
Systems biology

Fast integration-based prediction bands for

ordinary differential equation models

Helge Hass1,*, Clemens Kreutz1, Jens Timmer1,2 and Daniel Kaschek1

1Institute of Physics, University of Freiburg and 2BIOSS Centre for Biological Signalling Studies, University of

Freiburg, Freiburg im Breisgau, Germany

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on 22 July 2015; revised on 26 November 2015; accepted on 14 December 2015

Abstract

Motivation: To gain a deeper understanding of biological processes and their relevance in disease,

mathematical models are built upon experimental data. Uncertainty in the data leads to uncertainties

of the model’s parameters and in turn to uncertainties of predictions. Mechanistic dynamic models of

biochemical networks are frequently based on nonlinear differential equation systems and feature

a large number of parameters, sparse observations of the model components and lack of information

in the available data. Due to the curse of dimensionality, classical and sampling approaches

propagating parameter uncertainties to predictions are hardly feasible and insufficient. However, for

experimental design and to discriminate between competing models, prediction and confidence

bands are essential. To circumvent the hurdles of the former methods, an approach to calculate a

profile likelihood on arbitrary observations for a specific time point has been introduced, which pro-

vides accurate confidence and prediction intervals for nonlinear models and is computationally feasible

for high-dimensional models.

Results: In this article, reliable and smooth point-wise prediction and confidence bands to assess

the model’s uncertainty on the whole time-course are achieved via explicit integration with elabor-

ate correction mechanisms. The corresponding system of ordinary differential equations is derived

and tested on three established models for cellular signalling. An efficiency analysis is performed

to illustrate the computational benefit compared with repeated profile likelihood calculations at

multiple time points.

Availability and implementation: The integration framework and the examples used in this article

are provided with the software package Data2Dynamics, which is based on MATLAB and freely

available at http://www.data2dynamics.org.

Contact: helge.hass@fdm.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One major task in Systems Biology is to infer knowledge about biolo-

gical processes via mathematical representations of the underlying

biochemical reactions. At the beginning, information given in experi-

mental data is exploited to build a suitable model, either biology-

driven or by reverse-engineering algorithms (Hecker et al., 2009;

Karlebach and Shamir, 2008). An important step of this process is the

model selection. For this purpose, reliable confidence intervals on the

models of choice are crucial. Subsequently, predictions about the

models’ unobserved components or extrapolation to different experi-

mental conditions are desired. In Systems Biology, mechanistic mod-

els based on ordinary differential equations (ODEs), i.e. where each

model component has a biological process as counterpart, are fre-

quently used to describe the dynamics of biological interactions.

Thus, calculation of confidence intervals typically has to deal with

nonlinear, stiff ODE systems with a large number of parameters and
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sparse observations of the model components. In the case of linear

models, propagation of uncertainties is well studied. Yet, in ODEs,

parameter transformations to link the model responses linearly to its

parameters are in general not achievable. As a consequence, the clas-

sical approach based on Fisher-information (Fisher, 1912; Sachs,

1984) is insufficient. Alternatively, sampling approaches like Markov

chain Monte Carlo (Gilks, 2005) can be applied to infer knowledge

about the model behaviour through dense sampling of the parameter

subspace which is in agreement with the measured data. Nevertheless,

a dense sampling is not feasible for high-dimensional spaces, known

as curse of dimensionality (Scott, 2009). In addition, prior informa-

tion which is essential for some sampling methods is normally not

given in the context of biochemical models, which often results in a

weakly confined parameter space from which samples have to be

taken.

To remedy these deficiencies, the validation and prediction profile

likelihood for arbitrary model observables have been introduced in

Kreutz et al. (2012), based on theoretical foundations made in Hinkley

(1979) and Bjornstad (1990). While the prediction profile likelihood

determines confidence intervals on the model response, the validation

profile likelihood includes the noise of a potential validation measure-

ment. Both are generated without sampling of a high-dimensional

space. Instead, the one-dimensional model prediction space is evaluated

and parameters are computed via penalized maximum likelihood esti-

mation. Thereby, an efficient and reliable propagation of uncertainties

from the experimental data to the model response is accomplished and

predictions as well as confidence intervals are attained.

In this study, we exploit that prediction intervals (PIs) for differ-

ent time points are connected through an implicit function. This en-

ables us to calculate a fast approximation of point-wise prediction

bands (PBs) for a certain confidence level. The term point-wise will

be omitted from here on. To obtain PBs, a system of ODEs for the

time propagation of a specified point on the validation profile will

be derived and a dedicated explicit integration scheme is applied to-

gether with elaborate correction mechanisms. In contrast to PBs,

which includes the uncertainty of an additional measurement (Hahn

and Nelson, 1973), point-wise confidence bands (CBs) represent the

uncertainty of the current model, only. To deduce the latter, PBs can

be calculated for the limit case of a decreasing uncertainty of the

additional measurement, r! 0 (Powell, 1970). The presented

method is tested and verified on three established models for cellular

signalling, published in Raia et al. (2011), Swameye et al. (2003)

and Bachmann et al. (2011).

2 Methods

2.1 Profile likelihood and validation profiles
Biochemical components in a reaction network can be described by

ODEs

_xðt; uðtÞ; hÞ ¼ f ðxðtÞ;uðtÞ; hÞ: (1)

Thereby, the time evolution of the concentrations of the molecular

compounds is given through integration of Equation (1). The internal

model state xðt;uðtÞ; hÞ can depend on an external, time-dependent

input function u(t). In addition, it is dependent on dynamic and initial

value parameters, which are comprised in h together with observa-

tional parameters. Further, the model response gðxðt; uðtÞ; hÞ; hÞ links

the internal state to observed data y(t) via

yðtÞ ¼ gðxðt;uðtÞ; hÞ; hÞ þ �ðtÞ; (2)

where additive Gaussian errors � � Nð0; r2Þ are assumed.

To assess the discrepancy between model and experimental data,

the scaled log-likelihood can be calculated through

�2logðLÞ ¼ v2ðhÞ ¼
X

i

yi � gðxðti; uðtiÞ; hÞ; hÞ
ri

� �2

þ const:; (3)

further denoted as v2ðhÞ. Except for a constant, Equation (3) is

equivalent to a least-squares function. In the maximum likelihood es-

timation framework, the estimated parameters ĥ are determined by

v2ðĥÞ ¼ min
h

X
i

yi � gðxðti; uðtiÞ; hÞ; hÞ
ri

� �2

: (4)

Further information on the integrator and optimization routines

used in this article can be found in Supplementary Section S1.

An accurate confidence interval for a parameter of interest can

be deduced with the profile likelihood approach of Venzon and

Moolgavkar (1988) through

PLðhjÞ ¼ min
hi 6¼j

v2ðhÞ: (5)

The confidence interval to a given confidence level a spans all

values of hj with PLðhjÞ below a threshold given by the a-quantile of

a v2-distribution with one degree of freedom, denoted by icdf ðv2
1;aÞ:

CIhj ;a ¼ hj j PLðhjÞ � v2ðĥÞ þ icdf ðv2
1;aÞ

n o
: (6)

For weak assumptions (Feder, 1968), e.g. for a high amount of

informative data, ð1� aÞ specifies the probability that, for repeated

experiments, the true value of hj lies within the boundaries of the

confidence interval.

If a flat profile is observed for a parameter, it indicates a structural

non-identifiability, meaning that either no information about the re-

spective parameter is given in the measurements, or that other param-

eters can fully compensate for changes in the model response arising by

fixation of the parameter of interest (Merkt et al., 2015). Besides, a

profile likelihood which exceeds the threshold icdf ðv2
1;aÞ in maximal

one parameter direction is called practically non-identifiable (Raue

et al., 2009), indicating that the information within the data is not suf-

ficient to restrict the parameter to a finite confidence interval. With

additional information provided through measurements or through

model reduction, practical non-identifiabilities can be resolved.

In Kreutz et al. (2012), profile likelihood-based confidence inter-

vals and their computation have been generalized to confidence and

prediction intervals for arbitrary observables. For its calculation, an

auxiliary data point zs with standard deviation ~r is added to the log-

likelihood at time-point s and observable gz by the algorithm.

Since no experimental data are necessary for the observable of

interest, gz, it allows for computation of PIs on new experimental con-

ditions or previously non-observed model components. The extended

v2 then reads

v2ðh; zsÞ ¼
X

i

yi � gðxðti; uðtiÞ; hÞ; hÞ
ri

� �2

þ zs � gzðxðs; uðsÞ; hÞ; hÞ
~r

� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Contribution of auxiliary data point¼~v2ðh;zsÞ

(7)

and the estimation for the validation profile likelihood is given by

VPLðzsÞ ¼ min
h

v2ðh; zsÞ (8)

with optimized parameter set ~h, which is now optimized for both

the measurements y and the fixed auxiliary data point zs. Thereby,
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zs can be interpreted as a parameter for which a PI can be computed.

The PI

PIgz ;a;zs ¼ zs j VPLðzsÞ � min
z

VPLðzsÞ þ icdf ðv2
1;aÞ

� �
(9)

reflects the expectation that a validation experiment lies within a

given confidence level a. In accordance with the parameter profile

likelihood described above, flat validation profiles or ones that do

not exceed the threshold in both directions are called structural or

practical non-observable, respectively. As zs can be interpreted as

parameter of VPLðzsÞ, structural or practical non-observability

arises if an adapted h can alter the model response for observable gz

while preserving the v2 value or keeping it below the threshold set

by a in at least one direction.

On the contrary, the confidence interval represents a prognosis

of the current model structure and parameter calibration, without

noise of an additional measurement. Thus, the auxiliary data point

zs can be substituted by a model constraint gzðxðs; uðsÞ; hÞ; hÞ � zs.

Alternatively and to avoid the challenging task of constrained opti-

mization (Nocedal and Wright, 2006), the limiting case ~r! 0 can

be used to calculate the prediction profile likelihood (Powell, 1970),

as outlined in Kreutz et al. (2012).

2.2 Integration method for PBs
Based on the validation profile likelihood, PBs can be deduced via

calculation of PIs for multiple time points, linked through e.g. a

smoothing spline (De Boor, 1978). To compute them more accur-

ately and efficiently, an integration method is derived in this study.

For the integration, the auxiliary data point zs at the threshold of a

specified confidence level a, determined by Equation (9), serves as

starting point. It is treated explicitly time dependent. For given con-

fidence level a and time s, a unique upper and lower time-course of z

ðsÞ with corresponding ~hðsÞ constitutes the PBs . To obtain PBs for a

specified confidence level a, the corresponding v2-level sets a con-

straint for the integration. Further, the parameters are supposed to

satisfy the optimality condition of Equation (8). This leads to

v2ð~hðsÞ; zðsÞÞ ¼ min
z

VPLðzðsÞÞ þ icdf ðv2
1;aÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼const:

; rhv
2ð~hðsÞ; zðsÞÞ ¼ 0:

(10)

Equation (10) cannot be resolved for the desired quantity zðsÞ
analytically. However, its derivative and the corresponding change

in the optimized model parameters ~h can be computed via the impli-

cit function theorem. As shown in Supplementary Section S2, after

differentiation of Equation (10) with respect to s, the following set

of differential equations is obtained:

d

ds
z ¼ f ðxðsÞ; uðsÞ; ~hðsÞÞ; (11a)

d

ds
~h ¼ H�1 2½zðsÞ � gzðxðs;uðsÞ; ~hðsÞÞ; ~hðsÞÞ�

~r2

 !
� @gz

@x

@

@s
@x

@h

����
~hðsÞ
:

(11b)

The system of differential equations can be solved in forward dir-

ection as well as in backward direction after the transformation

s! �s, which helps to reveal partial non-observabilities as dis-

cussed in more detail in Section 3.1.

The Hessian matrix in Equation (11b) is given by

H ¼ r>h rhv
2ð~hðsÞ; zðsÞÞ; (12)

whereby second derivatives are omitted due to their expensive nu-

merical computation. In addition, the influence of the term with se-

cond derivative can destabilize the optimization process, since the

approximation is strictly positive definite (Press et al., 1996).

2.3 Explicit integration and correction mechanisms
Systems of ODEs describing biochemical reactions are in general

stiff, thus they require an implicit integration scheme. Yet, these

need the Jacobian of the right-hand side of the ODE system, which

is in this case composed of first derivatives of the underlying mech-

anistic model. For that reason, exact second derivatives would be ne-

cessary for an implicit integration of Equations (11) (Terms

including third derivatives would emerge if the correct Hessian is

utilised, but are dropped in the approximation of Equation (12)),

but are computationally too expensive. Thus, explicit integration via

the Runge–Kutta scheme of fourth-order (Butcher, 1963) with elab-

orate correction mechanisms is executed. The stiffness of the ODE

system of Equations (11) rules out integrators with adaptive step-

size as well, because the chosen step size quickly approaches 0. To

compensate for mis-specifications made in Equation (12) and to

overcome integration artefacts due to the explicit integration, the

appendage

d

ds
~hc ¼ �H�1crv2j~hðsÞ (13)

is added to d
ds

~h in Equation (11b) as self-correction term (Chen and

Jennrich, 2002). For c ¼ 1, Equation (13) represents a gradient des-

cent approach. The correction strength c is adjusted throughout the

integration by comparison of the vector norm between the suggested

correction and the uncorrected step:

c ¼

c=2 if
k _~hc¼0k
k _~hck

< 2;

c� 2 if
k _~hc¼0k
k _~hck

> 10;

c else:

8>>>>>>>>>><
>>>>>>>>>>:

(14)

Still, the explicit integration scheme can lead to a v2 value outside

of the chosen confidence level and the parameter set after an integra-

tion step can be off its minimum. An additional correction to the ex-

plicit integration steps can take advantage of the fact that the desired

v2 value is known beforehand and is to be satisfied within close

bounds throughout the integration. In every step of a correction, the

present v2 value and its optimized parameters are obtained via con-

strained optimization of the likelihood given the auxiliary data point.

If the current v2 value leaves the interval ½icdf ðv2
1;aÞ; icdf ðv2

1;aþ0:01Þ�,
the auxiliary data point is interpolated by a quadratic fit between the

two points defined by the best fit v2ðĥÞ and the current auxiliary data

point with its corresponding v2 value. If the re-optimized value re-

mains outside of the ½icdf ðv2
1;aÞ; icdf ðv2

1;aþ0:01Þ� band, a polynomial,

succeeded by a cubic interpolation spline is fit to the old plus updated

auxiliary data points with their respective v2 values. As last resort, the

validation profile likelihood is computed for the current time point

and serves as new starting point for further integration.

Non-identifiabilities of the model are dealt with a cut-off toler-

ance on the singular values that come up in the inversion of the

Hessian matrix. Nearly flat parameter profiles would lead to large

1206 H.Hass et al.
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parameter changes hampering the integration of the models’ ODE

system and bursting any validity of the linear sensitivities of

Equation (11b). The pseudocode illustrating the integration proced-

ure described in this section is outlined in Algorithm (1).

3 Results

3.1 Illustrative model
A small model (ABC) of two consecutive reactions

A!k1
B!k2

C (15)

with estimated initial concentration of A is utilized here to demon-

strate the performance of the integration method and illustrate the

scenario of non-observability. For k1 ¼ 0:05; k2 ¼ 0:1 and A0 ¼ 1,

11 data points with Gaussian noise � � Nð0; r2Þ with r ¼ ~r ¼ 0:1

were simulated for states B and C, spaced equidistantly between

t ¼ 0 . . . 100. In this setting, all three parameters are identifiable.

To evaluate the accuracy of the integrated PBs, PIs for distinct time

points were calculated utilizing the analytic solution of the ABC

model. The analytic solution and derivatives together with detailed

information about the toy model can be found in Supplementary

Section S4. These are shown together with the integrated PBs

for a ¼ 95% in Figure 1. The PIs comprise negative measurements,

because Gaussian errors are assumed for the auxiliary data point.

Since a high time resolution is achieved by integration of PBs and be-

cause no time points have to be specified beforehand, the time point

for complete transition of state A to state B and C with confidence

level a can be specified, in this example at roughly 7 min. Also, the

peak concentration of state B in consistency with the data can be

determined to lie between 7 and 12 min. In a second experimental

setup with measurements for state B at the beginning and end of the

shown time interval only, the height and time point of the peak of

state B are not determined. Figure 2 illustrates the lack of informa-

tion in the available data. Since the rise in concentration of state B is

not covered, backward integration of Equation (11) from t ¼
100 min is performed. An agreement between integrated PBs and

Fig. 1. Model response of the ABC model. Simulated data points for state B and C are pictured as dots. For all three states, the integrated PBs for confidence level

a ¼ 95 % are shown in grey, with the best fit as black line. In addition, stars indicate the 95% thresholds of the PIs calculated with the analytic solution of the ABC

model for distinct time points

Algorithm 1 Computation of PBs

1: Initialize with s0; ~hðs0Þ; gz; zðs0Þ; c;Ds; a
2: CIa ¼ minzVPLðzðs0ÞÞ þ icdf ðv2

1;aÞ
3: nsteps ¼ send�s0

Ds

4: for i ¼ 0 to i < nsteps do

5: Compute
_~hc¼0 and

_~hc (Equations (11b) and (13))

6: Update c (Equation 14)

7: Compute _z; _~h via RK4 (Equations 11,

Supplementary

Section S2)

8: if (~hþ _~h � Ds 62 ½lb; ub�) then

9:
_~h ¼ ub� ~h or lb� ~h

10: end if

11: ~hðsi þ DsÞ ¼ ~hðsiÞ þ _~h � Ds

12: zðsi þ DsÞ ¼ zðsiÞ þ _z � Ds
13: Compute current v2ðh; zðsiÞÞ (Equation (7))

14: if (v2ðh; zðsiÞÞ 62 ½CIa;CIaþ0:01�) then

15: Start correction mechanism

16: Set corrected ~hðsi þ DsÞ; zðsi þ DsÞ
17: end if

18: siþ1 ¼ si þ Ds
19: end for

Fig. 2. PBs for component B of the ABC model with only two hypothetical

data points for state B at time points t ¼ 0 and 90 min, shown as dots. The

best fit is depicted as solid line and stars indicate the 95% thresholds of mul-

tiple validation profiles. Between t ¼0 and t ¼ 18 min, the concentration of B

is non-observable, indicated by the shaded area excessing the y-axis

Fast integration-based prediction bands 1207
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validation profile-based PIs can be seen for the chosen time points

60, 80 and 90 min. However, the PBs widen to very large concentra-

tions of state B while lowering s, with the last time point of the inte-

gration at s ¼ 18 min and an integrated upper threshold of 280.

Hence, a partial non-observability arises between t ¼ 0 and 18 min.

3.2 Application to an established model
To demonstrate the efficiency and robustness of the integration

method on biochemical models, a model of the Epo-induced signal-

ling via the Janus family of kinases (JAK) and the signal transducer

and activator of transcription (STAT), published by Swameye et al.

(2003) is utilized here. The model revealed that rapid

nucleocytoplasmic cycling of STAT5 is a key component and acts as

remote sensor between nucleus and receptor within the JAK–STAT

pathway. The model scheme is depicted in Figure 3. To visualize the

capabilities of the integration approach, the model was extended by

a hypothetical observation of the STAT5 concentration in the

nucleus.

In addition, a model without relocation of STAT5 from the nu-

cleus to the cytoplasm is constructed, which is used for model selec-

tion between these two opposing hypotheses. The PBs on all model

observables, namely the phosphorylation of STAT5 (pSTAT) and

the total STAT5 (tSTAT) concentration in the cytoplasm as well as

for the introduced concentration of STAT5 in the nucleus (nSTAT)

were computed and are shown in Figure 4 together with the 95%

threshold points of the validation profile-based PIs. Apart from a

good agreement of both, the distinction of the conditions with and

without export of STAT5 from the nucleus to the cytoplasm can be

observed. The model output of the latter could be verified by e.g. an

experiment with inhibited relocation of STAT5 to the cytoplasm.

Also, the transient versus sustained STAT5 concentration in the nu-

cleus could be taken as hypothesis for a validation experiment. To

distinguish between both proposed models and as model selection

step, the measurements of the total STAT5 concentration for late

time points could be consulted. Since the PBs of the concurring mod-

els are clearly apart there, the available data evidently favours the

model with relocation, as it is identified in Swameye et al. (2003).

3.3 Efficiency of the integration method
The efficiency of the integration method compared with validation pro-

file-based PIs was assessed with the illustrative model and three estab-

lished models, published in Swameye et al. (2003), Raia et al. (2011)

and Bachmann et al. (2011). More information about their ODE sys-

tems and the utilized datasets can be found in the Supplementary

Section S5. It was measured on a MacBookPro from Mid-2014 with a

2.8-GHz Intel Core i5. Due to conceptional differences of the valid-

ation profile likelihood approach and an integration of PBs, a direct

comparison is not feasible without specification of some assumptions.

To obtain fast and sufficiently accurate upper and lower bounds of the

PIs via the validation profile likelihood method, roughly 10 steps of

Fig. 3. Model structure of the JAK–STAT signalling pathway, as published in

Swameye et al. (2003). After binding of Epo to the Epo-receptor, JAK2 is acti-

vated and the intracellular domain of the receptor gets tyrosin-phosphory-

lated in turn. Subsequently, STAT5 is recruited to the receptor, gets

phosphorylated and dimerises, then migrates to the nucleus where gene tran-

scription is initiated. Thereafter, de-phosphorylated STAT5 is exported to the

cytoplasm

Fig. 4. Phosphorylated STAT5 (pSTAT) and total STAT5 (tSTAT) in the cytoplasm with data points as dots, as well as the STAT5 concentration in the nucleus

(nSTAT). The best fit is shown as solid black line for the model with allowed export of STAT5 from the nucleus back to the cytoplasm (Control) and as dashed

grey line without this relocation (Inhibition). Integrated PBs for confidence level a ¼ 95 % are indicated as grey area, the corresponding 95% thresholds of the PIs

via validation profiles as stars

1208 H.Hass et al.
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VPLðzsÞ with varying zs were calculated. In addition, the validation

profiles were evaluated for 10 distinct time points equidistantly spread

over the model’s time horizon. Considering the integrated bands, two

integration steps per time unit (mostly minutes) were taken. For both

methods, the total computation times were averaged afterwards to at-

tain the runtime per time point. The results shown in Table 1 illustrate

that the integration is performed roughly 6–15 times faster. Even with

precise integration, denoting an integration procedure with a correction

after each step, re-assuring that the a threshold is maintained, the time

span for integrated PBs is around five times lower compared with mul-

tiple computation of validation profiles. The difference in the relation

of both integration times originates from the number of correction

cycles needed during the integration procedure. Also, the optimization

time at each point on the validation profile can vary by a factor of 10,

together with a variation of the actual required steps. As further advan-

tage of the integration approach, its accuracy does not depend on the

amount of points calculated on the PI, since the confidence level a is

maintained through a constraint. In addition, the true PBs can differ

from those interpolated through few distinct time points, especially in

areas of high variability and in vicinity of sharp peaks.

4 Discussion

One of the main purposes of mathematical modelling is to acquire

knowledge about the outcome of perturbed experimental conditions

or not yet measured model components, which includes arbitrary

functions like the integral of time courses, total concentrations or

the recurrence time after stimulation. This constitutes a challenging

task for large non-linear models with sparse observations, as they

typically arise in biological applications. Sampling approaches like

MCMC have serious drawbacks in this setup due to the curse of

dimensionality. They are feasible within low parameter dimensions

or if appropriate prior knowledge is present. In contrast, models in

Systems Biology often possess non-identifiable parameters where the

search space is weakly confined. The nonlinearity also hampers

translation of one-dimensional parameter profiles into PBs (Raue

et al., 2009). Thereby, the trajectories associated to the optimized

parameter sets for each point on the parameter profiles (see

Equation 6) are utilized. Subsequently, the envelopes of these trajec-

tories constitute an approximation of the PBs. Yet the uncertainty is

in general underestimated, because comprehensive sampling of the

model prediction space is not guaranteed by evaluation along one-

dimensional parameter manifolds (see Section 2.1). To resolve the

mentioned impediments, a new approach based on re-optimization

of the likelihood with a varying constraint or an auxiliary data point

was introduced in Kreutz et al. (2012). Therein, the one-dimensional

prediction space is evaluated to directly infer the prediction and con-

fidence intervals from the measured data. Apart from a constraint

on the model response, the confidence interval can be obtained

through decreasing the standard deviation of the auxiliary data

point (Powell, 1970), too. As a result, PBs can be obtained by inter-

polation between PIs for multiple time points.

In this article, a fast integration method based on the validation

profile likelihood approach is developed in order to attain accurate

PBs. The integration starts from an arbitrary point in time on the

corresponding PI, e.g. the 95% thresholds for t ¼ 0, leading to the

95% PBs for the observable of interest. In the context of statistical

testing, the PBs enclosing the confidence region control the probabil-

ity of errors of type 1, hence they specify the probability that a single

validation measurement at a specific time point is within the inter-

val. If PBs with high precision are desired, the integration procedure

can be performed coupled with a correction at every step. Thereby,

robust and precise PBs, still faster than distinct validation profile

likelihood computations, are achieved. The superiority originates

from the relationship between two adjacent time points, expressed

in Equation (11) and because only the auxiliary data point on the

specified confidence level a is required. In contrast, the validation

profile likelihood approach provides a number of possible validation

measurements with their corresponding v2 value, which can be used

to compute PIs to arbitrary confidence levels a.

The efficiency advantage compared with distinct validation pro-

files is eliminated when only a rough estimate of the PBs is desired,

or when the linear Taylor approximation of the required sensitivities

breaks down or requires a very small step size. In addition, the meth-

ods mentioned above can be faster and still reliable if the model is in

the so-called asymptotic setting and behaves approximately linear

(Neale and Miller, 1997).

An explicit integration scheme was chosen for the integration of

PBs, since the computation of second derivatives arising within the

Jacobian matrix of the right-hand side of Equation (11b) is not effi-

cient. To circumvent the latter, automatic differentiation (Griewank

and Walther, 2008) was carried out for comparison, yet it was sig-

nificantly slower compared with the implemented explicit integra-

tion followed by elaborate correction mechanisms.

The scope of PIs is to provide a powerful tool for experimental

design and model selection as well as to determine observability of

different model components. Through integration, PBs are available

for the whole time span of an observable. The latter comprises ex-

perimentally measured conditions as well as extrapolation to new

experimental conditions and new arbitrary functions of both, e.g.

ratios or sums. In addition, availability of smooth PBs provides new

possibilities for those functions, like the duration for the recurrence

to the initial (steady-state) concentration or the area under the curve.

The information provided by PBs can also be included in reverse en-

gineering algorithms for the inference of ODE systems, e.g. for the

description of gene regulatory networks via genetic programming

(Floares and Luludachi 2014; Krishnan et al., 2007; Sakamoto and

Iba, 2001; Spieth et al., 2006). For this purpose, the observability

and width of PBs for specified model components can be included in

the applied fitness functions (Zhang and Mühlenbein, 1995).

For the special case of fixed model parameters, the width of the

PBs will be exclusively determined by the uncertainty ~r of the auxil-

iary data point, i.e. the penalty term in Equation (7). Therefore, 2~r
provides a lower bound to the width of PBs for a ¼ 95%. For ex-

perimental design and the improvement of model observability, re-

gions with PI	 2~r indicate that the current model exhibits vast

uncertainty there. In such a case, a measurement would provide add-

itional information for reducing parameter and prediction uncer-

tainties. On the contrary, a PI approaching its minimum

characterizes an informative observable to discriminate the current

from alternative model structures.

Table 1. Computation time per time point of validation profile

based and integrated PBs in seconds

Time (s) ABC Swameye Raia Bachmann

Validation profiles 4.1 5.5 15.3 61.1

Integration 0.27 0.53 2.75 5.32

Precise integration 0.82 1.53 3.14 10.98

Precise integration labels an integration with initiated correction at every

step. The respective models are published in Swameye et al. (2003), Raia et al.

(2011) and Bachmann et al. (2011).
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Concerning model observability, an inflating size of PBs can be

interpreted as partial non-observability, as there might be lack of in-

formation for the long-term behaviour or the primary activation, re-

spectively. In addition, non-observability of a model component is

detected in the integration procedure, since the requirement on the

v2 level cannot be satisfied and the integration fails.

5 Conclusion

The propagation of parameter uncertainties to model predictions is

non-trivial for large, non-linear models. Yet besides Systems Biology,

various areas in science apply computer-aided simulations based on

large non-linear differential equations to study a system’s behaviour.

All attempts to attain model prediction uncertainties are hampered by

the curse of dimensionality and a weakly confined parameter space.

Also, the non-linear dependence of parameters results in an arbitrarily

complex shape of confidence regions for parameter estimates, which

cannot be translated into PIs through error propagation. To elude

sampling of a high-dimensional parameter space, the validation pro-

file likelihood approach was introduced in Kreutz et al. (2012) to

compute data-based PIs. Thereby, statistically accurate PIs are ob-

tained by continuous variation of an auxiliary data point, whereby

parameters are re-optimized. In this article, reliable and smooth PBs

over time are achieved via integration techniques with elaborate cor-

rection mechanisms, which detect non-observabilities of the model

during the integration. The idea is related to the validation profile

likelihood and takes the auxiliary data point at the threshold of a

specified confidence level a as starting point. By decreasing the error

of the data point, the integrated PBs converge into CBs. The efficiency

and applicability of the integration method was successfully demon-

strated on three established ODE models for cellular signalling. The

results of the validation profile likelihood approach for distinct time

points were reproduced and an accurate integration could be executed

roughly five times faster. The introduced approach helps to resolve a

main impediment in current applications of System Biology, namely

an accurate and efficient computation of PBs and CBs, which help to

perform experimental design, model selection and network inference

through e.g. reverse engineering. The presented framework and the

examples used in this article are available within the software package

Data2Dynamics (Raue et al., 2013, 2015), which is MATLAB based,

open source and freely available at http://www.data2dynamics.org.

Further instructions to execute the presented framework therein are

given in Supplementary Section S3.
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