex eigenvalue A.

Since the noise is gaussian and the model is linear
the likelihood can be formulated explicitly. This expres-
sion depends nonlinearly on the parameters 4, Q, C, R
so that the maximum likelihood estimators have to
be calculated numerically. For reasons of numerical
stability we used an EM-algorithm (Shumway and
Stoffer 1983).

To test the adequacy of the fitted model we analyze
the errors of one-step predictions. The time series of
this errors is tested for white noise by the Komogorov-
Smirnov test (Brockwell and Davis 1987).

The obtained models were used to produce the data
in the above described Monte-Carlo simulations refer-
ring to the bispectrum.

4 The results

4.1 Physiological tremor

The calculation of the correlation dimension in case of
physiological tremor shows that the dynamics are
stochastic.

The test of the bispectrum has been restricted to a
range of frequencies between 3 Hz and 9 Hz. In this
range almost all of the variance of the process is located
(applying the test up to higher frequencies would only
test the noise of the electronics). The bispectrum is
assumed to be sufficiently constant within a range of
0.5 Hz. Taking these parameter Monte-Carlo simula-

o

tions show no deviation from the theoretically calcu-
lated statistics.

The test establishes the result that the bispectrum of
this class of time series is consistent with zero. This
justifies the hypothesis that the dynamics are linear and
thus also excludes the possibility of the dynamics being
chaotic. Hence we try to model the time series by a
linear state space model according to (10).

In most cases a state space model with a two
dimensional hidden AR[1]-process is successful, judged
by the whiteness of the prediction errors. By (11) and
(12) the estimated parameters can be interpreted as a
linear damped oscillator driven by noise. This mathe-
matical model can be translated into medical terms:
the mechanical system of the hand forms a damped
oscillator and the noise is equivalent to the uncorrelated
activated motoneurons. The power spectra of the time
series are in good agreement with the power spectra
calculated analytically from the parameters of the
models (Fig. 2).

If the hand is loaded with weights of 500 g resp.
1000 g, the period of the resulting physiological tremor
is proportional to the square root of the loaded weights
(Elble 1986). This relationship is reproduced by
our fitted models with periods calculated following
(12) (Fig. 3).

In some cases a four dimensional model corre-
sponding to a system of two oscillators was necessary
to describe the data adequately. In contrast to the
above mentioned time series the spectra of these data
show a different behavior under increasing the load
weights. While the former consists in one peak moving
under loading, the latter exhibit a splitting of the peak
into one small stationary peak and one moving as in
the former case. Because of this behavior the moving

10'%
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Fig. 2. Power spectrum in case of physiological tremor (dotted),
power spectrum of the corresponding state space model (solid)
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Fig. 3. Periodicities calculated from state space models fitted to
physiological tremor in dependence on the weight loaded on the hand

peak is called motoric peak and the stationary peak is
called synchronisation peak.

4.2 Parkinsonian tremor

The correlation dimension of parkinsonian tremor is
proven to be finite and noninteger so that the dynamics
is regarded as deterministic chaos. The calculation of
the Lyapunov exponents supports this result because
one of them is always positive.

Five of eight time series under consideration show a
low correlation dimension from minimum 1.4 + 0.1 to
maximum 1.6 + 0.1. The delay time 7 in (1) was chosen
to be 1/150 s. In these cases a large enough range was
found where the relation (5) holds. For small values of
r the behavior of the correlation integral is dominated
by the noise (Fig. 4). For the remaining three time
series the noise was too strong to obtain a finite correla-
tion dimension.

The calculation of the Lyapunov exponents is a bit
critical for technical reasons. The obtained values de-
pend sensitively on the parameters for the reconstruc-
tion of the trajectory (1). In spite of these diffi-
culties one comes to the result that for each of the
above mentioned five time series with reasonable
chosen parameters always one Lyapunov exponent is
positive (Fig. 5).

4.3 Essential tremor

. The power spectrum of the essential tremor exhibits not
. only the motoric peak known from physiological
| tremor but also a strong synchronisation peak (Elble

1986). The motoric peak in case of physiological tremor
is recognised as caused by a linear stochastic process.

- Therefore the essential tremor is expected to include a

strong stochastic component.
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Fig. 4. The slope of the logarithm of the correlation integrals C,(r)
vs. In(r) for data from a parkinsonian tremor. Curves are shown for
n=2,3, 4, 5 If the slope exhibits a plateau the value of the slope
gives the correlation dimension. In this case we obtain a value of 1.6.
The raise of the slope for small values of r is caused by noise
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Fig. 5. The Lyapunov exponents calculated from a time series of a
parkinsonian tremor for different embedding dimension. The delay
time 1 is 4At corresponding to 1/75s

Because of this stochastic contribution of the
motoric peak it was not possible to decide whether the
synchronisation peak is governed by a deterministic
dynamics or not. A typical result of estimating the
correlation integral is shown in Fig. 6.

In contrast to the physiological tremor the test of
the bispectrum in most cases rejects the hypothesis of
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Fig. 6. The slope of the logarithm of the correlation integrals C,(r)
vs. In(r) for data from essential tremor with n = 2, 3, 4, 5. The slope
exhibits no plateau. Therefore no finite correlation dimension can be
obtained

zero bispectrum. From this we may infer that the data
are caused by a nonlinear dynamics.

S Summary

We applied methods from stochastics and from the
theory of dynamical systems to investigate physiologi-
cal, essential and parkinsonian hand tremor, measured
by the acceleration of the stretched hand.

By fitting linear state space models the physiological
tremor could be identified as a linear damped oscillator
driven by white noise. In some cases two such oscilla-
tors were neccessary to describe the data sufficiently.
The linearity of the dynamics was proven by a statisti-
cal test on the bispectrum.

—1

In contrast to the stochastic and linear dynamicg
of the physiological tremor the parkinsonian tremor
was recognized as a deterministic system with a nop.
linear dynamics. This result was obtained by a calcula-
tion of the correlation dimension that turned out to be
finite and noninteger. The estimation of the Lyapunoy
exponents supports this result.

In the case of essential tremor a finite correla-
tion dimension was not obtainable. The test of the
bispectrum suggests the postulation of a nonlinear
dynamics.
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Abstract. Courtship songs produced by Drosophila
males — wild-type, plus the cacophony and dissonance
behavioral mutants — were examined with the aid of
newly developed strategies for adaptive acoustic analy-
sis and classification. This system used several tech-
niques involving artificial neural networks (a.k.a.
parallel distributed processing), including learned vec-
tor quantization of signals and non-linear adaption
(back-propagation) of data analysis. “Pulse” song from
several individual wild-type and mutant males were first
vector-quantized according to their frequency spectra.

The accumulated quantized data of this kind, for a

given song, were then used to “teach” or adapt a
multiple-layered feedforward artificial neural network,
which classified that song according to its original
genotype. Results are presented on the performance of
the final adapted system when faced with novel test
data and on acoustic features the system decides upon
for predicting the song-mutant genotype in question.
The potential applications and extensions of this new
system are discussed, including how it could be used to
screen for courtship mutants, search novel behavior
patterns or cause-and-effect relationships associated
with reproduction, compress these kinds of data for
digital storage, and analyze Drosophila behavior be-
yond the case of courtship song.

1 Introduction

With our growing understanding of the cellular basis of

. behavior and the advent of newer, more powerful tech-
. niques for neurophysiological and molecular analyses,
| animal behavior is being increasingly elucidated at the
. cellular and subcellular levels. However, a major
. difficulty in the investigation of behavior is the require-

. * Current address: System and Technologies Division, Bolt, Beranek,
. and Newman, Inc, Cambridge, MA 02138, USA

** Current address: Department of Cell Biology, Baylor College of
Medicine, Houston, TX 77030, USA

ment to integrate, for a given analysis, a large number
of observable variables (internal as well as external)
whose relation to one another is not necessarily under-
stood. Conventional multivariate statistical approaches
(e.g., Bayesian prediction) suffer from their dependence
on large sample numbers and from their limitations on
non-normally distributed data whose variables may ex-
hibit non-linearities. This constraint precludes the use of
general analytic techniques for the study of complex
behaviors.

On the other hand, artificial neural networks (ANN)
have successfully been used for studying such kinds of
multivariate problems. Applications in which ANN tech-
niques have proven useful include sonar classification
(Gorman and Sejnowski 1988), speech synthesis (Rosen-
berg and Sejnowski 1987), machine-based visual recogni-
tion (Fukushima et al. 1983; Menon and Heinemann
1988), control systems (Miyamoto et al. 1988), optimiza-
tion and decision-making (Hopfield and Tank 1985),
medical diagnoses (Bounds et al. 1990), RNA splice-site
recognition (Brunak et al. 1990), climate prediction (Hu
1964; Rogers 1989), jet engine performance (Dietz et al.
1989), and economic phenomena (Werbos 1984, 1988).
Theirony is that although ANN are inspired and partially
derived from biological nervous systems, they have not
yet been extensively applied to the study of animal
behavior. We describe in this paper a self-learning system
which we have developed to analyze and classify the
courtship songs of Drosophila males.

Courtship is one of the best studied Drosophila
behaviors (reviews: Spieth 1974; Ewing 1983; Tompkins
1984); and because it has a tractable number of behavior
components (e.g. Hall 1986), it is ideal for comprehen-
sive quantitative and comparative analyses (e.g., Cook
1979, 1980; Markow and Hanson 1981). Several of these
courtship elements define differences among various
species of Drosophila (e.g., Cowling and Burnet 1981;
Wheeler et al. 1988; Hoy et al. 1988).

We have been investigating the genetic and neural
mechanisms underlying courtship as well as the adap-
tive significance of this behavior (e.g. Hall 1979;
Schilcher and Hall 1979; Greenspan et al. 1980; Siegel

_




