
Article

Profile likelihood-based analyses
of infectious disease models
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Abstract

Ordinary differential equation models are frequently applied to describe the temporal evolution of epidemics. However,

ordinary differential equation models are also utilized in other scientific fields. We summarize and transfer state-of-the

art approaches from other fields like Systems Biology to infectious disease models. For this purpose, we use a simple SIR

model with data from an influenza outbreak at an English boarding school in 1978 and a more complex model of a vector-

borne disease with data from the Zika virus outbreak in Colombia in 2015–2016. Besides parameter estimation using a

deterministic multistart optimization approach, a multitude of analyses based on the profile likelihood are presented

comprising identifiability analysis and model reduction. The analyses were performed using the freely available modeling

framework Data2Dynamics (data2dynamics.org) which has been awarded as best performing within the DREAM6

parameter estimation challenge and in the DREAM7 network reconstruction challenge.
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1 Introduction

Mathematical models can be used to understand mechanisms of spreading of infectious diseases. If the populations
are large enough, deterministic models like ordinary differential equation models (ODEs) can be utilized to
describe the dynamics of the different stages and for deriving strategies for controlling an epidemic or for
predicting future outbreaks.1

Most models describe the number or fraction of individuals in several population subsets, usually termed as
compartments. In the well-known SIR model

S! I! R ð1Þ

as an example, individuals are passing from suceptibles S to the infected subset I before becoming recovered R.
The velocity of transitions between compartments is determined by rate constants, usually considered as unknown
parameters. Schemes like equation (1) can be directly translated into sets of ODEs in generally yielding first-order
derivatives which are nonlinear with respect to the dynamic states.

A variety of approaches has been established to estimate parameters in such models from experimental
observation,2 using Bayesian inference networks,3–6 Markov chain Monte Carlo methods7 in combination with
Gaussian Processes8 and with focus on robust Bayesian inference,9 as well as agent-based methods,10 spatio-
temporal autoregression models,11 but also stochastic maximum likelihood analyses12 as well as multiple
shooting for stochastic systems.13 The major challenge is that the solution of ODE models is nonlinear with
respect to parameters like initial conditions and transition rate constants. Therefore, many classical methods
for parameter fitting and assessing uncertainties are only applicable to a strongly limited manner.14,15
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The profile likelihood is a generalization of classical approaches like standard errors which are based on the
Fisher-Information matrix and it has been shown that the profile likelihood provides reasonable confidence
intervals for parameter estimation of ODE models. Moreover, the profile likelihood has been used to assess the
identifiability of model parameters,16 for the determination of informative observations17 and for the calculation
of uncertainties for predictions.18 Moreover, the profile likelihood pinpoints model components which can be
removed without loosing statistical agreement with observations. It thereby provides a strategy for reducing ODE
models down to a completely identifiable level of detail.19

In this article, these well-established modeling methods are illustrated in the setting of infectious disease
modeling. Moreover, insights concerning numerically efficient optimization are provided. The analyses
are performed using the MATLAB-based Data2Dynamics modeling environment.20,21 The presented
methodology and its implementation has been awarded twice within the Dialogue on Reverse-Engineering
Assessment and Methods (DREAM) challenges for parameter estimation22 and network reconstruction,23 there
mentioned as ‘‘Team Crux.’’ The software package is used for all further analyses. Setup scripts, model definitions,
and data files for all presented examples are available within the Data2Dynamics software on www.
data2dynamics.org.

2 Methodology

We introduce the methodology using a canonic SIR model with the well-known data set of an influenza outbreak
at an English boarding school in 1978. In a second step, we apply the same methods and the profile likelihood
analyses to a more sophisticated model of the vector-borne disease model with data from the ZIKV outbreak in
Colombia in 2015–2016. Hereby the goal is illustration of profile likelihood analyses in a standard example and
application study, rather than focusing on credible biological discoveries.

In both examples, we only use raw data time series although additional data, i.e. prior information for model
parameters would be available. The intention is to introduce a methodology which is also applicable in
applications where less or no prior knowledge is available. Nevertheless, the presented approach can also
account for multiple priors but it does not necessarily require it.

2.1 ODE models

In infectious disease models, a set of coupled ordinary differential equations (ODEs)

x
:
¼ fðx, u, kÞ ð2Þ

is often used to describe the dynamics of the compartments represented by the vector x. The term compartment is
equivalent to the terms species, compound or node which are more commonly used in other fields. In general the
function f can be nonlinear and depends on the compartment states xðtÞ at time t, on a possibly time depend input
function uðtÞ and on the model parameters k, such as transmission rate constants. The initial states of the system at
time t¼ 0 are described by xinit ¼ xðt ¼ 0Þ. Thus, the time dependence of the system is entirely described by a set of
kinetic parameters h ¼ ðk, xinitÞ which contains both, rate constants k and initial conditions xinit.

2.2 Observations

In addition to prior knowledge, empirical data is used in order to estimate the unknown parameters h. Usually not
all compartments are observed individually and linear combinations like the sum of several compartments may
occur as observations. In order to compare the model dynamics simulated for a candidate set of parameter values,
empirical data

yobsðtiÞ ¼ gðxðtiÞÞ þ eðtiÞ ð3Þ

is mapped to the dynamics xðtiÞ at time ti via observation functions g which are not necessarily bijective and
invertible. If a single compartment xj is directly observed, g is the identity function, i.e. yobs ¼ xj ðtiÞ þ "ðtiÞ.
In other cases, g may include linear combinations of compartments or contain scaling parameters in the case of
relative data or offset parameters if background correction is required. In our illustration examples, independent
additive Gaussian errors eðtiÞ � N ð0, �2Þ with unknown standard deviation � are assumed. However, the
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methodology is discussed in terms of the likelihood which comprises also other error distributions. Moreover, �
can be described by an error model, e.g. �2 ¼ �2relx

2 þ �2abs as it is assumed for the Zika virus example.

2.3 Maximum likelihood estimation

Maximum likelihood estimation is a general approach for estimating model parameters. The so-called maximum
likelihood estimate

ĥ ¼ argmax
h

LðyjhÞ ¼ argmin�2 log LðyjhÞð Þ ð4Þ

is asymptotically unbiased and has several beneficial statistical properties like consistency and efficiency.24 In
practice, �2LLðhÞ ¼ �2 log LðyjhÞð Þ is usually minimized instead of maximizing the likelihood because of
numerical reasons and since this is equivalent to least-squares estimation in the case of Gaussian observation
errors.

For model calibration the model’s dynamics, i.e. the observables g are compared to the available data yobs.
If prior knowledge about the model parameters is available, it can be incorporated by penalizing the log-likelihood
LL. For Gaussian priors ��i with standard errors ��i, the penalized log-likelihood is given by

�2LLpenðhÞ ¼ �2 log LðyjhÞð Þ þ
X
i

�i � ��i
� �2

��2i
ð5Þ

For ODE models, optimization of equation (4) or (5) has to be performed numerically. In the following, the
unpenalized log-likelihood equation (4) is used for all methodology and analyses.

2.4 Integration and optimization

The solution of an ODE system is usually nonlinear with respect to the parameters. In consequence, also the
objective function is strongly nonlinear and, thus, parameter estimation in ODE models is numerically challenging.
In addition, evaluating the objective function requires numerical integration of the ODEs which is only feasible
with limited accuracy. Therefore, it is not possible to calculate derivatives based on finite differences.25 Moreover,
it has been shown that it is usually more efficient to optimize the logarithms of parameters.26 Another aspect is that
even ODE integrators for stiff systems struggle with numerical instabilities for processes with extremely large
differences in time scales. Therefore, the parameter space is typically restricted, e.g. to eight orders of magnitude.25

Although analytical solutions for small ODE systems exist, numerical integration is chosen throughout the
manuscript to not restrict applicability of the methodology on small special cases. Due to the nonlinearity of
the ODEs and because of the restricted amount of empirical data, likelihood landscapes typically exhibit multiple
local optima.

Although it is theoretically possible for stochastic optimization algorithms to find the global optimum
(potentially requiring an infinite number of steps), it has been shown that they are not applicable without
tuning in the setting of signaling pathway models.25 Instead, the applicability of deterministic optimization in
combination with a multistart approach using a sufficient number of different initial guesses has been proven in
several applications.27–30 This strategy is implemented in the Data2Dynamics modeling environment20,21 and has
been awarded in scientific benchmark challenges in the setting of parameter estimation22 as well as for network
reconstruction23 and is applied in this article. Here we use a Gauss–Newton gradient-based trust region optimizer
as implemented as function lsqnonlin in the optimization toolbox of MATLAB31 in combination with the
CVODES initial value problem solver32 which is implemented in C. Gradient information of the likelihood
with respect to the parameters is calculated by solving the so-called sensitivity equations

d

dt

dx

dh
¼
@f

@x

@x

@h
þ
@f

@h
ð6Þ

Because the partial derivatives @f=@x and @f=@h can be calculated analytically, the parameter sensitivities @x=@h
occur as solutions of another ODE system of dimension dimðhÞ � dimðxÞ which can be attached to the original
ODE system (equation (2)) and then numerically integrated simultaneously.33
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2.5 Profile likelihood

Traditionally, confidence intervals for point estimates of parameters are calculated from the Fisher information
which is derived from second derivatives of the log-likelihood around the maximum. This approach yields exact
results for linear models but does not account for higher order derivatives as they occur in the nonlinear setting. In
contrast, the profile likelihood approach comprehensively evaluates the shape of the log-likelihood enabling the
calculation of reliable confidence intervals of the estimated parameters also for nonlinear settings.16,18,34–36

To calculate the profile likelihood, each parameter �i is iteratively changed around its maximum likelihood
estimate while reoptimizing all other parameters �i6¼j. Thus, the profile likelihood is defined as

PLiðpÞ ¼ min
fhj�i¼pg

�2LLðhÞ ð7Þ

The uncertainty of a parameter can be assessed by the profile likelihood-based confidence interval

CIPLð�iÞ ¼ fp j PLiðpÞ � �2LLðĥÞ þ��ð�
2
1Þg ð8Þ

which represents all acceptable parameter values �i with PLi below the threshold defined by the � quantile ��ð�
2
1Þ

of the �21 statistics.37

Optimization of equation (7) for each i and p yields parameter vectors which are suited as representative
candidates for sampling the dynamics within the high-dimensional confidence region given by the ��21
threshold. It has been shown that using these representative parameters enables evaluation of prediction
uncertainties17 and the identification of informative experimental designs.22

2.6 Identifiability analysis

Identifiability of model parameters related to the model structure and the experimental data has been extensively
discussed in the literature.38–44 Here, we summarize and apply a numerical approach which only requires
numerical implementation of parameter optimization but has no limitations in terms of model size, model
structure or mathematical prerequisites.

The approach based on the profile likelihood allows for a data-based identifiability analysis of the estimated
parameters,16,17 where three classifications are available. A parameter is considered as identifiable if its likelihood
profile exceeds the statistical threshold given by �2LLðĥÞ þ��ð�

2
1Þ, yielding finite confidence intervals. If the

amount or quality of the available data is not sufficient to indicate a confidence bound in both directions, the
parameter is termed as practically non-identifiable. Here, a unique point estimate may be obtained, but the profile
does not exceed the statistical threshold in at least one direction and thus does not have a confined confidence
interval.

For structural non-identifiability, there are several definitions in the literature. In the context of continuous
noise-free observations, a model is commonly defined as structurally non-identifiable if for h and h0, equality of the
model equations xðt, hÞ ¼ xðt, h0Þ and gðt, hÞ ¼ gðt, h0Þ for all times t does not imply equality of the two parameter
vectors h and h0.41 Instead, we use the conceptually different definition from Raue et al.,16 which is more
appropriate for a finite number of time points with observation errors. Here, parameters are already termed as
structurally non-identifiable if the estimated parameters for a given data set are not unique. This means that there
are several maximum likelihood estimates for given model outputs gðxj Þ and observation times ti. Except for
special cases, this means that the respective non-identifiable parameters cannot be constrained at all and the profile
is constant for all values of the parameter. Such a behavior indicates redundant parametrization of the model
structure which cannot be resolved by available observations. Consequently, the individual influence of a
structurally non-identifiable parameter on the experimentally observed model outputs can be compensated by
re-optimization of the other parameters. These redundancies may be obvious in some cases, e.g. if two parameters
only appear as a product. Nontrivial structural non-identifiability can be identified by Lie group theory.45

Identifiability analysis may also be applicable when using parameter priors via the penalized log-likelihood
(equation (5)).

2.7 Model reduction

As every model is a simplification of complex natural phenomena, where some features may be over-represented
while others are neglected, it can be reasonable to adjust the complexity of the model to the available information
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in experimental data. Too complex models are more likely to overfit measurement errors and then providing
inaccurate predictions. The model reduction strategy discussed here utilizes the profile likelihood-based
identifiability analysis for indicating simplification which is not rejected statistically by available data.

For structural non-identifiabilties, re-parameterization based on the underlying symmetry transformation, e.g.
by fixing the parameter to a reasonable, user-defined value yields the desired outcome. For practical non-
identifiabilties, the profile likelihood can be utilized as a data-based method for reducing nonlinear models19

since the profile likelihood calculation drives the model parameters towards their extreme values, i.e. minimal
and maximal values, while keeping the model’s output in agreement with the data. Furthermore, the definition of
the profile likelihood PLi (equation (7)) coincides with the test statistic of the likelihood ratio test46 which is a well-
established statistical test for assessing whether reducing the model is rejected by the data. A parameter profile
which flattens out to a constant level below the threshold for the limit of small values of the parameter close to
zero, points to a simplification where the parameter value is set to zero, i.e. the corresponding reaction is removed
from the model. Iterative application of such a procedure enables elimination of all practically non-identifiable
parameters, yielding a desirable fully identifiable model.19 As in every step-wise model selection procedure, the
order of the reduction steps might have an impact on the result. Solving such ambiguities depends on the questions
which have to be answered by the model and are beyond the scope of this paper.

3 Influenza model

The applicability of the introduced methodology is demonstrated in the following. Therefore, it is applied to the
frequently analyzed standard data example of an influenza outbreak at an English boarding school using a basic
SIR model.47–51

3.1 Model equations

The so-called SIR model

S �!
�I

I�!
�

R ð9Þ

was first introduced by Kermack and McKendrick52 and consists of three compartments: susceptible individuals S
which are not yet infected, infected individuals I showing symptoms and are able to transmit the disease, as well as
recovered individuals R which, after the infection, are assumed to be immune to reinfection. The change of the
population numbers in the compartments is described by the model equations

_S ¼ �
�SI

N

_I ¼
�SI

N
� �I

_R ¼ � I

N ¼ Sþ Iþ R

ð10Þ

where N is the total number of individuals. Susceptibles S are infected by infected I with transmission rate � and
velocity of transmission from the infected I to recovered R is described by rate constant �. Both rate parameters
have the physical unit 1=time. The initial value of recovered individuals Rinit is set to zero, whereas the initial values
Sinit ¼ NS, which represents the total number of humans which can be infected and Iinit ¼ NI, which is the number
of initially infected humans, i.e. the source of infection, are considered as parameters to be estimated and have the
unit number of humans.

Although analytical solutions are available for the simple SIRmodel, we use numerical methods to integrate the
ODEs to not restrict applicability to analytically solvable special cases.

3.2 Data

The data set from an influenza outbreak at an English boarding school in 197847,50,51 contains a total of 763 boys.
As the school administration kept track about daily numbers of boys staying at bed, a complete, direct, and time-
resolved record of the model compartment of infected individuals I is available. One observation per day
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is available. As the number of infected boys is directly observed, the observation function is the identity and the
model is linked to the data via

yobsðtiÞ ¼ Iþ "ðtiÞ ð11Þ

where " � Nð0, �2absÞ with a priori unknown standard deviation �abs which is treated as an additional parameter to
be estimated.

The total number of susceptible individuals N
y
S ¼ 762 was published with the data and a single infected

individual N
y
I ¼ 1 has been assumed as starting point of the epidemic. However, this information will not be

included into the presented analysis, but in contrast is predicted from the model only by the time-resolved
empirical data of infected individuals I.

3.3 Parameter estimation

Figure 1 shows the data as well as the best fit and the respective trajectories for the compartments of the
susceptibles and the recovered.

The model was fitted by optimization of the likelihood from 100 different initial guesses leading to a clearly
identifiable global optimum. The uniformly distributed initial guesses for optimization are drawn randomly from
the parameter search space which spans nine orders of magnitudes from 10–5 to 104 in every dimension. Figure 2
shows the likelihood of the initial guess as well as after optimization. The optimization runs are ordered by the
final likelihood value. Sixty-seven of the 100 fits converge to the same optimum which is indicated by the same final
value of the objective function and, as shown in the lower panel, by the same parameter values (up to numerical
tolerances). All other fits start from regions in the parameters space from which the deterministic optimizer is not
able to locate the global optimum but, instead, converges to local optima with substantial inferior likelihood
values. The lower panel of Figure 2 indicates that for the suboptimal local optima, some parameters values like �
and �abs exhibit patterns, while others like NS,NI and � seem to be rather randomly distributed. The parameter
values of the best fit are provided in Table 1.

3.4 Profile likelihood and identifiability analysis

Once the global optimum is found, likelihood profiles according to equation (7) are calculated to derive confidence
intervals for the estimated parameters. The resulting likelihood profiles shown in Figure 3 exceed the threshold for
95% confidence intervals indicating identifiability of all parameters in this example.

The literature values of susceptible individuals N
y
S ¼ 762 and the infected individual N

y
I ¼ 1 meet the

estimated values for parameters NS and NI as they lie within their 95% profile likelihood-based confidence
intervals, c.f. Table 1.
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Figure 1. Model dynamics of the three compartments for the best fit parameters provided in Table 1 with data for infected

individuals. Gray bands represent estimated observation error.
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Each point on the profile likelihood corresponds to an individual parameter vector obtained by fixing one
parameter to a specific value and reoptimizing the other parameters. Within the confidence intervals, the
objective function of these parameter vectors does not exceed the threshold given by the selected
significance level. Therefore, all the respective trajectories shown in Figure 4 are statistically in accordance
with the examined data. For observed quantities, the trajectories differ only slightly from observations. In
contrast, predictions for unobserved quantities can have large uncertainties indicated by a large spread of the
trajectories. Figure 4(b) shows prediction trajectories for the number of susceptibles S and recovered R
individuals as well as for the two transition fluxes (Figure 4(c)). The trajectories for the suceptibles and
recovered show that the measurements for the infected individuals alone do not provide accurate
information about the total number of individuals at risk NS.

Figure 2. Results from multistart optimization with 100 initial guesses. The initial likelihood values are plotted as crosses, the end-points

after the optimization are depicted as triangles. For illustration, likelihood values are shifted to the baseline by subtraction of the likelihood

value for the global minimum. The lower panel shows the estimated parameter values of the respective optimization runs. The 67 best

performing optimization runs converge not only to the same likelihood value, but also to the same global optimum in the parameter space,

as indicated by the horizontal pattern of the parameter values. In contrast, the other optimization runs converting to the suboptimal

minima share the same final likelihood value, but converge to different regions in the parameter space. Some of these regions are

characterized by similar end-points for some parameters, while other parameters spread over the whole parameter search space.

Table 1. Best fit parameter values as well as confidence intervals for the SIR model for the English boarding school influenza data.

Physical Parameter Estimated Profile likelihood-based

Parameter unit search region parameter value confidence interval

NI humans 10–5–104 2.89 [0.54–8.88]

NS humans 10–5–104 854 [565–2324]

� 1/t 10–5–104 1.74 [1.57–2.06]

� 1/t 10–5–104 0.51 [0.34–1.10]

�abs humans 10–5–104 19.7 [14.2–30.1]
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3.5 Conclusions

The SIR model can describe the data of infected school boys, using the best fit parameters from a deterministic
multistart optimization sequence. Likelihood profiles indicate a fully identifiable model and yield finite confidence
intervals for all estimated parameters. Furthermore, trajectories for unobserved compartments can be used to
predict their dynamics.

As the used data set is a standard basic example in the literature, the estimated parameter values can be
compared to earlier analyses. Our estimates parameters shown in Table 1 are close to the reference values from
literature48–51 which are in agreement with the profile likelihood-based confidence intervals.

(a) (b) (c)

Figure 4. Model trajectories for the set of representative parameters vectors obtained by the profile likelihood calculation. (a)

Trajectories for observed susceptible humans, (b) for unobserved model compartments, and (c) for transition fluxes between

compartments. Gray lines indicate trajectories of parameter sets along the likelihood profile, the black circles in (a) show the data and

the black solid line refers to the trajectories of the best fit parameters.

Figure 3. Likelihood profiles for all estimated parameters (solid lines). Best fit parameter values are indicated by gray asterisk.

Parameter values at which the profile hits the ��ð�
2
1Þ threshold (dashed line) are identifiable with lower and upper confidence bounds.
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In the case of the simple SIR model, the basic reproduction number R0, i.e. the number of secondary cases from
a primary infected individual53 can be easily computed from the estimates as

R0 ¼
�

�
¼ 3:4 ð12Þ

which is close to values estimated from literature for the same data and model. The estimated values of R0 for the
English boarding school data set is slightly larger than assumed for influenza in general and the estimated infection
period is slightly shorter than expected.54,55 However, this can be explained by the ideal circumstances for an
epidemic because of higher infection rates for school-aged individuals56 and the well-mixing of the individuals in a
boarding school in contrast to other observed influenza outbreaks, e.g. in larger cities or regions.

Although a priori information for the estimated parameters would be available and could be integrated, it was
intentionally not included into the analysis. For instance, the number of susceptibles NS was published with the
data and there are also other data sources which would, e.g., provide detailed information on infection period
durations for the specific influenza type. Nevertheless, published values from earlier analyses for single parameters
as well as for the basic reproduction number R0 are in accordance with the profile likelihood-based confidence
intervals.48–51

4 Zika virus disease model

In the following, the presented methodology is applied to empirical data from the Zika virus disease outbreak in
Colombia in 2015–2016 using a complex vector-borne disease model.

The Zika virus disease is caused by the Zika flavivirus (ZIKV) and is transmitted mainly by bites of Aedes
aegypti mosquitos.57 Typical acute symptoms include fever, maculopapular skin rashes, conjunctivitis, retro-
orbital pain and headache. Humans overcome ZIKV infection usually after days to weeks and do not have
long-term effects.58 However, a causal link to microcephaly59 and Guillain-Barré syndrome60 has been
reported.61 The latest Zika virus disease outbreak in the Americas in 2015 thus became of global interest and
was declared as an emergency of international concern by the World Health Organisation (WHO).62

In order to describe and possibly intervene the spread of the disease, many different models were discussed in
the literature. Mainly models adapted from other mosquito-borne diseases such as malaria,63,64 dengue fever or
chikungunya virus (CHIKV) have been adapted in order to analyze the dynamics of ZIKV outbreaks.65–67

Amongst others, the motif of human-to-human infection is discussed and integrated into the models in order
to analyze its influence on the epidemic. Presumingly, because of the global public interest and as publicly
accessible empirical data of ZIKV infected humans is available from the national health institutes of most
affected countries, dynamical ZIKV infectious models became a rapidly growing research interest.

4.1 Model

To describe the ZIKV transmission via humans and mosquitos, we use a model, which includes several of the
discussed features of mosquito-borne infection resulting in a complex ZIKV model as shown in Figure 5(a).
The core of vector-borne disease models is a so-called SEIR submodel for humans combined with an SEI
submodel for mosquitos: It is commonly assumed that a human individual that is infected with the Zika virus
belongs in a so-called exposed (E) compartment for the incubation time of a couple of days68,58 before the virus
can be transmitted to other individuals such as mosquitos or humans. Thus, the classical SIRmodel is extended by
an intermediate compartment E, leading to the so-called SEIR model. Analogously, an exposed compartment is
assumed within the propagation of the disease in mosquitos. However, since the lifespan of mosquitos is short
compared to typical timescales of recovering from a Zika virus infection, there is no recovered compartment for
mosquitos, resulting in the mentioned SEI model. A mosquito may progress from susceptible Sv to exposed Ev

when infected by an infected human with transmission rate �hv and converts to infected Iv with rate �v afterwards.
Additionally to the classical SEIR-SEI model, the following extensions are introduced into the model. Birth of

susceptible mosquitos is assumed to be relative to the total number Nv ¼ Sv þ Ev þ Iv with rate 	v. Since global
changes of the total mosquito population should not be covered by the model, death with the same rate 	v is
assumed to all three mosquito compartments.65,69 When biting susceptible humans Sh, infected mosquitos Iv
transmit the virus with rate �vh.

Tönsing et al. 1987



For the ZIKV there is a considerable amount of asymptomatically infected humans of approximately 80%
reported,58 which do not show any symptoms but are able to spread the disease.70 This is included in the model by
splitting up the compartment of infected humans Ih to asymptomatically infected Ih,a and symptomatically infected
Ih,s humans. The proportion of exposed humans becoming asymptomatically infected is represented by the
parameter 
as. Since this parameter is of great interest in practice and only a rough estimate is available a
priori, 
as is estimated simultaneously with all other model parameters.

As suggested in Gao et al.,68 compartments Ih,s and Ih,a both transmit to an additional compartment of so-called
convalescent humans Ih,c with rate �h1 before they proceed with rate �h2 to the compartment of recovered humans
Rh.

68 Sexually transmitted direct human-to-human infection has been reported71,72 and is incorporated into the
model by human-to-human transmission rate �hh.

68,73 It has been shown that the virus persists longer in semen
than in serum.74,75 Thus, besides asymptomatically infected Ih,a and symptomatically infected Ih,s humans, in the
model also convalescent humans Ih,c are able to transmit the virus to susceptible humans, whereas mosquitos
cannot be infected by biting convalescent humans.68

Since virus transmission rates are assumed to be orders of magnitudes faster than human birth or death rates,
they are completely neglected in the model. The initial value of convalescent humans is Iinith,c ¼ 0, as well as for
recovered humans Rinit

h ¼ 0. All other initial values are estimated comprehensively with the model parameters.
The model equations for the described model read

_Sv ¼ 	vNv �
�hvSvðIh,a þ Ih,sÞ

Nh
� 	vSv

_Ev ¼
�hvSvðIh,a þ Ih,sÞ

Nh
� �vEv � 	vEv

_Iv ¼ �vEv � 	vIv

(a) (b)

Figure 5. (a) Model structure of the full ZIKV infection model as described by equation (13). Mosquitos progress from susceptible Sv

to exposed Ev when infected by a contagious human and convert to infected Iv with rate �v. Birth and death of mosquitos are described

by rate 	v. When bitten by an infected mosquito, susceptible humans Sh progress with rate �vh either to asymptomatically infected Ih,a
or symptomatically infected Ih,s, before they convert to convalescent Ih,c with rate �h1 and finally to recovered Rh with rate �h2. The

proportion between symptomatically and asymptomatically infected is controlled by 
as. All infected humans can transmit the virus to

susceptible humans with rate �hh, whereas only symptomatically and asymptomatically infected humans infect susceptible mosquitos

with transmission rate �hv. Only the cumulative incidence of symptomatically infected humans is observed (c.f. equation (14)). (b) Data

of newly infected humans76 and calculated cumulative sum of infected humans.
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_Sh ¼ �
�vhShIv
Nv

�
�hhShðIh,a þ Ih,s þ Ih,cÞ

Nh

_Eh ¼
�vhShIv
Nv

þ
�hhShðIh,a þ Ih,s þ Ih,cÞ

Nh
� �hEh

_Ih,a ¼ 
as�hEh � �h1Ih,a

_Ih,s ¼ ð1� 
asÞ�hEh � �h1Ih,s

_Ih,c ¼ �h1ðIh,a þ Ih,sÞ � �h2Ih,c

_Rh ¼ �h2Ih,c

Nv ¼ Sv þ Ev þ Iv

Nh ¼ Sh þ Eh þ Ih,a þ Ih,s þ Ih,c þ Rh ð13Þ

The unit of the rates �hh,�vh,�hv, �v, �h,	v, �h1, and �h2 is the inverse of the time t�1, for the initial values
Sinit
h ,Einit

h , Iinith,s , I
init
h,a , and Iinith,c the unit is number of humans, for initial values Sinit

v ,Einit
v , and Iinitv it is number of

mosquitos and 
as is dimensionless.

4.2 Data

Empirical data of newly infected humans is published by Colombia’s National Health Institute on a weekly basis.
These numbers contain also delayed reported cases from earlier weeks. As numbers of delayed reported cases are
in the same order of magnitude as the current new infections, they should not be neglected. Hence, being the only
continuously updated data source, graphical data from the weekly reports had to be used.76 For reliably extracting
the approximate number of reported cases, we used the WebDigitizer tool.77 The extracted data is depicted in
Figure 5(b).

In contrast to the first example, the current number of infected humans is not observed directly. Instead, the
weekly number of newly infected individuals is recorded. Thus, the cumulative sum of newly infected is calculated
and compared to the model, although fitting of cumulative incidence data can cause issues concerning
underestimation of confidence intervals sizes.36 However, identifiability analyses and model reduction methods
should not be affected. The cumulative sum of symptomatically infected humans is assessed in the model via the
integral over the influx to Ih,s so that the observation function reads

yobsðtiÞ ¼ xobs þ "ðtiÞ ¼

Z
ð1� 
asÞ�hEhdtþ "ðtiÞ ð14Þ

An error model is chosen for which " � Nð0, �2Þ, with

�2 ¼ �2relx
2
obs þ �

2
abs ð15Þ

with relative �2rel and absolute �2abs error parameters, which are treated as additional parameters to be
comprehensively estimated with the other model parameters. In the presented approach, only information
contained in the data is utilized to estimate the parameters and to assess their uncertainties, so that no prior
knowledge from the literature, e.g., for transmission rates or average duration times of infection states will be
integrated into the analysis.

4.3 Parameter estimation

In order to obtain parameter estimates using the introduced model and data, the multistart fitting procedure with
1000 initial guesses was performed. In addition to several suboptimal local minima, the global optimum according
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to minimal objective function could be identified in 163 runs (Figure 6(a)). Using the best fit parameters, the model
is able to describe the data adequately, as shown in Figure 6(b).

Inspection of the likelihood profiles indicates that the estimated parameters have large uncertainties, as many
profiles are flat and reveal non-identifiabilities (Figure 7). As a consequence of structural non-identifiability
of parameters �h2 and 
as and the practical non-identifiability of �hh,�vh, �h1,E

init
v Iinitv ,Sinit

h ,Sinit
v ,	v, and �abs,

the estimated values within the global minimum are not unique as depicted in the lower panel of Figure 6(a).
Even for the global likelihood optimum, there are very few horizontal structures in the parameter plot indicating
many flat regions in the parameters space. Flat likelihood profiles shown in Figure 7 indicate large ranges of
parameter values which are in accordance with the data. Therefore, the mere estimated values and the
corresponding trajectories are of limited impact without assessing uncertainties. Since uncertainties of
parameters translate to uncertainties of the compartment trajectories, the quality of the drawn conclusions is
restricted.

4.4 Model reduction

In several circumstances, it is reasonable to reduce the model to a level of complexity which is identifiable for given
data. In the following, model reduction based on the likelihood profiles is exemplified. Since a reduction step might
have an impact on all parameters, the likelihood profiles have to be calculated and checked after each reduction
step. Figure 8 shows exemplary profiles of intermediate steps. All model reduction steps are summarized in
Table 2.

(a) (b)

Figure 6. (a) Multistart optimization with 1000 fits for the full ZIKV infection model (equation (13)) with optimization end-point

parameters. For illustration, likelihood values are shifted to the baseline by subtraction of the likelihood value for the global minimum.

Search regions for the estimated parameters are: initial values 2 ½10�5, 1010�, kinetic parameters 2 ½10�10, 105�, �abs 2 ½10�5, 103�,

�rel 2 ½10�5, 10�0:3�, 
as 2 ½0, 1�. Computation time for 1000 fits was 56.9 min, i.e. approximately 3.4 s for an average single fit on a

3.4 GHz quad-core CPU. (b) Best fit of observation function with data and model dynamics of compartments for the estimated

parameters.
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In a first instance, the profile of the initial value parameter Sinit
v (Figure 7(k)) of susceptible mosquitos is

investigated. It is only bounded to lower values as the likelihood profile is flat towards extreme large values.
Also both remaining initial values of the mosquito population Einit

v and I initv (Figure 7(g) and (i)) exhibit practical
non-identifiability but with profiles being flat to minus infinity. Obviously, the data of the infected humans does
not provide information about the upper bound of the mosquito population size nor about the lower bound for
the exposed and infected mosquitos. The only possibility to remove this redundancy is to use prior knowledge
about the ratio of mosquitos to humans in the initial states at time t¼ 0. The parameter 
hv is therefore
introduced by

Sinit
v ¼ 
hvS

init
h

Einit
v ¼ 
hvE

init
h

Iinitv ¼ 
hvI
init
h

ð16Þ

with prior value �
hv ¼ 5 and prior uncertainty ��
hv ¼ 5 as suggested in the literature.78,79 This first step introduces a
link between the total population size of humans and mosquitos in order to facilitate the further investigation and
is the only additional prior information included into the analysis.

-8 -6 -4 -2
log

10
(

hh
)

68%

90%

95%

le
ve

l

0.2 0.3 0.4
log

10
(

hv
)

0 2 4
log

10
(

vh
)

-8 -6 -4 -2
log

10
(

h1
)

-8 -6 -4 -2 0 2 4
log

10
(

h2
)

4 6
log

10
(E

h
init )

68%

90%

95%

le
ve

l

-4 -2 0 2 4 6 8
log

10
(E

v
init )

2 4 6
log

10
(I

h
init )

-4 -2 0 2 4 6
log

10
(I

v
init )

5 6 7 8 9
log

10
(S

h
init )

-2 0 2 4 6 8
log

10
(S

v
init )

68%

90%

95%

le
ve

l

-8 -6 -4 -2
log

10
(

v
)

-1.7 -1.5 -1.3
log

10
(

h
)

-8 -6 -4
log

10
(

v
)

0.2 0.4 0.6 0.8
log

10
(

as
)

-4 -2 0
log

10
(

abs
)

68%

90%

95%

le
ve

l

-1.3 -1.2 -1.1
log

10
(

rel
)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (I) (m) (n) (o)

(p) (q)

Figure 7. Likelihood profiles for the full Zika model (equation (13)). Flat profiles of parameters �h2 (panel e) and 
as (panel o) reveal

structural non-identifiabilities, whereas the profiles of �hh, �vh, �h1, Einit
v , Iinit

v , Sinit
h , Sinit

v , 	v and �abs exhibit practical non-identifiabilities.

Computation time was approximately 40.4 min on a 3.4 GHz quad-core CPU.
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As described in Section 2.7, non-identifiable parameters with likelihood profiles being flat to minus infinity
allow for reduction in a way that parameters are set to zero. Consequently, a purely relative error model (c.f.
equation (15)) is indicated by the likelihood profile (Figure 7(p)) of �abs (reduction step 2). Likewise, 	v (Figure
7(l)) can bet set to zero and so the mosquito’s birth and death dynamics are removed from the model, as they
cannot be constrained to lower values by the analyzed data (reduction step 3).

The practical non-identifiable parameter �h1 and the structural non-identifiable parameter �h2 (Figure 7(d) and
(e)) describe the progression of infected humans Ih,a and Ih,s via the convalescent state Ih,c into the recovered
compartment Rh. As the human-to-human infection rate �hh (Figure 7(a)) is also in accordance with zero, no
interaction of the dead end! Ih,c! Rh with the rest of the model is left. Thus, the distribution of individuals and
their progression within this submodule cannot be resolved by the data. In order to resolve this over-complexity of
the model, the structural non-identifiable parameter �h2 can be set to an arbitrary value (reduction step 4) and �h1
can be fixed to zero due to the flat likelihood profile towards minus infinity (reduction step 5). Setting �h1 ¼ �h2 ¼ 0
is equivalent with the introduction of a new state Ih,scR, which combines the three states Ih,s, Ih,c and Rh, as final
compartment for symptomatically infected humans.

(a) (b)

Figure 8. (a) Likelihood profile of 
as at the intermediate model reduction step 6. Upper panel shows the flat likelihood profile,

lower panel shows the trace of the reoptimized parameters relative to their maximum likelihood estimate. Parameters Sinit
h , Einit

h and

Iinit
h are changed in parallel along the profile, as indicated by gray solid lines (all lines overlap), whereas all others parameters stay

constant (black solid line). (b) Likelihood profile and relative change of reoptimized parameters for �hh at model reduction step 7. Only

the five parameters with the largest relative change during reoptimization are labeled in the lower panel.

Table 2. Model reduction steps from the full Zika model (equation (13)) to the reduced Zika model

(equation (17)).

Step Reduction Reasoning

1 introduction of 
as profiles Einit
v and Iinit

v flat to �1, Sinit
v flat to þ1

2 �abs¼ 0 profile flat to –1

3 	v¼ 0 profile flat to –1

4 �h2¼ 0 structural non-identifiable

5 �h1¼ 0 profile flat to –1

6 
as¼ 0.8 structural non-identifiable

7 �hh¼ 0 profile flat to –1
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A structural non-identifiability is observed for 
as, as its profile is flat over the entire parameter range
and moreover shows a functional relationship with parameters Sinit

h , Einit
h and Iinith , as illustrated in Figure 8(a).

This behavior originates from the fact that 
as represents the proportion of exposed humans Eh moving to
the compartment of asymptomatically infected humans Ih,a and 1� 
as is the proportion moving to
symptomatically infected humans Ih,a. The proportion parameter 
as can be tuned to arbitrary values because
the same total amount of symptomatically infected is obtained when compensating with the coupled initial value
of exposed humans Einit

h . As long as the branch of asymptomatically infected humans cannot be compared to any
observation, the parameters cannot be decoupled and 
as remains structurally non-identifiable. Therefore, model
reduction can be performed by either remove the module of asymptomatically infected humans Ih,a from the model
or to fix this parameter to a literature value. Here, we choose the latter and fix 
as ¼ 0:8 as reported in the
literature58 to be still able to interpret �h in terms of a general transmission rate from exposed to infected
humans (reduction step 6).

The likelihood profile of �hh in Figure 8(b) indicates that the frequently discussed infection via human–human
transmission rate �hh is not required to explain the available data as it is statistically in accordance with zero (final
reduction step 7). Thus, based on this analysis, there is no significant relevance of the human-to-human infection
of the Zika virus, as already suggested in the literature.73

(a) (b)

Figure 9. (a) Multistart optimization with 1000 runs for the fully reduced model. The global minimum is found in almost 50% of the

runs and the parameter values within this optimum are unique. For illustration, likelihood values are shifted to the baseline by

subtraction of the likelihood value for the global minimum. Computation time for 1000 fits was 44.1 min, i.e. approximately 2.6 s for an

average single fit on a 3.4 GHz quad-core CPU. (b) Agreement of model and data for the best fit parameters as well as trajectories of

all compartments.

Tönsing et al. 1993



4.5 Fully identifiable model after reduction

Multistart optimization of the fully reduced model

_Sv ¼ �
�hvSvðIh,a þ Ih,scRÞ

Nh

_Ev ¼
�hvSvðIh,a þ Ih,scRÞ

Nh
� �vEv

_Iv ¼ �vEv

_Sh ¼ �
�vhShIv
Nv

Figure 10. Likelihood profiles of the fully reduced and identifiable model (equation (17)). All parameters are identifiable, although

the information about 
as exclusively originates from the assumed prior. Computation time was approximately 3.4 min on a 3.4 GHz

quad-core CPU.

Table 3. Estimated parameter values for reduced Zika model (equation (17)).

Physical Estimated Profile likelihood-based Assumed

Parameter unit Search region parameter value confidence interval prior

�hv 1/t 10–10–105 1.57 [1.17, 1.96] –

�vh 1/t 10–10–105 0.087 [0.016, 0.092] –

Einit
h humans 10–5–1010 1.30� 103

½0:84� 103, 1:85� 103� –

Iinit
h humans 10–5–1010 189 [170, 211] –

Sinit
h humans 10–5–1010 5.3� 105

½5:1� 105, 5:6� 105� –

�h 1/t 10–10–105 0.04 [0.02, 0.07] –

�v 1/t 10–10–105 0.0038 [0.0013, 0.0144] –


hv
mosquitos

human
0–20 5 [0, 15] Nð5, 52Þ

�rel – 10–5–10–0.3 0.06 [0.05, 0.07] –
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_Eh ¼
�vhShIv
Nv

� �hEh

_Ih,a ¼ 0:8 � �hEh

_Ih,scR ¼ 0:2 � �hEh

Nv ¼ Sv þ Ev þ Iv

Nh ¼ Sh þ Eh þ Ih,a þ Ih,scR

Iinith,a ¼ 0:8 � Iinith

Iinith,scR ¼ 0:2 � Iinith

Sinit
v ¼ 
hvS

init
h

Einit
v ¼ 
hvE

init
h

Iinitv ¼ 
hvI
init
h ð17Þ

with the same initial guesses as for the full model in the previous section exhibits a clear global optimum
with unique parameter values (Figure 9(a)). Horizontal structures of the fitted parameters in the lower panel of
Figure 9(a) support the uniqueness of the global optimum in the parameter space. Consequently, Figure 10 reveals
identifiability of all estimated model parameters as well as finite profile likelihood-based confidence intervals, c.f.
Table 3. Figure 9(b) shows the agreement of data and model.

5 Summary

In this article, parameter estimation and profile likelihood-based analyses have been applied to two examples of
infectious disease models. Keeping the usage of prior knowledge for parameter values to a minimum, solely
information contained in the data of infected individuals was used in order to estimate parameters and assess
their uncertainties. The first example was a basic SIR model where all parameters were identifiable.

As a second example, a comprehensive model of Zika virus infection via mosquitos and with data of infected
humans from Colombia was analyzed. Profile likelihood-based analysis shows non-identifiability of several
parameters. It can be concluded that the data does not provide information about the duration of the acute or
convalescent phase of the ZIKV infection disease in humans, the proportion of asymptomatically infected humans
or the population size of the mosquitos. Moreover, the data alone does not provide evidence for human–human
infections. After elimination of non-identifiabilities, a minimal model with identifiable parameters could be
derived.

It should be noted that here we focused on a data based model reduction scheme, which points to a result where
all aspects of the model can be restricted to finite confidence intervals by the analyzed data. The validity and
benefit of such a strategy as well as the number of reasonable reduction steps depend on the application setting.
Therefore, model reduction always has to be augmented with plausibility checks to prevent wrong conclusions.
However, the method nicely illustrates the amount and quality of information contained in the analyzed data.
Furthermore, this procedure demonstrates the commonly strong dependence of infectious disease models on
prior knowledge and the risk of drawing conclusions predominately based on prior information rather than on
recorded data.

In both investigated examples, there is a good agreement between data and model and it was demonstrated how
uncertainties about model parameters translate to compartment trajectories. Since the profile likelihood
constitutes an intuitive generalization of classical approaches for quantification of uncertainties to nonlinear
settings as they occur in ODE models, we enforce usage of the reviewed methodology in the infectious disease
modeling field.
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ins.gov.co/boletin-epidemiologico/Boletn%20Epidemiolgico/2016%20Boletin%20epidemiologico%20semana%2036.pdf
(2016, accessed 14 October 2016).

77. Rohatgi A. WebPlotDigitizer, http://arohatgi.info/WebPlotDigitizer (2016, accessed 14 October 2016).
78. Manore CA, Hickmann KS, Xu S, et al. Comparing dengue and chikungunya emergence and endemic transmission in

Aaegypti and A. albopictus. J Theor Biol 2014; 356: 174–191.
79. Manore C, Ostfeld R, Agusto F, et al. Defining the risk of Zika and chikungunya virus transmission in human population

centers of the eastern United States. PLoS Negl Trop Dis 2016; 11(1): e0005255.

1998 Statistical Methods in Medical Research 27(7)

http://http://www.who.int/mediacentre/news/statements/2016/1st-emergency-committee-zika/en/
http://www.ins.gov.co/boletin-epidemiologico/Boletn%20Epidemiolgico/2016%20Boletin%20epidemiologico%20semana%2036.pdf
http://www.ins.gov.co/boletin-epidemiologico/Boletn%20Epidemiolgico/2016%20Boletin%20epidemiologico%20semana%2036.pdf
http://arohatgi.info/WebPlotDigitizer

