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In principle, RPPAs are miniaturized 
dot blot immunoassays, enabling 
quantitative analysis of target protein 
abundance, including posttransla-
tional modif ications, across large 
sample sets. Originally introduced by 
Paweletz et al. as a robust and repro-
ducible proteomics resource (1), over 
the past decade the RPPA approach 
has become a valuable method for 
biomarker discovery and systems 
biology research (2,3). The RPPA user 
base is also increasing, as demon-
strated by recent publications in a 
number of fields (1,3–11). Thus, RPPA 
has real ized its ground-breaking 
potential for clinical applications as 
well as for the elucidation of signaling 

networks. Hence, RPPA technology 
would benefit from a robust, freely 
available software tool allowing data 
comparison across dif ferent RPPA 
platforms.

To date, the available analysis tools 
for RPPA have been mainly limited to 
non standardized in-house solutions 
or commercial platforms such as 
Microvigene (Vigene Tech, Carlisle, 
MA). A major drawback of open-source 
RPPA tools such NormaCurve (12), Reno 
(13), and others (14) is their limitation in 
data preprocessing because they are 
restricted to data normalization steps 
without offering additional functions to 
plot the resulting data or to carry out 
a statistical analysis. In contrast, the 

R (http://www.R-project.org) package 
RPPanalyzer (15) offers data prepro-
cessing in combination with graphical 
and statistical analysis options. Utili-
zation of RPPanalyzer is on the rise and 
has been documented already (4,5,16–
20).

Here we describe an expanded 
and improved toolbox for RPPanalyzer 
providing additional useful features 
including a standardized workflow 
of upgraded data preprocessing 
combined with fur ther improved 
graphical and statistical analyses. A 
novel background correction method 
has now been incorporated into the 
program. The main advantage of our 
background correction method is that 
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Analysis of large-scale proteomic data sets requires specialized software tools, tailored toward the 
requirements of individual approaches. Here we introduce an extension of an open-source software solution 
for analyzing reverse phase protein array (RPPA) data. The R package RPPanalyzer was designed for data 
preprocessing followed by basic statistical analyses and proteomic data visualization. In this update, we 
merged relevant data preprocessing steps into a single user-friendly function and included a new method 
for background noise correction as well as new methods for noise estimation and averaging of replicates 
to transform data in such a way that they can be used as input for a new time course plotting function. 
We demonstrate the robustness of our enhanced RPPanalyzer platform by analyzing longitudinal RPPA 
data of MET receptor signaling upon stimulation with different hepatocyte growth factor concentrations.

Reports

METHOD SUMMARY
We describe an improved version of RPPanalyzer that introduces a standardized workflow for RPPA data prepro-
cessing, a novel functionality for background noise correction, and optional graphical and statistical analysis 
methods for robust analysis of reverse phase protein array (RPPA) data sets.
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it does not require the printing of all 
samples as serial dilutions; instead, it 
estimates correction factors based on 
a single representative dilution series. A 
new time course plotting function is also 
incorporated that embeds enhanced 
variance estimations, which is useful 
for triplicate measurements as usually 
obtained from cell-based perturbation 
experiments.

Materials and methods
The application of the RPPanalyzer 
(workflow depicted in Figure 1) is 
demonstrated using a typical systems 
biology RPPA data set (Figure 2A and 
2B). The experimental setup was as 
follows: A549 cells, a human alveolar 
adenocarcinoma cell line, were serum-
starved for 24 hours and subsequently 
stimulated with 6 different hepatocyte 
growth factor (HGF) concentrations 
ranging from 0 to 100 ng/mL. Samples 
were obtained at 6 different time points 
between 0 and 120 min. All experiments 
were done as biological triplicates, and 
the samples were analyzed by RPPA 
using antibodies directed against 
proteins and phosphoproteins involved 
in MET receptor signaling. This example 
RPPA data set and the corresponding R 
script are provided as Supplementary 
Material. The R package is available at 
the Comprehensive R Archive Network 
(CRAN, http://cran.r-project.org/web/
packages/RPPanalyzer) and at R-Forge 
(https://r-forge.r-project.org/projects/
rppanalyzer).

Results and discussion
The general RPPanalyzer workflow is 
depicted in Figure 1. For this updated 
version, the in i t ia l data prepro-
cessing steps were bundled in the 
dataPreproc wrapper function, 
leading to standardized data output. 
Function tasks for dataPreproc 
include:

• Import of raw data from slide, 
sample description text files, and 
corresponding gpr f i les. In the 
text files, users provide sample-
speci f ic information and l ist 
the target proteins analyzed by 
RPPA. Instructions on the setup 
of slide and sample description 
files are provided in the RPPana-

lyzer vignette. The information in 
these files impacts all ensuing data 
processing steps. Hence, in case 
of any detected mistakes, f iles 
should be manually corrected and 
the workflow rerun. Spot-specific 
signal intensities obtained by image 
analysis using the commercial 
software GenePixPro are stored 
as gpr files that also contain infor-
mation on array layout. RPPana-
lyzer is tailored to this format. In 
cases in which a user does not 
work with gpr files, a workaround 
is to save result files from other 
scanning systems as text files and 
then adjust the format to the syntax 
of gpr files. After adding the suffix 
.gpr to the text file generated this 
way, the data analysis can proceed 
as when processing gpr files.

• Background noise correction using 
the new correctDilinterc 
function, as described next.

• Generation of plots to assess data 
quality. These include: ( i ) QC_
dilutioncurve_raw.pdf (raw signal 
intensities of serially diluted control 
samples to check linearity of target 
protein detection), (ii ) QC_target-
VSblank_normed.pdf (scatter plot 
of background noise corrected 
and normalized target signals 
versus “secondary antibody only” 
signal to asses bias caused by the 
secondary antibody), and (iii ) QC_
qqPlot_ normed.pdf (quanti le-
quantile plot to control whether 
data are normally distributed).

• Spot-specif ic normalization of 
signal intensities based on the total 
protein concentration determined 
by the FCF method (21). Replicate 
slides, usually 1 slide out of 8 to 
10, are stained with the dye Fast 
Green FCF to determine the total 
protein concentration of each 
individual lysate spot (Figure 2B). 
The signal intensity of FCF readout 
(fi) is determined for each individual 
spot. The target protein specific 
signal intensities (xi) obtained 
from slides probed with different 
detection antibodies are corrected 
for technical variance by dividing 
antibody signals by the factors 
f i. Afterward, the corrected spot 
intensities are multiplied by the 
median fm of the corresponding 
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Figure 1. RPPanalyzer Toolbox workflow. The recommended workflow for reverse phase protein array (RPPA) data analysis starts 
with the import of the image analysis output files as well as the slide and sample description files. The data preprocessing returns 
dilution intercept corrected data, which were normalized by total protein concentration using the Fast Green FCF approach (21). Data 
preprocessed this way can then be analyzed using diverse graphical and statistical methods implemented in the RPPanalyzer toolbox.
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Figure 2. Exemplary reverse phase protein array (RPPA) layout. (A) Samples (control and measurement) are spotted as four identical subarrays 
on a series of nitrocellulose coated glass slides. All samples are spotted as technical triplicates. Only control samples are spotted as 6-fold dilu-
tion series. (B) Slide numbers 1 to 8 are used for incubation with target-specific antibodies; 4 subarrays allow for using 4 different antibodies 

per slide. Slide number 9 is used for total protein staining using the Fast Green FCF method (21).

6-fold dilu�on series of control samples star�ng at 2 µg/µL (A549, 0 min, 0 ng/mL HGF) 

6-fold dilu�on series of control samples star�ng at 2 µg/µL (A549, 10 min, 75 ng/mL HGF) 

6-fold dilu�on series of control samples star�ng at 2 µg/µL (Caki1, 0 min, 0 ng/mL HGF) 

6-fold dilu�on series of control samples star�ng at 2 µg/µL (Caki1, 10 min, 75 ng/mL HGF) 

measurement samples (A549 or Caki1, 0–120 min, 0–100 ng/ml HGF)  

1 FCF slide 8 slides for an�body incuba�on 
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normalizer subarray to scale 
data back to the original signal 
range. This can be summarized 
as normalized spot intensity xFCF 
= xi/fi*fm.

• Returning a list of four items to 
users. The first item lists raw data, 
that is, matrices of foreground and 
background signal intensities as well 
as information describing sample 
localization and providing keywords 
to identify individual samples as 
part of the downstream analysis. 
The second item is analogously built 
up but lists corrected foreground 
signal intensities generated using 

the correctDilinterc function. 
If negative values are obtained after 
background subtraction applying 
the correctDilinterc function, 
the absolute minimum plus one 
is added, as for most applica-
tions (e.g., comparison of multiple 
conditions), a small positive value 
is required even for probes which 
are within the background levels. 
The third item is also structured 
as the first two but holds dilution 
intercept corrected and FCF 
normalized foreground data. The 
final item defines the directory for 
output storage.

• Raw data export to a text file in 
table format. Any other processed 
data (e.g., normalized data) can 
be exported manually using the 
write.Data function.

All output files are stored in a folder 
labeled with the date of analysis at the 
input files location.

After preprocessing, the next step is 
to merge technical replicates (sample.
median function), select data subsets 
of interest (select.sample.group 
function), and then remove arrays or 
target proteins that are not required during 
downstream analysis, or data that did not 
pass the quality check (remove.arrays 
function).

Finally, dif ferent R functions can 
be applied for statistical analysis and 
graphical representation of the prepro-
cessed RPPA data. According to the 
toolbox character, this output layer 
is not limited to the five implemented 
methods but can be easily expanded 
and tailored to a user’s specific needs 
by new or modified R functions. The 
methods currently available in the 
RPPanalyzer package are:

•  test.correlation: A correlation 
plot to compare protein expression 

Figure 3. Examples of graphical output. (A) Boxplot of MET receptor phosphorylation (Y1349) signal intensity at the 15 min time point, revealing 
dependence on hepatocyte growth factor (HGF) concentration. The green number represents the P value result from a Kruskal-Wallis rank sum 
test, indicating significant difference between expression values of the six sample groups. (B) Time course plot of MET receptor phosphorylation 
(Y1349) over 120 min after HGF stimulation at different concentration levels.
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and a numeric sample attribute, 
inc lud ing s tat is t ica l  test ing 
according to Pearson, Spearman 
or Kendall.

•  rppa2boxplot: Allows for visual-
ization of the data as boxplots 
for defined sample groups. In 
addition, statistical rank sum 
tests are applied. In case of a 
reference group to be tested 
against, two-sample Wilcoxon 
tests are performed, and the P 
values are adjusted for multiple 
testing according to Benjamini 
and Hochberg. To test for a general 
difference among all samples, a 
Kruskal-Wallis rank sum test is 
applied. The P values are displayed 
in the boxplot graph, as shown in 
the example data in Figure 3A.

•  rppaList2Heatmap: Allows for 
the visualization of hierarchical 
clustering as a heatmap, adding 
specific column side colors to mark 
groups of selected phenodata. 
Before applying this function, the 
data should be logarithmized using 
the logList function. Scaling and 
viewing the data on a logarithmic 
scale have the effect of variance 
stabilization and are necessary for 
statistical tests and for the compu-
tation of distance measures that 
have the requirement that the data 
should look normally distributed.

•  plotTimeCourse: Allows for the 
visualization of time course data. 
Different plotting options can be 
specified, such as smoothed spline 
fits through the data.

In addition to the dataPreproc 
function, four other functions have been 
added to this latest version of RPPan-
alyzer.

•  correctDilinterc: Correction 
of background noise.
This function corrects signal 
intensities obtained for a protein 
of interest by subtracting an 
intercept estimated for a total 
protein concentration of 0 µg/µL.  
This function does require that 
the array contains a dilution series 
that passed the quality check 
mentioned before. The function 
is integrated in the data prepro-
cessing function dataPreproc. 
The y-intercepts of the dilution 

series for corresponding samples 
are derived using dilSeriesID, a 
parameter defined in the sample 
description file, subarray-specific 
information, detection antibody 
and spotting run as summa-
rized in the slide description file. 
Actual samples are defined as 
measurement in the samplede-
scription.txt, and serially diluted 
samples are specified as control.

A major advantage of this 
method is that it is independent 
of dilution series prepared from 
al l samples as descr ibed by 
the original RPPA approach (1). 
Correction factors are obtained 
f rom representative samples 
chosen ahead of array printing 
during design. In our example data 
set, actual samples represent 6 
different time points ranging from 
0 to 120 min, whereas the corre-
sponding dilution represents a 10 
min time point only, as highlighted 
in Figure 2A. To link a sample 

of interest with a certain control 
dilution series from a panel that 
mostly includes several dilution 
series (e.g., representing different 
cell lines or conditions), the corre-
sponding identif ier has to be 
entered in the column dilSeriesID 
of the sampledescription.txt. The 
selection of the sample to be used 
as dilution series strongly depends 
on the particular experimental 
setup.

Fo r  n e a r- i n f r a r e d  ( N I R ) 
detection, signal and protein 
concentration are detectable over 
a linear range for the majority 
of detection antibodies. Hence, 
intercept subtraction will produce 
a paral le l shi f t. For non-NIR 
f luorescence–based detection 
approaches, signals frequently 
saturate at higher protein concen-
trations. In this case, smoothing 
splines as nonparametric fits allow 
us to deal with several dif ferent 
RPPA detection methods and are 

Figure 4. Dilution series plot visualizing the signal intercept estimation. In this example, a y-
intercept of 453 a.u. was estimated as background noise for an antibody directed against PRAS40. 
Sample signal intensities will be background corrected by subtraction of this value.
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applied for extrapolation to zero concentration. The 
uncertainty of the extrapolated intercept is estimated 
by nonparametric bootstrapping.

The estimated intercepts I are conditional on the 
factors antibody, slide, and sample, of which the latter 
is defined by dilSeriesID. Linear models are established 
for the following hypotheses:

I ~ const. [Eq. 1.1]

I ~ const. + antibody [Eq. 1.2]

I ~ const. + antibody + slide [Eq. 1.3]

I ~ const. + antibody + slide + sample [Eq. 1.4]

The estimated uncertainties of the intercepts are used 
as weights. The provided bar plot of the residual sum of 
squares (RSS) (anovaIntercepts_Output.pdf ) should be 
used to choose the model with the smallest RSS favoring 
less complexity. For example, if the bars of model 1.3 
and 1.4 are the smallest and are equally high, model 1.3 
should be preferred because the sample in 1.4 does not 
provide additional information. Based on the chosen 
model, the measurement intercepts are  predicted and 
are then subtracted from the raw intensities. The function 
additionally generates plots of the dilution series and 
related intercept estimations (getIntercepts_Output.pdf ), 
as shown in Figure 4.

•  getErrorModel: Estimation of signal variance.
Signal variance can be estimated from technical repli-
cates. The variance estimator for triplicates is generally 
very poor because it is c2 distributed with n-1 degrees 
of freedom. In the case of n = 3, this is an exponential 
distribution. Therefore, information from several different 
triplicates is combined to estimate parameters of an 
error model.

A variance versus signal plot characteristic for RPPA 
data reveals the following:

(i) The signal dependency of the variance depends on the 
factors subarray, detection antibody, and median FCF 
normalizer value. Slides probed with different detection 
antibodies are scanned with different scanner settings 
to yield an optimal image for data analysis. Signals 
are scaled by the median FCF value.

(ii)  Signal variances can increase with the signal strength, 
are constant, or have (almost) zero variance at zero 
signal.

The error model used to account for these observa-
tions is s2 = s2

0 + S2s2
rel, where S is the signal strength, s2

0 
denotes the variance at zero signal, and s2

rel reflects the 
relative error. To estimate s2

0 and s2
rel from the variance 

versus signal plot, a maximum likelihood approach, 
exploiting the c2 distribution of the variances, is applied. 
This is due to the strong nonnormality of the triplicate 
variance estimator.
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•  averageData: Averaging biological 
replicates.
Frequently, experiments provide two 
kinds of replicates: technical and 
biological. In this context, biological 
replicate means that spotted lysates 
result from equal treatment, and 
technical replicate means that the 
identical lysate is spotted several times 
on the same slide.

Averaging is done for each 
detection antibody separately. It is 
based on the assumption that a true 
dynamic behavior ys(t) for a given 
stimulation s exists. The observed 
dynamics Sjs(t) for each biological 
replicate j, that is, factor (biological 
replicate + slide), and stimulation 
s dif fer systematically from ys(t) 
by a scaling factor sj. In addition, 
sj*Sjs(t) differs statistically from ys(t) 
because of biological variability. 
To estimate the true dynamics and 
the scaling factors, the objective 
function (see Equation 2 below) for 
discrete measurement time points 
ti is minimized. The response is 
weighted by the variance from the 
error model evaluated at the “true” 
value yis/sj. Strictly speaking, this 
is an approximation because each 
biological replicate has its own true 
dynamic behavior. A direct estimate 
of these signaling dynamics would 
be the mean of the technical repli-
cates for each biological replicate, 
that is, Sijs itself. Depending on the 
value of s2

r, erroneous estimates 
can have a huge impact because 
smaller values are automatically 
favored. In contrast, the approxi-
mation by yis/sj is more robust.

•  plotTimeCourseII: Visualization 
of time course data.
This function is applied after trans-
forming the preprocessed data by the 
 getErrorModel and averageData 
functions, and an example of this 
function is shown in Figure 3B.

In conclusion, we have simplified, 
enhanced and standardized RPPA data 
analysis by extending the functionality 
of the existing RPPanalyzer package 
through the introduction of new 
approaches for variance estimation, 
background noise correction, and time 
course data visualization. In addition 
to this new functionality, the package 
was also streamlined by easing and 
improving several already existing 
functions. Although we recommend 
the use of the standard preprocessing 
steps, the newly introduced toolbox 
approach described here does allow 
integration of add-on functions that 
can be tailored to the specific needs 
of users.
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