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1 Introduction

Organisational stuff:

• Which faculty ? Master or bachelor ?

• Computer exercises. Matlab. Who does not know to program ?

• Communication via ILIAS

• Lecture notes ready midnight before the lecture

• If something is unclear: Ask !

Figure 1.1: The three directions of physics

• The direct and the inverse problem

– Direct problem

∗ Look at biology

∗ Write down equations

∗ Investigate equations and their solutions

– Inverse problem

∗ Start from data

∗ Estimate parameters in models

∗ Essentially statistical
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Relationship Mathematical Biology to Systems Biology
Mathematical Biology :

• Only few players, small systems

• Long tradition, oldest paper here from 1798

• Often not close to biology

• Data were often not available

Systems Biology :

• Investigates intracellular networks, ”systems”

• Applies systems theory of engineering for the analysis

• First ideas around 1950

– N. Wiener, 1948: Cybernetics, or Control and Communication in the
Animal and the Machine [117]

– L. von Bertalanffy, 1948: Zu einer allgemeinen Systemlehre, Biologia Gen-
eralis [114]

• Real birthday: 2001

• Disappointment about Human Genome Project

• Close to data

Relation between physics and biology
Biology:

• static

• qualitative

• descriptive

Physics:

• dynamic
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• quantitative

• predictive

Physics:

• Believing in fundamental laws was very productive

• Use mathematics to formulate laws

Biology:

• Principles instead of hard fundamental laws

• But, due to evolution, ”function” makes sense in biology

• Use mathematics to understand function and principles

Evolution is cool, needs just two ingredients :

• Variability

• Restricted resources

Benefits and goals of mathematical models in biology:

• Make assumptions explicit

• Understand essential properties, failing models

• Condense information, handle complexity

• Understand the role of dynamical processes, e.g. feed-back

• Impossible experiments become possible

• Prediction and control

• Understand what is known

• Discover general principles

• ”You don’t understand it until you can model it”
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Figure 1.2: We are a dynamical system on all time and length scales

Literature: FOLIE

• J.D. Murray: Mathematical Biology [76]. The Bible

• F. Brauer, C. Castillo-Chávez: Mathematical Models in Population Biology
and Epidemiology [12]

• J. Keener, J. Sneyd: Mathematical Physiology [51]. From biochemistry to
muscle and ear. My favorite

• C.P. Fall, E.S. Marland, J.M. Wagner, J.J. Tyson: Computational Cell Biology
[20]. All about cells
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• F.C. Hoppenstaedt, C.S. Peskin: Modeling and Simulation in Medicine and
Biology [41]. Direction biomedical engineering

• M. Farkos: Dynamical Models in Biology. [21]. Pretty mathematical, popula-
tion dynamics

• D.S. Jones, B.D. Sleeman: Differential Equations and Mathematical Biology
[48], mathematical

• Bulletin of Mathematical Biology: Special Issue ”Classics of Theoretical Biol-
ogy” Volume 52 & 53, Reprints of classical papers with discussion

• Biochemistry:

– L. Stryer: Biochemistry [6]. The hard tour

– H. Rehm, F. Hammar: Biochemie light [88]. The gentle tour

2 Integration of differential equations

Remark on the dealing with numerics

• Never try to reinvent the wheel !

• Some issues one really has to understand, e.g. stiff differential equations

• Many algorithms one can just apply, e.g. random number generators

• THE book: ”Numerical Recipes” [81]

All models in the following will be differential equations

Task: Given

• Dynamical system:

~̇x = ~f(~x) ,

• Initial values ~x(t0)
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• Find a trajectory ~x(ti), ti > t0, which coincides with the true trajectory up to
a controllable error.

Nomenclature, skip all vectors:

d

dt
= ,̇

d

dx
= ′, Note: ẍ = ḟ(x) = f ′(x)ẋ = f ′(x)f(x) (1)

Principal idea:

• Integration stepsize : h

• Taylor expansion :

xt+h = xt + ẋth+
1

2
ẍth

2 +
1

6
x

(3)
t h3 +O(h4) (2)

ẋt given by f(xt), but one does not want to calculate x(n)

• Truncation after first order : Euler method:

xt+h = xt + f(xt)h+O(h2)

”First order method” WS 1

• Idea: Higher order procedure by clever function evaluations

– Consider:

k1 = f(xt)h

Define:

xt+h := xt + f

(
xt +

1

2
k1

)
h

xt+h = xt + f

(
xt +

1

2
f(xt)h

)
h

xt+h = xt +

[
f(xt) + f ′(xt)

1

2
f(xt)h

]
h

xt+h = xt + f(xt)h+
1

2
f ′(xt)f(xt)h

2

– By eq. (1) the 2. order term in eq. (2) cancels, resulting in 2. order method
called (midpoint method).
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Figure 2.1: Euler and midpoint method

This can be iterated

• In general:

k1 = f(xt)h

kj = f

(
xt +

∑
l

Γjlkl

)
h

xt+h = xt +

p∑
j=1

γjkj
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Especially:

k1 = f(xt)h

k2 = f(xt + k1/2)h

k3 = f(xt + k2/2)h

k4 = f(xt + k3)h

xt+h = xt +
k1

6
+
k2

3
+
k3

3
+
k4

6
+O(h5)

is called 4. order Runge-Kutta method (1895)

• In general:

One 4. order Runge-Kutta step with stepsize h is more accurate than 2 midpoint
steps with h/2, is more accurate than 4 Euler steps with h/4

Step size control

• Procedure to control the error

• Internal assessment of the error and adjustment of step size h

• Example: Runge-Kutta 4/5:

– Integrate with Runge-Kutta 4. order

– Integrate with Runge-Kutta 5. order with small addidional effort

– Derive upper bound for error from the difference

– If error too large, reduce step size h

– Relative and/or absolute error ...
1/19

1W/20
Implicit methods for stiff systems

• Stiff systems: Systems with very different time scales.

• Consider

ẋ1 = 998x1 + 1998x2

ẋ2 = −999x1 − 1999x2

with x1(0) = 1, x2(0) = 0
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• Solution :

x1(t) = 2e−t − e−1000 t

x2(t) = −e−t + e−1000 t

Very different time scales: 1 and 1/1000

• Runge-Kutta must take care of the fast time scale, although it is irrelevant

• Reason: Consider

ẋ = −c x, c > 0, Solution: x(t) = x(0) e−ct

Consider Euler method, arguments also holds for higher order methods

xt+h = xt + ẋth = (1− ch)xt

Method is called explicit, because xt+h is explicitly given as function of xt.

• Instable, if |1− ch| > 1, i.e. h > 2/c

• Consequence: If c is large, process is fast, h must be small

• Note: Euler method corresponds to

ẋt ≈
xt+h − xt

h
, forward difference

Solution:

• Implicit method:

xt = xt+h − ẋt+hh =︸︷︷︸
here

xt+h + cxt+hh = xt+h(1 + ch)

Result:

xt+h =
xt

1 + ch

Stable for all h !
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• Note: Implicit Euler method corresponds to

ẋt+h ≈
xt+h − xt

h
, backward difference

• For non-linear differential equations ẋ = f(x) it follows

xt+h = xt + f(xt+h)h, ”implicit”

Has to be solved numerically

– Linearise f(xt+h), yields Jacobian J

– Solution needs the inverse of J . Effort ∝ (dim x)3

– Trade-off between many Runge-Kutta steps with small step size and in-
version of a matrix with ”normal” step size

Lessons learned:

• Numerical integration of differential equations by clever function evaluations

• Runge-Kutta 4. order typically the method of choice

• Stiff systems need implicit methods
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Part I

From Mathematical Biology ...

3 Population dynamics

Mathematical biology (also Physics :-) is essentially populations dynamics:
Populations of:

• Molecules

• Viruses

• Animals

• Occupation number formalism in quantum mechanics (a und a†)

• Mails

3.1 One Species

T.R. Malthus, 1798: An Essay on the Principle of Population [65]
Dark clouds above mankind !

Ṅ = births − deaths + migration

• 1798 not too much migration

• Births: ∝ N

• Deaths ∝ N

Ṅ = aN − bN = (a− b)N

N(t) = N(0)e(a−b)t

• a− b < 0: Extinction

• a− b > 0: Growth without limits

14



• Case a = b not relevant: Conditions that have to be fine-tuned can not be
realized in biology

That can not be, model is intuitive, but wrong

Definition: Per capita growth rate: Ṅ
N

= a− b

Verhulst, 1838 [111] & Pearl, Reed 1920 [79]:
Logistic differential equation1 (x = N):

ẋ = ax− bx2

or:
ẋ = (a− bx)x

with state-dependent per capita growth rate ẋ/x: (a− bx), comprising:

• limited resources

• wars

• Appreciation of predictions of exponential models (Club of Rome)

Analogy to mails WS 2

Transformation: r = a, K = a/b:

ẋ = rx
(

1− x

K

)
, r,K > 0

Solution by visual inspection:

• x small: ẋ = rx =⇒ x(t) ∝ ert

• x large: ẋ = − r
K
x2 =⇒ x(t) ∝ K

r
1
t

• x = K: ẋ = 0

Solution by separation of variables:∫
dx

x(K − x)
=

r

K

∫
dt

1Not to be confused with the logistic difference equation
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With partial fraction decomposition:

1

x(K − x)
=

1

K

(
1

x
+

1

K − x

)
follows:

r

K
t+ c =

1

K

(∫
1

x
dx+

∫
1

K − x
dx

)
=

1

K
(log x− log(K − x))

With x(t = 0) = x0 < K determine integration constant c

c =
1

K
(log x0 − log(K − x0))

Solution for x(t), sort terms, exponentiate

x(t) =
Kx0

x0 + (K − x0)e−rt

Also holds for x0 ≥ K

Consider 2. derivative

ẍ = r2x

(
1− 2x

K

)(
1− x

K

)
Change of sign at x = K/2, inflection point
This a testable prediction of the model
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Figure 3.1: Solution of logistic differential equation

Interpretation:

• K = a/b: Capacity of biotope

• r: Velocity of convergence

Figure 3.2: Inhabitants of the USA 1790-1990

1/17
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3.2 Lotka-Volterra System

Describes oscillatory predator-prey systems

Example: Fur statistics of the Hudson Bay Company

Figure 3.3: Canadian lynx data 1820-1936

Original literature from 1925 & 1926: [63, 113]
Lotka was about chemical reaktions

• Predator-prey model, motivated by oscillations in fish populations in the adria

• Prey: x(t)

• Predator: y(t)

Assumptions:

• Without predator the prey accumulates proportional to its number with a x.
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• Prey is diminished by being eaten proportional to the number of both : −b xy
b: Chasing efficiency

• Predator accumulates through eating prey proportional to the number of both:
c xy

c: Eating-to-offspring efficiency

• Predators die proportional to their number : −d y

• Well mixed populations. Ordinary differential equation instead of partial dif-
ferential equations

Results in:

ẋ = ax− bxy
ẏ = cyx− dy

Can be read as change in growth/death-rate

ẋ = (a− by)x

ẏ = (cx− d) y

The following analysis will show that this model can physically/biologically
impossibly be correct for three fundamental reasons

For analysis: Transformation to dimensionless quantities

• No unique procedure

• But always helpful

u(τ) =
cx(t)

d
, v(τ) =

by(t)

a
, τ = at, α =

d

a
yields:

du

dτ
= u(1− v)

dv

dτ
= αv(u− 1)

Note: There is only one real free parameter: α

Fixed points: LHS = 0
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• u = v = 0 not interesting

• u = v = 1 interesting

In (u, v)-phase space:

dv

du
= α

v(u− 1)

u(1− v)

with singular points at u = v = 0 and u = v = 1

Solution by separation of variables:∫
1− v
v

dv = α

∫
u− 1

u
du

yields :
log v − v + C = α(− log u+ u)

or:
− log vuα + v + αu = C

• C(u, v) is a conserved quantity of the dynamics: ”First Integral”

• Theorem:

– Given a D-dimensional dynamical system with D
2

conserved quanities

– Then, the system is integrable

– It can be transfered to a torus, superposition of circular movements

– Discussion sun-planet system, difference to harmonic oscillator, frequency
amplitude dependency 2/19

• Lotka-Volterra-system is a conservative system

– But C is not a Hamilton function

– Equations of motion do not follow from Hamilton equations with H = C

∂C

∂v
= −1

v
+ 1 6= (±)u̇

∂C

∂u
= −α 1

vu
+ α 6= (∓)v̇

WS 3
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– Therefore introduce clever transformation [53, 54, 55]:

– General Lokta-Volterra system

ṅi = εini +
1

βi
αij ninj, αij = −αji, αkk = 0 (3)

Einstein’s sum convention

– Non-trivial fixed point n∗j from ṅi = 0

εiβi + αijn
∗
j = 0, n∗j = −α−1

ij εiβi (4)

– Transformation of variables

zi = log(ni/n
∗
i )

– Solved for ni:

ni = n∗i e
zi

This is not a canonical transformation !

– With (index i suppressed)

ż =
∂

∂t
log

n

n∗
=
n∗

n

ṅ

n∗
=
ṅ

n
, ṅ = ż n = ż n∗ez

inserted in eq. (3), using eq. (4)

żi = γijτj (ezj − 1) = γij
∂G

∂zj

with
γij =

αij
βiβj

, τj = n∗jβj, G = τj(e
zj − zj)

– Now:
Q = z1, P = z2

Define Hamilton function

H = γτ1(eQ −Q) + γτ2(eP − P ), with γ = γ12 = −γ21

and obtain Hamilton equations

Q̇ =
∂H

∂P
, Ṗ = −∂H

∂Q
(5)
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• Conservative/Hamiltonian systems & biology

– In biology, there are always random pertubations ε of the dynamics:

~̇x = ~f(~x) + ~ε

– Hamiltonian systems are not stable under random perturbations.

– Solutions diverge

”Proof”

∗ Hamilton-Jacobi formalism

∗ Easist to solve Hamiltonian: H = 0

∗ Find canonical transformation to H = 0, Münchhausen-
transformation

∗ Hamilton’s equation of motion for x = (q, p)

ẋ = 0

Euler method
xt+h = xt

Noise ε is also somehow transformed: η

xt+h = xt + ηt

Brownian motion
< x2(t) >∝ t

Variance diverge

– 1st reason, Lotka-Volterra can not be realised biologically.

– Remark: Eq. (5) can not be integrated by Runge-Kutta. Needs
symplectic integrators [27, 15] to ensure ”energy conservation”

Characterisation of the dynamics

• Minimum of C(u, v) given by:

∂C(u, v)

∂u
= 0

C(u, v) = − log vuα + v + αu
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−α 1

uv
v + 0 + α = 0

=⇒ umin = 1

Correspondingly:
∂C(u, v)

∂v
= 0 =⇒ vmin = 1

Remember u = v = 1 was non-trivial fixed point

• In original variables: xmin = d/c, ymin = a/b

• It holds
Cmin = 1 + α

• Expansion around Cmin, umin = vmin = 1 :

u = umin + x = 1 + x

v = vmin + y = 1 + y

C = − log(1 + y)− α log(1 + x) + (1 + y) + α(1 + x)

With log(1 + z) ≈ z − z2/2, it follows

C = −y + y2/2− α(x− x2/2) + 1 + y + α(1 + x)

and

y2/2 + αx2/2 = C − (1 + α) > 0

an ellipse-equation.
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Figure 3.4: (u, v)-diagram

No characteristic scale: 2nd reason the biologically not plausible/possible 1F/20

• Or:

du

dτ
= u(1− v)

dv

dτ
= αv(u− 1)

with

u = umin + x = 1 + x

v = vmin + y = 1 + y

yields:

dx

dτ
= −(1 + x) y

dy

dτ
= α(1 + y)x

24



• Since x, y are small, neglect xy

dx

dτ
= −y

dy

dτ
= αx

or:

ẍ = −αx

To remember: Lotka-Volterra is an oscillatory conservative/Hamiltonian system

For small amplitudes: Harmonic oscillator

Digression: Linear (local) stability analysis of fixed points
Consider:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

with fixed points x∗1 und x∗2

0 = f1(x∗1, x
∗
2)

0 = f2(x∗1, x
∗
2)

• Stability of fixed point: Linearise dynamics at fixed point

With
x1 = x∗1 + x̃1, x2 = x∗2 + x̃2

ẋ1 = ẋ∗1+ ˙̃x1 = f1(x∗1+x̃1, x
∗
2+x̃2) ≈ f1(x∗1, x

∗
2)+

∂f1(x∗1, x
∗
2)

∂x1

x̃1+
∂f1(x∗1, x

∗
2)

∂x2

x̃2+O(x̃2)

ẋ2 = ẋ∗2+ ˙̃x2 = f2(x∗1+x̃1, x
∗
2+x̃2) ≈ f2(x∗1, x

∗
2)+

∂f2(x∗1, x
∗
2)

∂x1

x̃1+
∂f2(x∗1, x

∗
2)

∂x2

x̃2+O(x̃2)

Yields with ~̃x =

(
x̃1

x̃2

)
25



~̇̃x =

(
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)∣∣∣∣∣
x∗

~̇̃x = A~̃x the linearised system

• Solution:

~̃x(t) = ~̃x(0)eAt

eAt defined by power series2:

eAt = 1 + At+
1

2
A2t2 + . . .

Diagonalise A

A = V DV T = V

(
a+ ic 0

0 b+ ic

)
V T , V orthogonal matrix

~̃x(t) = ~̃x(0) exp

(
V

(
a+ ic 0

0 b+ ic

)
V T t

)
Eigen-values λ1,2 of A determine the qualitative behavior:

x̃1(t) = a1e
Re(λ1)t cos(Im(λ1)t+ φ1) + a2e

Re(λ2)t cos(Im(λ2)t+ φ2)

• In general: If ...

– both real parts negative: stable fixed point

– eigen-values real: purely exponential

– eigen-values complex: spiral

– eigen-values purely imaginary: whirl

2Cool papers on this topic: [71, 72]
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Real part Imaginary part Denotation
-, - 0 stable knot

+, + 0 unstable knot
+, - 0 sattle point
-, - 6= 0 stable vortex

+, + 6= 0 unstable vortex
0, 0 6= 0 whirl

Eigen-values of A:

det(A−λI) = det

(
a− λ b
c d− λ

)
= (a−λ)(d−λ)−bc = λ2−(a+d)λ+(ad−bc) = 0

λ1,2 =
tr A

2
±

√(
tr A

2

)2

− detA

Thus:
Both eigen-values have negative real part, i.e. fixed point is stable, if:

• tr A(x∗, y∗) < 0
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• detA(x∗, y∗) > 0

Typically, in general population dynamics

ẋ = xF (x, y)

ẏ = yG(x, y)

with F (x, y), G(x, y) per capita growth rate

Thus(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)∣∣∣∣∣
(x∗,y∗)

=

(
x∗Fx(x

∗, y∗) + F (x∗, y∗) x∗Fy(x
∗, y∗)

y∗Gx(x
∗, y∗) y∗Gy(x

∗, y∗) +G(x∗, y∗)

)
Four possibilities for fixed points

• (0, 0)

A =

(
F (0, 0) 0

0 G(0, 0)

)
• (K, 0) with F (K, 0) = 0

A =

(
KFx(K, 0) KFy(K, 0)

0 G(K, 0)

)
• (0,M) with G(0,M) = 0

A =

(
F (0,M) 0

MGx(0,M) MGy(0,M)

)
• The most general case

(K,M) 6= (0, 0), F (K,M) = 0, G(K,M) = 0

A =

(
KFx(K,M) KFy(K,M)
MGx(K,M) MGy(K,M)

)
It always simplifies

End of Digression

Back to Lotka-Volterra
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• Consider dimensionless version

du

dτ
= u(1− v)

dv

dτ
= αv(u− 1)

• Linearising around fixed point

~̇x =

(
0 1
−α 0

)
~x = A~x

Note: symplectic structure

Eigen-values from
λ2 + α = 0

• Yields purely imaginary eigen-values

λ1,2 = ±i
√
α =⇒ whirl

• Disturb structure of the dynamics slightly

u̇ = u(1− v) = u− uv to (1 + ε1)u− (1 + ε2)uv + ε3v + ε4u
2v + ...

v̇ = αv(u− 1) = −αv + αvu to −(α + ε5)v + . . .

apart from set of measure zero of disturbances =⇒ A11, A22 6= 0 and thus:

Re(λ1,2) 6= 0

• Ergo: 3rd reason: The (integrable Hamiltonian) whirl solution ist not stable
against even the smallest disturbances of the model structure.
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Figure 3.5: Deformation of stable vortex

Figure 3.6: Deformation of whirl

Summary:

• Lotka-Volterra shows that a simple predator-prey model can oscillate
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• Lotka-Volterra is unbiological since conservative

– Unstable trajectories under random disturbances of the dynamics

– No scale fixed

– Unstable qualitative dynamics under disturbance of model structure
WS 4

Extensions of the Lotka-Volterra system
Goal must be a limit cycle.
Limit cycle:

• Repelling fixed point ...

• ... but attractive periodic long-term solution

• Unique long-term solution independent of initial values

• Fixed scale, remember size of the island

• Non-conservative(non-Hamiltonian): dissipative

• Stable under the two kind of pertubations

Classical example: van der Pol Oszillator, 1922 [110]
Remark:

• Developed for oscillator circuit based on a triode

• Later generalised for modelling neural activity [10]

ẍ = µ (1− x2) ẋ− ω2
0x, µ > 0
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Figure 3.7: Van-der-Pol oscillator
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Figure 3.8: Van-der-Pol oscillator

The effect:
x2-term:

• If x2 < 1: negative damping: System take up energy (battery)

• If x2 > 1: damping: Systems dissipates energy (resistor)

• Consequence: An attractor, in this case a limit cycle:

Independent from initial values, each trajectory approaches a one-dimensional
invariant set. Potential interpretation.

Figure 3.8: Aristotelian potential perpendicular to the trajectory. Left limit cycle,
right Hamiltonian system
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• Liouville theorem does not hold. Phase space volume is destroyed.

From two to one dimension

Figure 3.9: Phase space volume not conserved

• Due to attractiveness, limit cycles can reliably be integrated by Runge-Kutta
methods

Physics point of view: An open system, not in equilibrium with surrounding

• Small amplitude: low-entropic energy is taken up

• Large amplitude: energy is dissipated high-entropically

• In general: Entropy difference feeds structure formation
2M/20

Linear stability analysis:

ẋ1 = x2

ẋ2 = µ (1− x2
1)x2 − ω2

0x1
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Fixed point:

0 = x2

0 = µ (1− x2
1)x2 − ω2

0x1

at (0,0).

Linearising at (0,0):

A =
∂ ~f

∂~x

∣∣∣∣∣
x∗

=

(
0 1
−ω2

0 µ

)

det

(
−λ 1
−ω2

0 µ− λ

)
= λ2 − λµ+ ω2

0

λ1,2 =
µ

2
±
√
µ2/4− ω2

0

Eigen-values:

• Positive real parts =⇒ Fixed point (0, 0) is repelling

• Structurally stable: Positive real part stays positive if structure of the system
is slightly pertubated

• µ < 2ω0 unstable vortex

• µ ≥ 2ω0 unstable knot

Digression: Global analysis:
Poincaré-Bendixson Theorem: Asymptotic solutions in time continuous two-
dimensional systems:

• Stable fixed points

• Limit cycles

• (exploding solutions)

• Hamiltonian systems, essentially harmonic oszillator
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Proof:
Uniqueness of the solution. Trajectories can not cross each other

This changes essentially in three dimensions: Chaos

End of digression

Remember: There are always stochasitc disturbances of the dynamics
Stochastic van der Pol oscillator:

ẍ = µ (1− x2) ẋ− x+ ε,

Figure 3.10: Stochastic van-der-Pol oscillator

Back to Lotka-Volterra:

ẋ = ax− bxy
ẏ = cyx− dy
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• Try Verhulst-dynamics for prey

ẋ = ax

(
1− x

Kx

)
− bxy

ẏ = cyx− dy

In general not sufficient, can show stable fixed point behavior

• Other interaction terms

Example: Saturation. Predators can only eat a finite number of prey per day

ẋ = ax− b x

S + x
y

ẏ = cy
x

S + x
− dy

This works out

Remark:

Terms of the type x
S+x

, we will see again in Chap. 6 Enzyme Dynamics.

• Many extentions, e.g. competition of two predators y, z about the same prey x

ẋ = ax− b1xy − b2xz

ẏ = cyx− dy
ż = ezx− fz

One can show: One of the predators will die off.
Principle of competive exclusion

• Stochastic versions, see [14] 2/17

WS 5

3.3 Infection Models

First paper: Kermack & McKendrick, 1927 [52], nice review [3]
Questions to be answered:

• How will an infection develop ?

• Will it become an epidemic ?
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• How to vaccinate ?

• How does an epidemic spread spatially ?

SIR-models
Denotations:

• S: Susceptible

• I: Infectious

• R: Removed (immune, isolated, dead)

Sequence:

S → I → R

3.3.1 Well mixed

Assumptions

• Effects fast compared to infection-free life expectancy

• Infection by two-point interaction: rSI

• Removal proportional to I: −aI

• Well mixed population

Result SIR model:

Ṡ = −rSI (6)

İ = rSI − aI (7)

Ṙ = aI (8)

Consistency check:

Ṡ + İ + Ṙ = 0 =⇒ S(t) + I(t) +R(t) = N

particle conservation o.k.

Note: Three dimensional system, one conserved quantity =⇒ not an integrable sys-
tem

38



Fixed points:

0 = −rSI
0 = rSI − aI
0 = aI

• (S∗, I∗, R∗) = (S̃, 0, R̃) with

S̃ = S̃(S(0), I(0), R(0))

R̃ = R̃(S(0), I(0), R(0))

Note: in contrast to van der Pol oscillator: Fixed point depends on initial
values

• Good news: I∗ = 0, but does this put our minds to ease ?

• Under which condition an infection grows ?

Eq. (7):
İ = (rS − a)I

– Decreasing for S < a
r

=: ρ

– Increasing for S > a
r

=: ρ

– ρ: Relative removal rate

Initial conditions

S(0) > 0, Ṡ(0) < 0, I(0) > 0, R(0) = 0

Most relevant question:

• Given S(0), I(0), r, a: Will the infection spread to become an epidemic

• Or: İ(0) > 0 or İ(0) < 0

İ(0) = (rS(0)− a) I(0)

İ(0) < 0 if S(0) <
a

r
= ρ

İ(0) > 0 if S(0) >
a

r
= ρ

Distinction of cases:
Case 1:
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• Since Ṡ(t) ≤ 0 and thus S(t) ≤ S(0) follows for S(0) < a
r
:

İ = (rS − a)I ≤ 0, ∀t ≥ 0

Infection dies off

Case 2:

• The other way round: If S(0) > a
r

an epidemic follows, i.e. I(t) > I(0) for a
certain time t > 0.

• This is a threshold phenomenon

Instead of relative removal rate ρ = a
r

or contact rate 1/ρ = r
a
, often

reproduction rate:

R0 =
r S(0)

a
, critical value = 1

Number of secondary infected by one primary infected in complete susceptible pop-
ulation

Consider (S, I) phase space:

dI

dS
= −(rS − a)I

rSI
= −1 +

ρ

S

Separation of variables: ∫
dI =

∫
dS
(
−1 +

ρ

S

)
yields:

I + S − ρ logS = C = I(0) + S(0)− ρ logS(0) (9)
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Figure 3.11: Initial values: I(0)+S(0)=N

How severe will the epidemic be ?

• Condition for the maximum number of infected

İ = rSI − aI = I(rS − a) = 0

Consequence :
Maximum at S = a

r
= ρ

• Eq. (9) results in

Imax = ρ log ρ− ρ+ I(0) + S(0)− ρ logS(0)

= N − ρ+ ρ log ρ/S(0)

Good news: After maximum is reached, I = 0 is stable fixed point.
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Naive expectation: Whole population will be infected, at the end R(∞) = N

But
Important consequence/prediction of SIR model:

From eqs. (6, 8) follows:

dS

dR
= −S

ρ

Yields:
S(t) = S(0)e−R(t)/ρ ≥ S(0)e−N/ρ, since N ≥ R(t)

and
S(0)e−N/ρ > 0, since S(0) > 0

Thus, it follows
S(t) > 0 ∀t

especially
0 < S(∞) = N −R(∞)

since I(∞) = 0

S(∞) = S(0) exp

[
−R(∞)

ρ

]
= S(0) exp

[
−N − S(∞)

ρ

]
Transcendent equation, solution numerically/graphically
Total number of infected

Itotal = I(0) + S(0)− S(∞)

Consequence, model prediction:
The epidemics ends because of lack of infectious not because of lack of susceptibles !

• The more deadly an infection is, the smaller is the probability that it results
in an epidemic

• Example: Ebola. Discuss last epidemic, S(0) large

• Problem of epidemic is not dieing but infection

• Worst case: Highly infectious, slowly killing. Example: HIV
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Comparison to empirical data

• Weak epidemics

– I, R small

– r small

– a large,

– ρ large

– Ergo: R/ρ small

Often R(t), resp. dR/dt removed per time interval, in worth case deads/day
are reported.

dR

dt
= aI = a(N −R− S) = a

(
N −R− S(0) exp

[
−R
ρ

])
R
ρ
� 1

Approximate:

dR

dt
= a

(
N −R− S(0) +

S(0)R

ρ
− S(0)R2

2ρ2

)
Solution:

R(t) =
ρ2

S(0)

[(
S(0)

ρ
− 1

)
+ α tanh

(
αat

2
− φ
)]

with

α = α(S(0), ρ,N) =

[(
S(0)

ρ
− 1

)2

+
2S(0)(N − S(0))

ρ2

]1/2

φ = φ(S(0), ρ, α) =
tanh−1

(
S(0)
ρ
− 1
)

α

Removal Rate:
dR

dt
=
α2aρ2

2S(0)

1

cos2
(
αat
2
− φ
)

With effectivly 3 free parameters

Example: Bombay plague epidemic 1905-06
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Removed = dead, dR(t)/dt = deads/week

Figure 3.12: Bombay pest epidemic 1905-1906

• Severe Epidemic I: Influenca at an english school

Reported: I(t)

Fit of the complete system

N = 763, S(0) = 762, I(0) = 1, ρ = 202 (from fit)

Condition for epidemic S(0) > ρ clearly fulfilled

Figure 3.13: Influenca epidemic at an english school
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• Severe epidemic II, Eyam (closed to Sheffield)

Plague 1666, trigger of the plague in London

Figure 3.14: Plague epidemic in Eyam

Applications of the model:

• What are optimal vaccination strategies ?

How many % of the people in which intervals ? [100]
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Goal of vaccination: Reduction of reproduction rate R0

R0 =
rS(0)

a
, p : immunised fraction Reff =

r(1− p)S(0)

a
= R0(1− p)

Target: Get R0 to R0 < 1

• Herd immunity

Let people get infected to become immune

Fraction p of immune people to obtain Reff < 1

R0(1− p) < 1 =⇒ p >
R0 − 1

R0

Example, close to Covid-19 in Germany

– Assume N = 108

– Let R0 be 2

– Gives p = 0.5

– Assume mortality of 1 %

– Gives 500.000 deaths

– No chance

Examples for Extensions:

• HIV
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Figure 3.15: AIDS

• Additional state E: Exposed

– infected

– not yet infectious

– SEIR model

• Malaria:

– Survivers are immune for a while and then susceptible again

– Add: R −→ Im −→ S

– The circle closes
WS 6
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3.3.2 Spatial Effects

• In the following without R, it is anyway only attached

• Central questions: Do epidemic waves exist ?
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• Model spatial effects by diffusion, i.e. heat equation

u̇ = D∇2u

Solution:

u(x, t) =
1√

4πDt
exp

(
− x2

4Dt

)
Gaussian with variance increasing linearly in time.

Probability density of Brownian motion.

Yields:

Ṡ = −rSI +D∇2S (10)

İ = rSI − aI +D∇2I (11)

a reaction-diffusion-equation

Epidemic wave:

• I(x, t) = I(z)

• S(x, t) = S(z)

• with z = x− vt and 0 ≤ I(z), S(z) < const

Figure 3.16: Wave as usual, wave in general

3/19
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• Note:
∂I

∂t
=
∂I

∂z

∂z

∂t
= −v∂I

∂z
and

∂I

∂x
=
∂I

∂z

For S accordingly

• Yields 2. order ordinary differential equation in z

Strategy :

• Choose wave as ansatz

• Check whether it works out, remember separation ansatz in QM

Failing Example: heat equation

−vdu
dz

= D
d2u

dz2
=⇒ u(z) = A+Be−vz/D

Unbounded solution: heat equation does not produce waves

Back to eqs. (10,11)
Dimensionless quantities, S0 = S(0)

Ĩ =
I

S0

, S̃ =
S

S0

, x̃ =

(
rS0

D

)
x, t̃ = rS0t, λ =

a

rS0

yields, tildes suppressed

S ′′ + cS ′ + λIS = 0 (12)

I ′′ + cI ′ + I(S − λ) = 0 (13)

c: velocity of propagation

Non-negative I with I(∞) = I(−∞) = 0

Linearise eq. (13) at leading edge of the wave: S → 1

I ′′ + cI ′ + I(1− λ) ≈ 0

Solution:

I(z) ∝ exp
[
(−c± {c2 − 4(1− λ)}1/2)z

]
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• Since for z →∞, I(z)→ 0 with I(z) ≥ 0, it must not oscillate

• There are waves if

c ≥ 2
√

1− λ and λ =
a

rS0

< 1

• Remember reproduction rate

R0 =
rS0

a
=

1

λ
> 1

was the condition for an epidemic to occur

• In dimensional units: v =
√
rS0D(1− a/rS0)

• Accordingly linearise eq. (12)

The full beauty:

Figure 3.17: Epidemic wave

• The wave can only move in one direction, because R0 < 1 ”in the back” of the
wave
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Figure 3.18: Spread of plague in Europe

• Note: The plague from 1348 set the building of our cathedral on hold for nearly
100 years

Reaction-diffusion equations are a large field

• Lotka-Volterra with diffusion

• The most famous: Belousov-Zhabotinski-Reaction

• See also Sec. 5 Pattern Formation by Turing mechanism
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Figure 3.19: Reaction-diffusion equation
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Figure 3.20: Reaction-diffusion equation

From the middle ages to the modern world means loss of notion of variance :-)

• Middle ages

– Spatial effects were modeled by diffusion

– This is realistic for the middle ages, traveling by carriages

– Take snapshots at fixed time intervals ∆t = 1

– Random displacements over short distances

x(t+ 1) = x(t) + ε(t)

Probabilty distribution of ε(t) must decay rapidly with x→ ±∞.
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– With Gaussian ε(t) Brownian motion, i.e. diffusion, results

• Today

– Most of us still travel slow and for short distances

– Some travel very fast on long distances, airplanes

– Snapshots: Random displacement over short distances and some very
large jumps

– Can not be captured by a Gaussian

– Need ”fat tailed” distributions

Most famous example: Cauchy-distribution

pCauchy(x, a, γ) =
1

π

γ2

(x− a)2 + γ2

– Consider variance, 2. moment for a centralised distribution, a = 0

σ2 =

∫ ∞
−∞

dx x2p(x) =
1

π
γ2

∫ ∞
−∞

dx
x2

x2 + γ2
=∞

Notion of 2. moment, variance, is lost. Also no higher moments.

Figure 3.21: Blue: Gauss, red: Cauchy
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• Current research: Infection models for small world networks

Six degrees of separation

– Actors
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– Letters in the US

– Erdos numbery

– Lewinsky number

Lessons learned:

• Logistic differential equation predicts sigmoidal dynamics for small x(0)

• Simple predator-prey models show oscillatory behavior

• Lotka-Volterra is conservative/Hamiltonian

– Diverging trajectories under random pertubation

– Scale not fixed

– Model structure not robust

– Saturation gives desired limit cycle

• Infections show threshold behavior for epidemics

• Epidemics end because of lack of infectious

• Considering diffusion gives infection waves

3M/20
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4 Excitable Systems

∃ two types of cells

• Non-ecxitable cells: stimulus leads to monotone relaxation back to equilibrium

Example: skin cells

• Excitable cells: (sufficient) stimulus leads to action potential

Example: neurons
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Figure 4.1: Neuron

Figure 4.2: Action potential

Vivid example:
Match:

• Gently rub: Nothing happens

• Hard rub: It burns
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or toilette flush :-)

Important quantity: Nernst potential
Effect of specifically permeable membranes:
Two Forces:

• electric, driven by energy

• osmotic, driven by entropy

Figure 4.3: Nernst potential

Consider change of Gibb’s free energy while crossing the membrane :

∆G = −kT log
[Ion]out
[Ion]in

+ ze∆V

In equilibrium:

∆V = VNernst =
kT

ze
log

[Ion]out
[Ion]in

In the case of more types of ions it becomes more complicate

Squid axon:
Na+ K+

Intra cellular 50 mM 397 mM
Extra cellular 437 mM 20 mM

Nernst potential +56 mV -77 mV
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Consequence: Currents in different directions in the range between -77mV und
+56mV

Resting potential: −65mV

4.1 Hodgkin-Huxley Model

Read the paper, please.

Figure 4.4: The infamous giant squid, having nothing to do with the work of
Hodgkin and Huxley on the squid qiant axon

• Model very close to experimental data [39, 40]

• Data from squid axons
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Figure 4.5: Squid axon und actions potential

• Derived without understanding of the molecular mechanism, but ingenious
speculation about

• Very successful: ”Most important model in all of the physiological literature”

• Nobel prize 1963

Nice summary: [89]

Figure 4.6: Membrane with pumps and ion channels
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Figure 4.7: Ion channel
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Figure 4.8: Equivalent circuit diagram

Starting point
CmV̇ + Iion(V ) = 0

Relevant ions in squid axon:

• Na+

• K+

• Rest (mainly Cl−) taken together as leackage current

Assumption I ∝ V yields:

CmV̇ = −gNa(V − VNa)− gK(V − VK)− gL(V − VL) + Iapp

with conductivities gNa, gK , gL, und Iapp: externally applied current

In short:

CmV̇ = −geff (V − Veq) + Iapp

with
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• geff = gNa + gK + gL

• Veq = (gNaVNa + gKVK + gLVL)/geff

• Rm = 1/geff is ≈ 1000Ωcm2

• Time constant: τm = CmRm ≈ 1 msec

Consequence:

• With constant external current Iapp, membrane potential quickly converges to:

V = Veq +RmIapp

• Experimental fact: This holds for small currents Iapp but not for sufficiently
large ones.

• Ergo:

– I ∝ V can not be true

– Conductivities g must be dynamic.

– Ingenious assumption: They dependent on V

Strategy:
Divide and conquer

• Isolate the parts, completely non-physiological

• Model them, based on completely non-physiological experiments

• Put everything together again

• Correctly describes the physiological situation

Experimental techniques

• Space-clamp

63



• Separate analysis of Na+ und K+ channels by blocking with tetrodotoxin, TTX,
(Na+) und tetrathylammonium, TEA, (K+)

• Voltage clamp

Figure 4.9: Space and voltage clamp technique

– Control Iapp(t), such that V = const

– Voltage jumps

– V̇ = 0 =⇒ gi(t)(V − Veqi) = Iapp(t) = current through membrane
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gi(t) =
Iapp(t)

V − Veqi

• Yields time dependent measurement of conductivity

• Note: Not possible in vivo since V varies, completely non-physiological

Figure 4.10: Conductances over time

Experimental result:
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• gK behaves sigmoidal for positive voltage step, without inflection point for
negative steps

• gNa biphasic

Ansatz:
Choose differential equation for gK and gNa

Potassium conductivity

• Sigmoidal increase: 1. order ODE

• Relaxation decrease: another 1. order ODE

• Ingenious ansatz

gK = ḡKn
4, ḡK = const, n ⊂ [0, 1]

ṅ = αn(v)(1− n)− βn(v)n (14)

• Speculation by Hodgkin & Huxley: ”may be given a physical basis”:

Pottasium can pass the membrane if four independent, identical entities are at
a certain place (”for example inside”)

– n is the fraction ”at a certain place” (open)

– 1− n the rest (closed)

– αn(v) und βn(v) are the voltage-dependent transition rates

• Rephrase eq. (14):

τn(v) ṅ = n∞(v)− n (15)

With

n∞(v) =
αn(v)

αn(v) + βn(v)
asymptotic state (16)

τn(v) =
1

αn(v) + βn(v)
time scale (17)
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Proof:

1

αn(v)βn(v)
ṅ =

αn(v)

αn(v) + βn(v)
− n

ṅ = αn(v)− (αn(v) + βn(v))n

ṅ = αn(v)(1− n)− βn(v)n

The other way around:

αn(v) = n∞(v)/τn(v) (18)

βn(v) = (1− n∞(v))/τn(v) (19)

• Voltage steps:

– Upwards:

At t = 0, step: v from 0 to vs (n(0) = 0)

Solution of eq. (15) yields:

n(t) = n∞(vs)

[
1− exp

(
−t

τn(vs)

)]
(20)

∗ Monotonously increasing

∗ Monotonously decreasing slope

∗ Raise to the power of 4: gK(t) = ḡn4(t) gives sigmoidal behavior

– Downwards from vs to 0

n(t) = n∞(vs) exp

(
−t
τn(0)

)
(21)

Raise to the power of 4: gK(t) = ḡn4(t) monotonously decreasing, without
inflection point

• Determination of αn(v) and βn(v) :

– For many voltage steps, fit eqs. (20, 21). Yields n∞(v) and τn(v)

– With eqs. (18, 19)

αn(v) = n∞(v)/τn(v)

βn(v) = (1− n∞(v))/τn(v)
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Figure 4.11: n∞(v)

Figure 4.12: αn(v), βn(v)

WS 8
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• Non-trivial result:

– It could have been variable between different axons

– There could have been hysteresis

• Parameterise the result

αn(v) = 0.01
10− ν

exp
(

10−ν
10

)
− 1

βn(v) = 0.125 exp
(
− ν

80

)
– βn(v) purely phenomenological

– αn(v) motivated from movement of charged particles in membranes [33]

To be remembered:

• Ansatz comprises αn(v), βn(v), i.e. voltage dependent quantities

• In vivo, a change of n(t) results in a change of v(t) and therby a change of
αn(v), βn(v)

• By voltage clamp technique, v(t) is fixed

• By different clamped voltages v, αn(v), βn(v) are sampled
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Figure 4.13: Conductivities again

Sodium conductivity

• Biphasic: at least 2. order differential equation

• Ingenious ansatz:

gNa = ḡNam
3h, ḡNa = const, m, h ⊂ [0, 1]

ṁ = αm(v)(1−m)− βm(v)m

ḣ = αh(v)(1− h)− βh(v)h

• Speculation by Hodgkin & Huxley:
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– m ”activating molecules”, fast, open with increasing v:

∂αm(v)

∂v
> 0 >

∂βm(v)

∂v

– h ”inactivating molecules”, slow, close with increasing v:

∂βh(v)

∂v
> 0 >

∂αh(v)

∂v

Figure 4.14: Inactivating particle
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Figure 4.15: αm(v), βm(v) curves

Central point of HH-model: Determination of ġ(v)

Das Hodgkin-Huxley Modell:

Cmv̇ = −ḡKn4(v − vK)− ḡNam3h(v − vNa)− gL(v − vL) + Iapp

ṅ = αn(v)(1− n)− βn(v)n

ṁ = αm(v)(1−m)− βm(v)m

ḣ = αh(v)(1− h)− βh(v)h
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with

αn ∼ αm ∼ βh (22)

βn ∼ βm ∼ αh (23)

αn = 0.01
10− v

exp
(

10−v
10

)
− 1

βn = 0.125 exp
(
− v

80

)
αm = 0.1

25− v
exp

(
25−v

10

)
− 1

βm = 4 exp
(
− v

18

)
αh = 0.07 exp

(
− v

20

)
βh =

1

exp
(

30−v
10

)
+ 1

Figure 4.16: Steady state and time constants
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The mechanism:

• Central: Separation of time scales : τm(v)� τn(v), τh(v)

• Sufficiently strong stimulus (Iapp)

• Fast activation of sodium-channels (m)

• ”Autocatalytic” increase of m: Inward-current of sodium, strong increase

• Little by little, inactivation of sodium channels starts (h) and activation of
pottasium channels (n).

• pottasium channels: Outward-current, strong decrease and undershoot

• As soon as v at initial value, n goes to 0.

Four phases:

• Upwards (m)

• Interplay of m,h, n

• Refractory (h still small), no stimulus can reactivate, biological meaning see
below

• Recovery (on the way back to initial situation), sufficiently strong stimulus can
reactiviate
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Figure 4.17: Time dependence of m,h, n, and gs and V
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Figure 4.18: Comparison between experiment und simulation

Mechanism for continuous spiking:

• Sufficiently strong Iapp results in restart during recovery period
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Figure 4.19: Spike train

Summary HH-model, for m & h respectively

• Input:
ṅ = f(α(v), β(v), n) (24)

• Result: v̇ = g(n, v)
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• This in turn changes α(v), β(v) in eq. (24)

• Also predicts spreads of action potentials correctly, see below

Molecular understanding of ion channels much later, see Nature 2003 [46, 47]. 4/19

4.2 FitzHugh-Nagumo Model

• Simplyfied HH-model for sodium channels

• Including the blocking mechanism

• Clearly pointing to the mechanism [26, 77]

”Model of a model”

• v potential, scaled to v = 0: rest potential

• v = a potential, above which the neuron fires.

• v = 1 potential, at which all sodium channels are open

• The model:
v̇ = v(a− v)(v − 1)

does the job

– v = 0 stable fixed point

– v = a unstable fixed point

– v = 1 stable fixed point

Figure 4.20: v-behavior

– For 0 < v < a, v goes back to v = 0
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– For a < v < 1, v goes to v = 1 and stops

One needs a blocking mechanism w.

– No blocking, if v = 0

– Increasing blocking if v → 1

• The model:
ẇ = ε(v − γw)

Stable points

– w fix: w = v/γ

– v = 0 w = 0

– v = 1 w = 1/γ

• ε determines convergence velocity towards stable points

For small ε, process is slow.

• Effect of blocking on v : v̇ = −w

The FitzHugh-Nagumo model:

v̇ = v(a− v)(v − 1)− w + Iapp

ẇ = ε(v − γw)

Cubic form of rhs. motivated by HH-equations

Phase space behavior, part II after fixed point behavior:

• Null cline: Curve in phase space with ẋ = 0
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Figure 4.21: Behaviour in phase space
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– Subthreshold

– Suprathreshold

– Periodic firing

4.3 Hindmarsh-Rose Model

• Often observed: Bursting behavior, i.e. grouping of action potential spikes

• This can be reproduced by Hindmarsh-Rose model, 1984 [38]

ẋ = y + ax2 − bx3 − z + Iapp fast sodium

ẏ = c− dx2 − y fast pottasium

ż = r(s(x− xr)− z) slow rest

Figure 4.22: Neural bursting in HR model

• For certain parameters, HR-models exhibits chaotic behavior, i.e. sensitivity to
initial conditions.

• THE toy model for chaotic neural dynamics.

WS 9
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Figure 4.22: Chaos in HR-model
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4.4 Spread of action potentials

Similar to infection models, HH, FH & HR can be formulate spatially.

Here for HH

• Remove space clamp

• Cable-Equation

– Describes poorly isolated (transatlantic telegraph) cables

– Lord Kelvin, 1855, formerly William Thomson

– Based on Kirchoff’s law

– a radius, R resistance of poor isolation

x: along the cable, I current across the isolation

I(x) =
a

2R

∂2

∂x2
V (x)

Here: open ion channels are the poor isolation

• Yields

Cmv̇ =
a

2R

∂2

∂x2
v − ḡKn4(v − vK)− ḡNam3h(v − vNa)− gL(v − vL) + Iapp

a partial differential equation.

• As for SIR model assuption; v(x, t) = v(z) mit z = x− ct
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• Result:

∂2v

∂x2
=

1

c2

∂2v

∂t2

• ODE with wave solution = Spread of action potentials

Big picture

• Function of the refractory period: Action potentials must not propagate back-
wards

• Remember: Epidemic wave can not propagate backwards due to lack of infec-
tious & susceptibles, R0 < 1 in the back of the infection

• For action potentials due to lack of activatable neurons, since refractory

Important:

• Spread of action potential is not driven by potential difference between the
beginning and the end of the axon.

• No electrical current flows along the axon, but potential differences between
inside and outside of the axon

• There is no R = U/I =⇒, no heat dissipation by R

• Dissipation of the brain: 60 W.

• Difference to computer where dissipative heating is a major challenge
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Lessons learned

• HH model derived from non-physiological experiments

– Separate analysis of sodium and pottasium channels

– Space clamp technique

– Voltage clamp technique

– Voltage step experiments

• Desribes very accurately action potentials of neurons

• Hodgkin-Huxley Modell is one of the highlights of mathematical biology

• Developed very close to data

• FithHugh-Nagumo model nails down the mechanism

• Hindmarsh-Rose model describes bursting and chaotic behavior

4M/20

4/17
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5 Pattern Formation

5.1 Turing Mechanisms

Nice summary [75]
Motivating example :

• How the leopard got his spots?

Figure 5.1: Leopard, zebra, giraffe, lion fur

• Remember: We only have 23.000 genes: pattern can not be encoded genetically

• Mathematically:

Wave phenomenon in literal sense, not edge as in SIR models
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1952: Turing’s developmental biology pattern formation theory [108]

• Not a data-based model

• General principle

• Biological realisation was long debated, first convincing example 2006: [101]

Central: ”Morphogene”

• Morpho = Morphology

• Rough idea: Two catalysts, enzymes, that can diffuse and react

• ”Activator” stimulates spots

• ”Inhibitor” suppresses spots

• Dynamics of activator and inhibitor forms ”prepattern”

• Depending on their local concentration the cells latter differentiate specifically

• Process takes place during certain period of embryogenesis

Illustration [74] :

• Consider a dry forest

• Randomly distributed fire fighters with helicopters

• Randomly distributed little fires (activator) which grow slowly (diffusion)

• Fire fighters (inhibitor) diffuse fast with helicopters and extinguish fires

• Result: Patches of burned and green forest: A pattern

• Does only work if inhibitor diffuses faster than activator
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5.1.1 Theory

The model with ci = ci(x, y, t) ∈ R+ [Mol/m2] in area B:

ċ1 = f(c1, c2) +D1∇2c1 activator

ċ2 = g(c1, c2) +D2∇2c2 inhibitor

By this model, Turing invented reaction-diffusion systems in 1952.

Dimensionless version:

• Characteristic scales:

– L: spatial scale of B

– T : temporal scale of the reactions

• With

– γ = L2/D1T

describes ratio of reaction and diffusion effects

Remember [D] = m2/s

– d = D2/D1

u̇ = γf(u, v) +∇2u

v̇ = γg(u, v) + d∇2v

Boundary conditions at ∂B with ~n outwards normal vector

zero flux : (~n~∇)u = (~n~∇)v = 0

Meaning: Massive walls, no influences from outside, no escape from the inside

Conditions for the Turing mechanism:

[1. ] ∃ spatially homogeneous stationary state (u0, v0) as positive solution of
f(u0, v0) = g(u0, v0) = 0

[2. ] (u0, v0) is stable in the absense of diffusion

[3. ] (u0, v0) gets unstable under diffusion
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If one of the conditions is not fulfilled the process does not follow the Turing
mechanism

To be noted

• Condition [3.] is the basis for the final pattern

• In [2.] & [3.] linear (un)stability analysis will be employed

• Cool idea: Typically, diffusion destroys patterns, here it creates them

• If a partial differential equation does not fulfill the conditions it can still be a
cool PDE, possibly also produce patterns. But not by the Turing mechanism

• Initially not clear whether Turing mechanism can be realised by any biological
process.

Therefore:

The Turing analysis

Given a concrete system with spezified f(u, v), g(u, v) and d
f(u, v) and g(u, v) might be parametrised:

f(u, v) = f(u, v, pf ), g(u, v) = g(u, v, pg) see Chap. 5.1.2

[1.]

• Determine spatially homogeneous stationary state (u0, v0) as solution of the
algebraic equations f(u0, v0) = g(u0, v0) = 0.

• If no positive solution exists, system is out of the race to produce a Turing
pattern

• If a positive solution exists, go to [2.]

[2.]

Without diffusion, the systems reads

u̇ = γf(u, v), v̇ = γg(u, v)

Consider stability:
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• Linearise at stationary state (u0, v0) with:

~w =

(
u− u0

v − v0

)
=⇒ ẇ = γAw, with A =

(
fu fv
gu gv

)∣∣∣∣
u0,v0

Linear system: =⇒ w ∝ eλt

λ1,2 from |γA− λ1| = 0

• Yields:

λ1,2 =
1

2
γ
[
(fu + gv)±

√
(fu + gv)2 − 4(fugv − fvgu)

]
Stable if Re(λ1,2) < 0, thus:

fu + gv = tr A < 0, fugv − fvgu = |A| > 0 (25)

Meaning:

Gives restrictions on possible models and their parameters

• If eqs. (25) hold, go to [3.]

[3.]

• Switch diffusion on:

ẇ = γAw +D∇2w, D =

(
1 0
0 d

)
(26)

– Consider time-independent solution of the spatial eigenvalue problem:

∇2W (r) + k2W (r) = 0 (27)

– Note: In 1D for interval [0,a] :

W (x) ∝ cos(nπx/a) with n ∈ N, fulfills zero flux condition

Eigenvalue k = nπ/a is called wave number, 1/k ∝ wavelength
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– Separation ansatz

w(r, t) =
∑
k

cke
λktWk(r), ck from initial state w(r, 0)

Insert in eq. (26), cancel down eλkt and ck.

For each k, since Wks orthogonal, it holds :

λ(k)Wk = γAWk +D∇2Wk

With eq. (27)
λ(k)Wk = γAWk −Dk2Wk

– Determine λ1,2(k) from

|λ1− γA+Dk2| = 0

Yields:

λ2 + λ[k2(1 + d)− γ(fu + gv)] + h(k2) = 0 (28)

with

h(k2) = dk4 − γ(dfu + gv)k
2 + γ2|A|

– Solutions unstable, if Re(λ) from eq. (28) > 0.

• Conditions for pattern formation

– Unstability under diffusion needs Re(λ(k)) > 0, for some k 6= 0.

2 possibilities:

1: [k2(1 + d)− γ(fu + gv)] < 0

2: h(k2) < 0

– Since from eq. (25) (fu + gv) < 0 and k2(1 + d) > 0 ∀ k 6= 0 anyway,
possibility 1 drops out

Thus

h(k2) = dk4 − γ(dfu + gv)k
2 + γ2|A| < 0
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From eq. (25): |A| > 0, ergo: only chance to become negative :

d fu + gv > 0 (29)

=⇒ d 6= 1, since fu + gv < 0

Consequence: fu and gv have different signs

– Realistic models: fu > 0, since activator activates itself autocatalytically,
remember the fire.

Consequence: gv < 0 =⇒

d > 1 : D2 > D1

– Eq. (29) is necessary, but not sufficient

Minimum of h(k2):

hmin = γ2

[
|A| − (d fu + gv)

2

4d

]
, k2

min = γ
(d fu + gv)

2d
(30)

Thus h(k2) < 0, if:

(d fu + gv)
2

4d
> |A|

At the critical point, bifurcation, qualitative change of behavior:

• At the bifurcation:

|A| = (d fu + gv)
2

4d

• Fixes critical ratio of diffusion coefficients dc (> 1):

|A| = fugv − fvgu =
(dc fu + gv)

2

4dc
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• critical wave number by eq. (30):

k2
c = γ

(dc fu + gv)

2dc
= γ

√
|A|
dc

(31)

k-range of unstable modes

• When ever h(k2) < 0 the respektive mode are unstable:

• for d > dc roots k2
1, k2

2

• Unstable for k ∈ [k2
1 : k2

2]

Figure 5.2: The dispersion relation

About dispersion relations

• ”Classical” case: ω(k). Light in vacuum ω = ck, wave packages are stable

If relation is not linear, wave packages disperse

ω: time, k: space

• Remember classical mechanics, Noether theorem
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– Time (invariance) and energy are coupled

– Spatial (invariance) and momentum are coupled

• Remember quantum mechanics I: uncertainty relation

– ∆E∆t ≥ ~/2: Time and energy are coupled

– ∆x∆p ≥ ~/2: Space and momentum are coupled

• Remember quantum mechanics II: Einstein and de Broglie

– E = ~ω: Time and energy are coupled

– p = ~k: Space and momentum are coupled

• In general: Products with the unit of action are coupled. Action is the only
non-intuitive unit in classical mechanics :-)

• Thus also E(p) is called a dispersion relation

• Here: Re(λ)(k) describes temporal evolution for given wave number

Note:

• h(0) = |A| > 0, corresponds to condition [2.]

• Unstable range of k does not start at k = 0 and does not go to k = ∞. Only
this can give a ”pattern”

• Pattern not strictly periodic since many k2s∈ [k2
1 : k2

2] contribute

• Initial conditions: Random spatial fluctuations.

They determine cks in separation ansatz for w(r, t)

=⇒ All furs of one species share the same over all characteristics but look
different in the details

5. half
week/17

Summary of the requirements on f(u, v, pf ), g(u, v, pg) and d:

fu + gv < 0, fugv − fvgu > 0 from stability without diffusion

d fu + gv > 0 (d fu + gv)
2 > 4d |A| from unstability with diffusion
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End of Turing analysis

So far linear first order approximation

• Linear approximation: For Re(λ(k)) > 0 exponential increase

• Solution will leave range where linear approximation holds

• Non-linear effects take over and freeze the pattern ... or ...

• ... stops, when ”certain period in embryogenensis” is over

• Remark: Consider imaginary part of λ:

If Im(λ(k)) 6= 0 =⇒ temporal oscillations

Typically, diffusion acts stabilising, since smearing out
Turing shows:

• If for D1 = D2 = 0 the system shows to a spatially homogeneous stable fixed
point ...

• ... then diffusion with D1 < D2 can lead to spatially inhomogeneous patterns

• Short range activation, long range inhibition, serves for patterns in the medium
range of wave numbers
Remember the fire fighters

• Diffusion-driven unstability: Turing unstability

Small spatial disturbances grow to patterns

• Symmetry break of the translation/rotation invariance of the stable homoge-
neous solution under conditions [2.] & [3.]

• Other mechanims for pattern formation in PDEs, especially complex Ginzburg-
Landau equation3 :

Ȧ = A− (1− ib)|A|2A+ (1 + ia)∇2A

– Eckhaus Unstability

3Not to be confused with the Ginzburg-Landau theory of phase transitions, superconductivity
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– ZigZag Unstability

– Benjamin-Feir Unstability

Figure 5.3: Complex Ginzburg-Laundau equation

To be remembered:
Fundamental difference between the Hodgkin-Huxley and the Turing strategy.
For discussion HH vs. Turing modelling strategy, see [116]

4F/20

5.1.2 Example for Turing Analysis

Toy model, Schnackenberg, 1973 [92]
1D:

u̇ = γf(u, v, pf ) + uxx = γ(a− u+ u2v) + uxx

v̇ = γg(u, v, pg) + dvxx = γ(b− u2v) + dvxx

[1. ] Does homogeneous positive stationary state exist ?

0 = a− u+ u2v

0 = b− u2v

96



Yields:

u0 = a+ b, v0 =
b

(a+ b)2
, b > 0, a+ b > 0

Constraints on the parameters

At the stationary state

fu
∣∣
(u0,v0) = −1+2u0v0 = −1+2(a+b)

b

(a+ b)2
= −1+

2b

a+ b
= −a+ b

a+ b
+

2b

a+ b
=
b− a
a+ b

fv
∣∣
(u0,v0) = (a+ b)2 > 0, gu

∣∣
(u0,v0) =

−2b

a+ b
< 0, gv

∣∣
(u0,v0) = −(a+ b)2 < 0

Because of the necessity of different signs of fu and gv, it follows b > a

[2. ] Stable without diffusion ?

Conditions on f(u, v) and g(u, v) require

fu + gv < 0 =⇒ (a+ b)3 > b− a
fugv − fvgu > 0 =⇒ (a+ b)2 > 0

[3. ] Unstable with diffusion ?

Conditions on f(u, v) and g(u, v) require

dfu + gv > 0 =⇒ d(b− a) > (a+ b)3

(dfu + gv)
2 − 4d(fugv − fvgu) > 0 =⇒ [d(b− a)− (a+ b)3]2 > 4d(a+ b)4

This fixes the Turing space of admissible parameters for Turing mecha-
nism/pattern.
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Figure 5.4: Short-range activation, long range inhibition

5.1.3 Gierer-Meinhardt Models

• Concrete example in Turing 1952 was unbiological und non-intiutive

Figure 5.5: References to Turing 1952 paper, a sleeping beauty

• Gierer-Meinhardt models, 1972 [29, 68]: A step towards biology and intuition

• 2 classes of models/mechanisms
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Remember, from condition [2.]

fu > 0, gv < 0, fugv − fvgu > 0

Ergo:

Either

(i.) fv < 0 and gu > 0

or

(ii.) fv > 0 and gu < 0

(i) Activator-Inhibitor System

u̇ = σu + ρu
u2

(1 + κau2)v
− µuu+Du∇2u

v̇ = σv + ρvu
2 − µvv +Dv∇2v

Check for fv < 0 and gu > 0

fv
∣∣
(u0,v0) = −ρu

u2
0

(1 + κau2
0)v2

0

< 0

gu
∣∣
(u0,v0) = 2ρvu > 0

Figure 5.6: Activator-inhibitor system
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(ii) Activator-Substrate System

u̇ = σu + ρu
u2v

1 + κuu2
− µuu+Du∇2u

v̇ = σv − ρv
u2v

1 + κuu2
− µvv +Dv∇2v

Check for fv > 0 and gu < 0, o.k.

Figure 5.7: Activator-substrate system
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5.1.4 Some solutions

Figure 5.8: Geometry determines solutions
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Figure 5.9: Surface scale effect, from small to large, and rescaled

Gives argument for uniform fur of mouse und elefant, but spotted for leopard
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5.1.5 Comparison to reality

Figure 5.10: (b)Capra aegagrus hircus, goat, entrance Mundenhof to the left
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Figure 5.11: Giraffe

Figure 5.12: Zebra

Analogy to standing waves. If geometry is essentially 1 D (leg), there are only 1 D
patterns
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Figure 5.13: Tails

• True model predictions:

– Anmial with spots on their body can show striped tails ...

– ... but animal with striped bodies must not have spotted tails

From Sick et al. [101], 2006

• Activator: WNT

• Inhibitor: DKK, Dickkopf = pighead

105



5.2 Accurate cell division

Accurate cell division
[83, 44] EMBO J paper

• Zellzyklus E. Coli

• Wo ist die Mitte ?

• Beobachtung: MinC, MinD, MinE oszillieren

• Im Mittel erhöhte MinE Konzentration in der Mitte
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Modell:

dρD
dt

= − σ1

1 + σ′1ρe
ρD + σ2ρeρd +DD

∂2ρD
∂x2

dρd
dt

=
σ1

1 + σ′1ρe
ρD − σ2ρe ρd

dρE
dt

=
σ4

1 + σ′4ρD
ρe + σ3ρD ρE +DE

∂2ρE
∂x2

dρe
dt

= − σ1

1 + σ′4ρD
ρe + σ3ρD ρE

Irgendwann mal ausbauen ...

Lessons learned:

• Turing model is a conceptional model

Short range activation, long range inhibition

• Diffusion driven instability

[1 ] Homogenous, positive, stationary state

[2 ] Stable without diffusion

[3 ] Unstable with diffusion

• Counter-intuitive because usually diffusion destroys structure

• Gierer-Meinhardt brings it closer to biology

• Discussion: HH-Strategy vs. Turing Strategy

5/19

5M/20
6 Enzyme Dynamics

• Transition from Part I Mathematical Biology to Part II Systems Biology. Here:
single enzymes, there networks of enzymes
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• Remember enzymes as morphogenes from Turing

• Important in whole cell biology, from metabolism, Chap. 9 to biotechnology

”Law” of mass action
Consider two substances, that react to become a third one

A+B
k−→ C (32)

Rate k determines produktion rate dC
dt

and is a product of:

• Number of collisions of A and B per time interval: ∝ [A][B]

• Probability that in case of a collision the activation energy, free energy barrier,
is exceeded

Yields:

d [C]

dt
= k[A][B] (33)

Identification of scheme (32) with eq. (33) is the ”law” of mass action
No fundamental law, rather as Ohm’s law

• Holds in general only for elementary reactions

• Often good effective description, e.g.

2H2 +O2 → 2H2O

Elementary reactions:

– H2 → 2H (ignition)

– H +O2 → OH +O

– O +H2 → OH +H

– OH +H2 → H2O +H

• Does not hold for
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– very high concentrations, molecular crowding effects lead to

d [C]

dt
= k[A]α[B]β

– diffusion-limited reactions

Reaction-diffusion system

– very low concentrations, ”concentration” loses meaning

Discrete dynamics, Gillespie algorithm [30], Chap. 12.1

Many (in principle all) reactions are reversible:

k+

A+B
−→←− C
k−

Leads to:

d [C]

dt
= −k−[C] + k+[A][B]

In equilibrium :

k−[C]eq = k+[A]eq[B]eq

Since T0 = [A] + [C] = const

[C]eq = T0
[B]eq

Keq + [B]eq

Keq = k−/k+: equilibrium constant

Most relevant deviation from law of mass action: Enzyme dynamics

• Enzymes: Proteins that catalyse reactions

• Catalysis: Reduction of activation energy
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Figure 6.1: Catalyst reduces activation energy

• Example: Sugar and cigarette ash

• Accelerates reactions in both directions, typically one preferred

• Catalyst is not used up in reaction

• Action by e.g.:

– Abolishment of electrostatic repulsion between reactants

– Break open of bonds in molecules

• Enzyme are typically highly specific

• Acceleration of reaction velocity by up to 107

• Substrates: Victims of enzymes

• In general: enzyme concentrations small, since highly effective

• In general: enzymes are larger molecules than substrates

Nice exception: Chap. 10.4 MAP-Kinase, where substrates become enzymes

Exhaustive literature: Dixon, Webb [18]

Most important example:
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6.1 Michaelis-Menten Kinetik

Original paper from 1913: [69]
With S: substrate, E: enzyme, P : product

k1

S + E
−→←− C
k−1

k2−→ P + E

• Motivated by: Enzyme Invertin catalyses substrate saccharose into products
glucose and fructose.

• P is removed rapidly =⇒ second step is uni-directional

With s = [S], c = [C], ... and law of mass action for all reactions:

ṡ = k−1c− k1 se (34)

ė = (k−1 + k2)c− k1 se

ċ = k1 se− (k−1 + k2)c

ṗ = k2c (35)

with conserved quantities eT = e+ c and sT = s+ c+ p, there are two independent
differential equations

• Initial setting: 4 equations

• 2 conserved quantities =⇒ 2 equations

• Goal: 1 equation for product production rate ṗ in dependence on substrate s

• Or: Direct relation between s in rhs of eq. (34) and ṗ in eq. (35)

• =⇒ 1 more assumption is necessary

• If an assumption is not fulfilled, it is an approximation, good or bad, it depends

Two ansätze:

• Steady-state approximation (original version by MM)

• Quasi-steady-state approximation (Briggs/Haldane, 1925 [13])
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Steady-state approximation

• Assumption: ṡ = 0

Substrate is continuously resupplied

• Eq. (34) yields:

k1 se = k−1c

With e = eT − c, if follows:

k1seT − k1sc = k−1c

k1seT = c (k−1 + k1s)

c =
k1seT

k−1 + k1s

with Michaelis-Menten constant Ks = k−1/k1

c =
eT s

Ks + s

• For the velocity V of the final reaction, i.e. productions rate ṗ of p:

V = ṗ = k2c = k2
eT s

Ks + s
=

Vmaxs

Ks + s
(36)

with Vmax = k2eT

• Note: Enzyme and complex dynamics has disappeared.
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Figure 6.2: Michaelis-Menten kinetics

• For small substrate concentrations: linear

• For large substrate concentrations: Saturation at Vmax
All enzyme bound in complex c.

• Scale is fixed by Ks: For s = Ks follows V = Vmax/2

• Vmax = k2eT : Dissociation reaction C
k2−→ P + E is rate-limiting

• Initial step of derivation k1 se = k−1c only true for continuous supply, a
flux balance or steady state equilibrium

• Otherwise it is an approximation, the steady-state approximation

Quasi-Steady-State Approximation

Assumption: Rates for creation and decay of complex c are essentially equal

• Meaning:

ċ ≈ 0

For clarity, dimensionsless variable:

σ =
s

sT
, χ =

c

eT
, τ = k1eT t, κ =

k−1 + k2

k1sT
, ε =

eT
sT
, α =

k−1

k1sT
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• With e = eT − c and p = sT − s− c, this leads to:

d σ

dτ
= −σ + χ(σ + α)

ε
dχ

dτ
= σ − χ(σ + κ) (37)

But:

• Enzymes are very efficient

• their concentration typically small compared to concentrations of substrates

Thus:
ε =

eT
sT
� 1 ≈ 10−2 − 10−7

Consequence:

• Eq. (37) is fast

• χ stays always close to equilibrium, acts adiabatically

• especially if σ (former s) is changing. Difference to steady-state approximation

• Separation of time scales

• Remember blocking variable w of FitzHugh-Nagumo - model, exactly the other
way round

Quasi-Steady-State Approximation:

• Set ε dχ
dτ

= 0

• That is not the same as dχ
dτ

= 0, but equivalent to: d c
dt

, the above assumption

Quasi-Steady-State approximation means:

• χ is changing, ...

• ... but on the manifold : 0 = σ − χ(σ + κ)

• Separation of time scales
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QSS approximation holds if

• ε small

• dχ
dτ

is in the order of 1

Then:

χ =
σ

σ + κ
d σ

dτ
= −(κ− α)σ

σ + κ

In original variables

V = ṗ =
k2eT s

Km + s
=

Vmaxs

Km + s
(38)

c =
eT s

Km + s

with Michaelis-Menten constant Km = k−1+k2
k1

• This is a simple example of ”Singular Pertubation Theory”

• Structure of equation identical to steady-state approximation eq. (36), only

Km =
k−1 + k2

k1

instead of Ks =
k−1

k1

• Small difference not important, since equation is considered as independent

• This explains why steady-state approximation is good even if the assumption
ṡ = 0 is strongly violated.

• Note: Now 2 parameters: Vmax, Km, instead of originally 3: k1, k−1, k2

Historical remark:

• Determination of Vmax and Km without computer:

Lineweaver-Burk-plots: Invert eq. (38):

1

V
=

1

Vmax
+

Km

Vmax

1

s
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• Measure V for different s

• Determine 1
Vmax

and Km
Vmax

from linear regression

• Solve for Km and Vmax

Examples for more complex enzyme reactions

• Reversible production of product

k1 k2

S + E
−→←− C

−→←−
k−1 k−2

P + E

leads to

V = ṗ =
V +
maxs/KmS − V −maxp/KmP

1 + s/KmS + p/KmP

with V +
max, V

−
max, KmS, KmP as usual, appropriately adjusted

• Uni-directional bi-molecular reaction

k1 k2

SA + SB + E
−→←− C −→
k−1

P + E

leads with a = [SA], b = [SB] to

V = ṗ =
Vmaxab

KmAKmB +KmAa+KmBb+ ab

• and much more complicated ...
6/17
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6.2 Enzyme Inhibition

• Enzyme inhibitors reduce catalytic effect.

• Irreversible Inhibitors set enzyme activity to 0

Examples:

– Cyanide: blocks enzyme Cytochrome-C oxidase, cells can not take up
oxygen

– Many nerve gases

In the following:

• Competitive inhibition

• Allosteric inhibition

Competitive Inhibitors

• Other substances that can also bind to catalytic active binding site of enzyme

• Similar to original substrate, key-lock principle

• Substrate has to compete

Simplest example:

k1

S + E
−→←− C1

k2−→ P + E

k−1

k3

I + E
−→←− C2

k−3

Analysis as above with quasi steady state approximation and i� e, i.e. i=const:

c1 =
Ki eT s

Kmi+Kis+KmKi

c2 =
Km eT i

Kmi+Kis+KmKi
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with

Km =
k−1 + k2

k1

, Ki =
k−3

k3

Velocity V of the reaction :

V = ṗ = k2c1 =
k2KieT s

Kmi+Kis+KmKi

=
Vmax s

Km(1 + i/Ki) + s

Thus:

Competitive inhibitor causes:

• Increase of Michaelis-Menten-constant Km by a factor of 1 + i/Ki

• No chance in maximum velocity Vmax

Allosteric Inhibitors

• Enzyme has numerous binding sites, not only enzymatic active ones

• Binding of substance at an inactive binding site changes conformation of the
enzyme

• That can inhibit enzyme activity

• These inactive bindings sites are called allosteric or regulatory

• Allosteric inhibitors typically not similar to substrate

• allosteric (greek): at a different place.

Inhibition at a different place from the active one

Simplest case:

• One enzymatic binding site

• One allosteric binding site, sets enzymatic activity to zero
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Figure 6.3: Wiring of allosteric inhibition

Analysis in steady state approximation (in QSS approximation more complicated
result):

V =
Vmax

1 + i/Ki

s

Ks + s

with

Ks =
k−1

k1

, Ki =
k−3

k3

, Vmax = k2eT

Thus :

Allosteric inhibitor causes:

• No change of Michaelis-Menten-constant

• Reduction of Vmax by a factor of 1 + i/Ki

To remember:

Competitive und allosteric inhibitors can be discriminated by their effects on
Vmax and Km

Short
test

5F/206.3 Cooperativity

Often:
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• Enzyme has several enzymatic active binding sites

• Sustrate binding to one can influence enzymatic activity of the others

Simplest example: Two identical, symmetric bindings sites:

k1

S + E
−→←− C1

k−1

k2−→ P + E

k3

S + C1
−→←− C2

k−3

k4−→ P + C1

Quasi-steady-state approximation, dci/dt = 0

c1 =
K2eT s

K1K2 +K2s+ s2

c2 =
eT s

2

K1K2 +K2s+ s2

with

K1 =
k−1 + k2

k1

, K2 =
k−3 + k4

k3

Velocity of the reaction:

V = ṗ = k2c1 + k4c2 =
(k2K2 + k4s)eT s

K1K2 +K2s+ s2

Consider two extreme cases:

• No interaction

k1 = 2k3, k−3 = 2k−1, k4 = 2k2, K = K1 = K2

V =
2k2eT (K + s)s

K2 + 2Ks+ s2
= 2

k2eT s

K + s

Rate twice as high as for single binding site, makes sense
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• Extreme-cooperation

– Binding to one site renders the other infinitely fast

– Modelling: k3 −→∞, k1 −→ 0, but k1k3 = const

– Analogously K1 −→∞, K2 −→ 0, K1K2 = const = K2
m

yields:

V =
k4eT s

2

K2
m + s2

=
Vmaxs

2

K2
m + s2

Only k4 in Vmax, makes sense

Figure 6.4: Positive & negative cooperativity

For n binding sites with

K1 −→∞, Ki −→ 0, K1Ki = const, Kn
m =

∏
i

Ki :

follows

V =
Vmaxs

n

Kn
m + sn

a sharper and sharper sigmoidal curve.
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• Leads to ultra-sensitivity.

Important for noise suppression, drawing

• For fits to empirical data, estimated n is called Hill-coefficient

It holds: Hill-coefficient ≤ number of binding sites

More detailed models :

• Monod-Wyman-Changeux model, 1965 [73], nice review [16]

• Koshland-Nemethy-Filmer model, 1966 [60]

Lessons learned:

• Michaelis-Menten kinetics is the most important deviation from law of mass
action

• Inhibitory effects can be discriminated by their effects on Vmax and Km

• Cooperativity can lead to ultra-sensitivity

6/19
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7 Ein ganz besondrer Saft

Reminder:

• Ideal gas:
PV = nkT oder P = ckT

• Mixture of gases with portions xi:
Partial pressure : Pi = xiP

• Border gas (with Pis) to liquid (cis) :
ci = σiPi
σi: solubility,

• For historical reasons: Results reported in partial pressure

7.1 Hemoglobin and Myoglobin

Solubility in blood of

• CO2: 3.3× 10−5 Molar/mmHg

• O2: 1.4× 10−6 Molar/mmHg

Factor: 20

• CO2 can be transported dissolved in the blood

• O2 needs a carrier

Transport of oxygen:

• From the lung into the body: Red blood cells, erythrocytes, no genes
Transport protein: Hemoglobin

• Within the muscles: Myoglobin
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Figure 7.1: Saturation curves for hemoglobin and myoglobin

• Partial pressure of oxygen in the lung: 100 mm Hg.
=⇒ Hemoglobin saturated

• Mean partial pressure of O2 in muscle: 40 mm Hg
=⇒ O2 goes from hemoglobin to myoglobin

• Sudden need for O2: partial presses drops to, say, 20 mm Hg
=⇒ Large transfer of O2 into the muscle

Makes sense !

The mechanism:

Myoglobin (Mb):

• Myoglobin has one heme complex that can bind one O2 molecule
Bound complex: Oxymyoglobin

k+

O2 +Mb
−→←− MbO2

k−

• Law of mass action

˙[O2] = −k+[Mb][O2] + k−[MbO2]
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• In steady state:

k+[O2][Mb] = k−[MbO2] =⇒ [MbO2] =
1

K
[O2][Mb], K =

k−
k+

• Portion Y of occupied Mb binding sites

Y =
[MbO2]

[Mb] + [MbO2]
=

[O2]

K + [O2]

• From concentration to partial pressure: [O2] = σO2PO2 , with, Kp = K/σO2

yields:

Y =
PO2

Kp + PO2

Figure 7.2: Comparison: Myoglobin saturation curves: measured vs. model

• Modell fits the data

• K = 2.6σO2 mm Hg
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Hemoglobin (Hb):

Hemoglobin has four heme complexes, each can bind one O2 molecule.

(i) Simplest model

• ”One-shot” binding

k+

4O2 +Hb
−→←− Hb (O2)4

k−

• Law of mass action:

˙[Hb] = −k+[Hb][O2]4 + k−[Hb (O2)4]

• Portion Y of occupied Hb binding sites

Y =
[Hb (O2)4]

[Hb] + [Hb (O2)4]
=

[O2]4

K4 + [O2]4
, K4 =

k−
k+

Figure 7.3: Comparison: Hemoglobin measured vs. ”One-shot”, formal, detailed
model
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• Model does not fit the data

(ii) Formal model

• Fit formally:
[O2]n

Kn + [O2]n

Remember: n Hill-Coefficient

• Yields: n = 2.5 and K = 26σ mm Hg

=⇒ At least three binding sites

• Model fits the data, but no theoretical basis for this model

(iii) Detailed model

• Elementary reactions, with Hj = Hb(O2)j :

k+j

O2 +Hj−1
−→←− Hj, j = 1, 2, 3, 4
k−j

• In steady state

[Hj] =
k+j

k−j
[Hj−1][O2] =

[Hj−1][O2]

Kj

, Kj = k−j/k+j

• Portion Y of occupied Hb binding sites

Y =

∑4
j=1 jHj

4
∑4

j=0 Hj

• Insert steady state conditions:

Y =

∑4
j=1 jαj[O2]j

4
∑4

j=0 αj[O2]j

with

αj =

j∏
i=1

K−1
i , α0 = 1
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• Fitting to the empirical curve yields

– K1 = 45.9σ mm Hg

– K2 = 23.9σ mm Hg

– K3 = 23.1σ mm Hg

– K4 = 1.5σ mm Hg

Notice: K4 � K1, K2, K3

• This means:

– If three O2 are bound there is a high affinity to bind a fourth one.

– Or, if all four binding sites are occupied, dissolution of the first one is
most difficult

– Stamp example

– Makes sense: Ensures save transport of saturated hemoglobin in the blood
and fast release at the muscle if release is started

– Note: Not a cooperativity in strict sense as for enzymes

– Mechanism of positive cooperativity is not completely understood, but
well described by Monod-Wyman-Changeux model

Mother and fetus have different hemoglobins, fetal hemoglobin has higher O2 affinity

The crocodile [37]:

• Crocodiles can stay under water for up to one hour

• They have a special hemoglobin with a binding site for bicarbonate.

• Bicarbonate: Salt of carbon dioxide

• Bicarbonate accumulates while not breathing

• By allosteric regulation this decreases the binding affinity for oxygen, squeezing
out the last O2 molecules
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Figure 7.4: Crocohemoglobin

6M/20

7.2 Facilitated Diffusion

Reminder:

• Fick’s law

– concentration u

– production rate f

– flux J

Continuity equation
u̇ = f −∇J

Fick’s law :

J = −D∇u

with diffusion coefficient D, yields
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u̇ = f +∇(D∇u)

If D constant

u̇ = f +D∇2u

remember: heat equation

• Mass dependency of D, Einstein 1906 [19]:

For large spheres

D =
kT

6πµr
, µ viscosity, r radius

Since

M =
4

3
πr3ρ

from radius r to mass M :

D =
kT

3µ

( ρ

6π2M

)1/3

Densities ρ of large proteins are essentially identical: The larger the protein,
the slower it diffuses

Facilitated Diffusion

The phenomenon:

• Myoglobin: molecular weight: 16890, diffusion constant: D = 4.4×10−7 cm2/s

Oxygen: molecular weight: 32, D = 1.2× 10−5 cm2/s

• Factor: 30

• Flux of O2 in muscle is much higher in presence of myoglobin

• At first glance: counter-intuitive

The model:
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• Consider: 1 D

• s = [O2], m = [Mb], c = [MbO2]

Dm, Dc � Ds

• Reaction-diffusion system:

∂s

∂t
= Ds

∂2s

∂x2
− f (39)

∂m

∂t
= Dm

∂2m

∂x2
− f (40)

∂c

∂t
= Dc

∂2c

∂x2
+ f (41)

with f uptake rate of O2 into Mb.

• Last subsection

k+

O2 +Mb
−→←− MbO2

k−

Law of mass action:

f = −k−c+ k+sm

• Boundary conditions:

– x ∈ [0, L], x = 0: s(0) = s0, x = L: s(L) = sL, s0 > sL

– Mb and MbO2 can not leave the muscle:

∂m

∂x
=
∂c

∂x
= 0 for x = 0 = L

• Since m+ c = mT , eq. (40) is superfluous.

• Concentration of myoglobin is large

Analysis:
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• Stationary State:

ṡ = 0, ċ = 0 =⇒ Dssxx +Dccxx = 0

Integration with respect to x:

Dssx +Dccx = −J

Integration constant J : Flux of oxygen

Another integration:

J =
Ds

L
(s0 − sL) +

Dc

L
(c0 − cL), c0, cL so far unknown (42)

• Transform to dimensionless variables

σ =
k+

k−
s, χ =

c

mT

, y =
x

L

Inserted in eqs. (39, 41) yields

ε1σyy = σ(1− χ)− χ = ε2χyy

with

ε1 =
Ds

mTk+L2
, ε2 =

Dc

k−L2

Experimental values for Ds, mT , k+, ...

ε1 ≈ 10−7, ε2 ≈ 10−4

=⇒ Quasi-steady-state approximation

c = mT
s

K + s
, with K = k−/k+

Insert in eq. (42)
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J =
Ds

L
(s0 − sL) +

Dc

L
mT

(
s0

K + s0

− sL
K + sL

)
=

Ds

L
(s0 − sL)

(
1 +

Dc

Ds

mTK

(K + s0)(K + sL)

)
=

Ds

L
(s0 − sL)(1 + µρ)

with

ρ =
Dc

Ds

mT

K
, µ =

K2

(K + s0)(K + sL)

• Interpretation:

– Without myoglobin ρ = 0 =⇒ pure Fick’s diffusion

– With myoglobin flux is increased by factor µ ρ

– Effect is largest for small concentrations of O2, then µ close to maximum
of 1, experimental data: 0.1

– Experimental data: ρ = 500

– Overall effect: 50 times increase of flux

– Summary:

∗ Suck of left
Concentration of O2 high, affinity of myoglobin to bind O2 high

∗ Spit out right
Concentration of O2 low, affinity of myoglobin to bind O2 low

Critical discussion: [49], Review [118]

Lessons learned:

• Binding of O2 to hemoglobin is most popular example for cooperativity. Al-
though hemoglobin is not an enzym

• Facilitated Diffusion: Diffusion of O2 in muscle much faster in presence of
rather slowly diffusing myoglobin
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Part II

... to Systems Biology

8 Introduction

Literature:

• H. Kitano: Foundations of Systems Biology, 2001 [57]

• Basics of biochemistry: H. Rehm, F. Hammar: Biochemie light, 2001 [88]

• Control theorie: K. Zhou and J.C. Doyle and K. Glover, Robust and optimal
control, 1996 [122]

• Metabolism:

R. Heinrich, S. Schuster: The Regulation of Cellular Systems, 1996 [36]

D. Fell: Understanding the Control of Metabolism, 1997 [22]

• E.O. Voit: Computational Analysis of Biochemical Systems, 2000 [112]

• C.P. Fall et al.: Computational Cell Biology, 2002 [20]

• E. Klipp et al.: Systems Biology in Practice [59]

• L. Alberghina, H. Westerhoff: Systems Biology [1]

• U. Alon: Introduction to Systems Biology and the Design Principles of Biolog-
ical Networks [2]

• Z. Szallasi, J. Stelling, V. Periwal: System Modelling in Cellular Biology [107]

• J. Paulsson, J. Elf: Stochastic Modeling in Systems Modeling in Cellular Biol-
ogy [78]

Systems biology in general

Basic research:

• 2001: First human genome sequenzed, 10 years, 3 bn. $, today: 1 week, 1000 $

• Sequenced genome (ca. 24.000 genes) does not explain (dys)function
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• Function determined by regulation

• Regulation = Interaction and dynamics

• Function: Property of a dynamic network of proteins

• Can not be understood by intuitive reasoning

• Systems biology: Understanding of cellular processes based on mathematical
modelling of the networks

”Systems” from Systems Science: Determination of properties of models

Example:

• How does the cell make decisions

– grow ?

– proliferate ?

– divide ?

– die, apoptosis ?

• and that in a noisy environment ?

Figure 8.1: Apoptosis, threshold behavior, one-way bistable
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Figure 8.2: MAP kinase, parameters & time scales important

Figure 8.3: Same pathway different behavior, biological example

Medicine (applied biology):

• Drug development becomes more and more expensive and less and less efficient

• 1 drug: 10 years, 1 billion e / $

• Quantitative mathematical & mechanistic understanding should help

Central goals :
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• Understanding of function. ”Function” does not make sense in physics.

”Why ?”-questions

Makes sense in biology due to evolution

– Ever since there are genes, there is mutation, run faster, bite harder

– If there is competion, this leads to selection

• Understand robustness [58, 103, 105] Phenotypical stability under disturbances

– of the environment

– by intrinsic stochastic effects

– by extrinsic stochastic effects

• Render drug interventions rational

Three main fields of cell/systems biology:

• Metabolism

– Fluxes of matter

– Globally conserved quantities

– Stationary state is of interessant
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Figure 8.4: Metabolic pathway

• Signal transduction from outside the cell to the DNA

– Flux of information

– Locally conserved quantities

– Transient states are of interest
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Figure 8.5: Signaling pathways

• Gene regulation

– No conserved quantities

– Everything is transient
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Figure 8.6: Gene regulation

• In vivo everything interacts, but typically acts on different time scales

Two lines of attack:

• Discover general principles

– Robustness

– Qualitative vs. quantitative

∗ Is structure of the network central ? [115]

∗ or the specific parameters ? [34, 58]
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• Build concrete models of concrete networks [106, 5, 62]

Born to early:

• Norbert Wiener (1894-1964)

Cybernetics, or Control and Communication in the Animal and the Machine.
1948 [117]

• Ludwig von Bertalanffy (1901-1972)

Zu einer allgemeinen Systemlehre, Biologia Generalis. 1948 [114]

• Fürs Gemüt: Lessons from the past [116]

8.1 A little bit cell biology, biochemistry & molecular biol-
ogy

Best Book: [88]

Central dogma of molecular biology

• DNA made out of four nucleobases (A, C, G, T)

RNA made out of four nucleobases (A, C, G, U)

Protein made out of 21 amino acids

Three nucleobases code for one amino acid

• Central dogma: DNA makes RNA, RNA makes protein

• From DNA to RNA: transcription

• From RNA to protein: translation

• From DNA to protein: expression

• Nowadays: It is much more complicated

Biology:
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Figure 8.7: The cell, fundamental building block of life

• Prokaryotes & eukaryotes

• Mitochondrium, ribosomes, Golgi-apparatus, endoplasmatic reticulum

• Genes: ORFs, Promotors

• Metabolism: ATP, amino acids

• Gene regulation: Transcription factors

Experimental methods:

• Southern blot: DNA detection

Northern blot: RNA detection

Western blots: protein detection

• DNA chips, deep sequencing

• Microscopy:

Green Fluorescent Protein

FRAP Fluorescence Recovery after Photobleaching

FRET Förster/fluorescence resonance energy transfer

FLIM Fluorescence-lifetime imaging microscopy
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• Mass spectroscopy

Highly sensitive method for protein/metabolite quantification

Important: Never get confused from unknown names and abbreviations 8/17

7F/20

9 Metabolismus

Figure 9.1: Example of a metabolic network
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Figure 9.2: Böhringer map

• All reactions are mediated by enzymes

=⇒ Metabolic networks are determined by the involved enzymes

• Enzymes are given by expressed genes

• If all expressed enzyme genes are known, structure of metabolic network is
known

Two questions:

• How does the enzymes control substrate concentrations and fluxes ?

• Which paths through the network are possible ?
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9.1 Metabolic Control Theory

From single enzymes á la Sec. 6 Enzyme Dynamics to networks of enzym-mediated
reactions

Literature:

• R. Heinrich, S. Schuster: The Regulation of Cellular Systems, 1996 [36]

• D. Fell: Understanding the Control of Metabolism, 1997 [22]

Questions:

• Which reaction determines the flux how strongly ?

• Is there a rate limiting step ? The ”old dogma”

Remember Michalis-Menten: C
k2→ P . Vmax = k2 eT

• Which enzymes are efficient drug targets ?

Notation:

• Concentration of metabolites: S as substrate

• Any kind of parameter: p

• Velocity of single reaction: v(S, p)

Example Michaelis-Menten

v(S, p) =
Vmax S

Km + S

• Stoichiometric matrix N

S

v1−→←−
v4 S1

v2−→←−
v5 S2

v3−→←−
v6 P

Ṡ1 = v1 − v2 − v4 + v5, Ṡ2 = v2 − v3 − v5 + v6
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N =

(
1 −1 0 −1 1 0
0 1 −1 0 −1 1

)
N fixes the topology of the network

Sometimes to & back reactions are united in a single reaction

• Other examples

– Branched network:

Branched network

Ṡ1 = v1 − v2 − v3 N = (1 − 1 − 1)

– Water
2H2 +O2 → 2H2O

N = ( 2 1 )

• Stoichiometric matrix typically describes only internal metabolites. External
metabolites can be involved in other reaction are taken as known

Thus dynamics read:

dSi
dt

=
r∑
j=1

nijvj(S, p)

or more compact:

Ṡ = N v

Important:

• Non-linear in S & p

• but linear in v
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From now on: Consider system in stationary state:

N v = 0

Makes sense for metabolism: Stationary flux through the system4

J = J(S(p), p) = J(p)

An example:

• Consider

S

k+
1−→←−
k−1 X

k+
2−→←−
k−2 P

with
v1 = k+

1 S − k−1 X and v2 = k+
2 X − k−2 P

• Thus:
Ẋ = v1 − v2, N = (1 − 1)

Stationary state:

N v = 0 =⇒ v1 = v2 has to hold for a linear chain

• From v1 = v2 follows

X =
k+

1 S + k−2 P

k−1 + k+
2

and

J = v1 = v2 = k+
1 S − k−1

k+
1 S + k−2 P

k−1 + k+
2

=
k+

1 k
+
2 S − k−1 k−2 P
k−1 + k+

2

(43)

– Flux in dependence from input & output (and parameters), remember
MM

– Will be generalized below, see eq. (44)

4Makes absolutely no sense for signalling and gene regulation
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• J = 0 for
k+

1 k
+
2 S = k−1 k

−
2 P

P

S
=
k+

1

k−1

k+
2

k−2
, q1q2 = q equilibrium constants

Control coefficients:

• What change if something changes ?

• What changes if a parameter is slightly perturbed

(Relative) flux control coefficients

C
Jj
k = lim

∆vk→0

∆Jj/Jj
∆vk/vk

=
∂ ln Jj
∂ ln vk

• Nature is logarithmic. We detect relative changes of stimuli S: ∆S/S, Weber-
Fechtner law

• CJj
k = x means, that a change of vk by 1% causes a chance of Jj by x%

• Change of vk depends on change of parameter pk′ , e.g. for Michaelis-Menten
Vmax or Km

• Thus, in fact:

C
Jj
k =

vk
Jj

∂Jj/∂pk′

∂vk/∂pk′

(Relative) concentration control coefficients:

• Analogous:

CSi
k = lim

∆vk→0

∆Si/Si
∆vk/vk

=
vk
Si

∂Si/∂pk′

∂vk/∂pk′
=
∂ lnSi
∂ ln vk

• Controll coefficients are global properties or systems’ properties : What hap-
pens here if I change something there

Concrete determination
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• Can in general not be determined analytically

• Numerically:

– Calculate Jj or Si in undisturbed system

– Disturbe system slighty, calculate J̃j or S̃i

– Take difference, see exercise

Summation theorems

Controll coefficients are not independent

Reminder:
Theorem about homogeneous functions (Euler, 1707-1783)

• Assume

f(λx1, λx2, . . . , λxn) = λµf(x1, x2, . . . , xn)

f(.) homogeneous of degree µ

• Theorem

n∑
i=1

∂f(x1, x2, . . . , xn)

∂xi

xi
f(x1, x2, . . . , xn)

= µ

• Proof:

Differentiate assumption with respect to λ

n∑
i=1

∂f(λx1, λx2, . . . , λxn)

∂(λxi)
xi = µλµ−1f(x1, x2, . . . , xn)

Set λ = 1

n∑
i=1

∂f(x1, x2, . . . , xn)

∂xi
xi = µf(x1, x2, . . . , xn)

Dividing by f(x1, x2, . . . , xn) proofs the theorem
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• Often reaction velocities are linear in enzyme concentration, as for Michaelis-
Menten

v = k2
eT s

Ks + s
=

Vmaxs

Ks + s
, with Vmax = k2eT = k2E

• Then:
∂vk
∂Ek

=
vk
Ek

and for controll coefficients hold:

C
Jj
k :=

∂ ln Jj
∂ ln vk

=
vk
Jj

∂Jj
∂vk

=
Ek
Jj

∂Jj
∂Ek

=
∂ ln Jj
∂ lnEk

=: C
Jj
Ek

CSi
k analogous

• General setting:

vj = Ejgj(S1, . . . , Sn)

In stationary state:

r∑
j=1

nijvj =
∑

nijEjgj = 0

Change of all enzyme concentrations by a factor λ: Ej → λEj cancels out

Thus, stationary metabolite concentrations do not change

Si(λE1, . . . , λEr) = λ0Si(E1, . . . , Er)

Homogeneous of degree 0

• Differentiate with respect to λ, right hand side = 0

∑
j

∂Si
∂(λEj)

∂(λEj)

∂λ
=
∑
j

∂Si
∂(λEj)

Ej = 0

Consider λ = 1 and divide by Si yields:
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∑
j

Ej
Si

∂Si
∂Ej

=
∑
j

CSi
Ej

= 0

The sum of all concentration control coefficients of a substrate is zero
Consequence: There must be positive and negative ones

For flux control coefficient:

• Change of enzyme concentration causes:

Ji(λE1, . . . , λEr) = λ1Ji(E1, . . . , Er)

Homogeneous of degree 1

• Differentiate with respect to λ∑
j

∂Ji
∂(λEj)

∂(λEj)

∂λ
=
∑
j

∂Ji
∂(λEj)

Ej = Ji

• Set λ = 1 and divide by Ji yields:

∑
j

Ej
Ji

∂Ji
∂Ej

=
∑
j

CJi
Ej

= 1

The sum of all flux control coefficients of a flux is one

In branched pathways, CJi
Ej

can be negative
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Figure 9.3: Negative flux control coefficients

7/19

If control coefficients are determined empirically, if
∑
CSi,Jj 6= {0, 1} points to un-

complettness of the system. At least in principle.

Example : Un-branched chain

• Consider:

S0

v1−→←− S1

v2−→←− S2

v3−→←− . . . Sn−1

vn−→←− P

Forward and backward reaction between to substrates considered as one flux

=⇒ Velocity of reaction is function of substrate and product:

vi = vi(Si−1, Si)

• Assumption: Linear kinetics

vi = k+iSi−1 − k−iSi, with inverse equilibrium constant qi = k+i/k−i

yields for flux in generalisation of eq. (43)

J =
S0

∏n
j=1 qj − P∑n

j=1
1
k+j

∏n
m=j qm

(44)
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• For control coefficients, change k+i, k−i such that qi stays constant

CJ
i =

vk
J

∂J/∂pk′

∂vk/∂pk′

follows:

CJ
i =

1
k+i

∏n
j=i qj∑n

j=1
1
k+j

∏n
m=j qm

(45)

• Note:

– Control coefficients CJ
i have direct relation to 1

k+i

– But: Control coefficents of each reaction depend on all other reactions.

– The ”old dogma”, that the slowest reaction determines the overall reaction
velocity does not hold

• Consider relaxation time of enzyme:

τi =
1

k+i + k−i

Eq. (45) becomes

CJ
i =

τi(1 + qi)
∏n

j=i+1 qj∑n
j=1 τj(1 + qj)

∏n
m=j+1 qm

(46)

Consequences:

• For qi = 1 follows

CJ
i =

τi∑n
j=1 τj

closest the ”old dogma”

• Consider last control coefficient of chain of three reactions

CJ
3 =

τ3(1 + q3)

τ1(1 + q1)q2q3 + τ2(1 + q2)q3 + τ3(1 + q3)
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For τ3, q3 = const., q1 →∞ or q2 →∞ follows CJ
3 → 0, independent from τ3

Thus: Reactions downstream of irreversible reaction have no flux control, no
matter how slow they are

• In general: Control coefficients depend not only on the reaction velocity of an
enzyme but also on its postion in the chain

• Consider control coefficients of successive reactions. From eq. (46) follows:

CJ
i

CJ
i+1

=
τi(1 + qi)

τi+1(1 + qi+1)
qi+1

Typically qj > 1

=⇒ Tendency, that control coefficents are larger at the beginning than at the
end of the chain

Controll coefficients in optimal states

• Maximising flux is an important evolutionary optimisation criterion

J →Max.

• But: limited amount of enzymes

Constraint for optimisation

∑
l

El = Etot = const.

• Lagrange multiplier

Optimise:

J∗ = J + λ

(∑
l

El − Etot

)

Yields for any pair i, j

∂J∗

∂Ei
=

∂J

∂Ei
+ λ = 0,

∂J∗

∂Ej
=

∂J

∂Ej
+ λ = 0

154



Thus

∂J

∂Ei
=

∂J

∂Ej

Un-normalised flux controll coefficients must be equal

• Normalisation

1

Ei

(
Ei
J

∂J

∂Ei

)
=

1

Ej

(
Ej
J

∂J

∂Ej

)
Thus

CJ
i

CJ
j

=
Ei
Ej

control coefficients must be distributed as enzyme concentrations.

By summation theorem follows:

CJ
i =

Ei∑
j Ej

Further examples

• Maximal fast relaxation to equilibrium

• Maximising the growth rate

To be extended: Spatial effects diffusion Control always ≤ 0.5 [80] 8M/20

9.2 Elementary Mode Analysis

First paper 1994 [96], nice review [94]

Null-Space Ansatz

Metabolic system in steady state

N v(S, p) = 0
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• Parameters known: Determine S, in general a non-linear problem

• Parameters unknown: Determine v, a linear problem

N v = 0

• Typically, an under-determined linear system, luckily

• But it gives constraints.

• Example: Linear chain:

– All reactions velocities must be identical

– But specific value is not specified

From now on, slight abuse of notation: Reaction velocity denoted by flux

Relations between fluxes given by

N K = 0

with K, matrix with maximum rank

The columns of kernel of the stoichiometric matrix determine the possible fluxes

Example:

Figure 9.4

• Stoichiometric matrix

N =

(
1 −1 1 0
0 1 −1 −1

)
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Possible K

K =


1 0
1 1
0 1
1 0



Figure 9.5

• Columns of K present possible paths through the network

Each realisation is a linear combination of the column vectors
v1

v2

v3

v4

 =


1 0
1 1
0 1
1 0

( λ1

λ2

)
=


λ1

λ1 + λ2

λ2

λ1


Enzyme subsets:

• Enzymes that work in a fixed ratio

• Proportional rows of K give enzyme subset.

• Example
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Figure 9.6

N =


1 −1 0 −1 0 0
0 0 0 1 −1 0
0 1 −1 0 0 0
0 0 1 0 1 −1



K =


1 1
1 0
1 0
0 1
0 1
1 1


Enzyme Subsets: {1,6} {2,3}, {4,5}

Disadvantages of null-space ansatz:

• In general no unique solution

• Base vectors not necessarily maximum simple

• Might violate irreversible reactions

• Might describe knock-outs not correctly
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Figure 9.7: After knock-out of enzyme 1, route 2-3 remains active

Therefore: Elementary mode analysis [93, 95, 97]

Definition elementary mode v∗

(i) Nv∗ = 0

(ii) v∗ treates irreversible reaktions correctly virr > 0

(iii) v∗ can not be reduced

meaning there is no ṽ∗ with

– ṽ∗ fulfills (i), (ii)

– ṽ∗ has zeros where v∗ has zeros and at least one more

One can show

• Elementary modes are unique up to scaling

• All realisable flux distributions are positive linear combinations of the elemen-
tary modes

v =
∑
k

ak v
∗
k, ak ≥ 0

• Elementary modes define a cone in the space of reactions

• All possible reactions lie within the cone
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Figure 9.8: Axes: Reaction rates of enzymes
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Figure 9.9: Examples for elementary modes
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Figure 9.10: Example elementary modes

Figure 9.11: Describes knock-outs correctly

• Describes knock-outs correctly
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Determination of elementary modes

• Analogous to Gauß-Jordan elimination

• Identity matrix I, form (NT : I)

• Paarwise combination of rows, such that maximum number of columns of NT

become null vectors

• Transformed I gives elementary modes

Application [94]

• Why we can not produce sugar from fett

Figure 9.12: Human situation

– There is a connection from AcCoA stemming from fatty acids to glucose,
but it not realisable

– There is only one elementary mode
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Figure 9.13: Plant situation, remember: they have more genes than we

– There is a shunt

– The connection from AcCoA to glucose is realisable

Other applications :

• Investigation of robustness [104]

• Optimisation of pathways [98]

Related conzept: Extremal pathway analysis
Treats reversible reactions differently

• Elementary mode analysis typically unites to and back reactions

• Extremal pathway analysis treats them separated

9.3 Flux Balance Analysis

Next time
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Lessons learned

• Metabolic control theory: Summation theorems, give relations between com-
ponents and systems behavior

• Allow for insights even if the fluxes are not expicitely known as functions of
the parameters

• Elementary mode analysis reaveals realisable paths through the network

8F/20

9/17
10 Signal transduction

Figure 10.1: MAP kinase pathway

Networks are complex.
But networks are structured by motifs, building blocks:

• Feedback loops

• Feed-forward loops

• Zero-order ultrasensitivity

• Phosphorylation cascades
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• Nice overview: ”Sniffers, buzzers ...” [109]

Figure 10.2: ”Sniffers, buzzers ...”
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10.1 Feedback-Loops

Negative Feedback-Loops

Literature:

• Review ”Feedback for physicists: a tutorial essay on control” [4]

Proportional feedback5

Figure 10.3: Proportional negative feedback [91]

• System described by, for now d = 0:

y = Ae

e = u− Fy

Elimination of e, to obtain input/output relationship, remember Michaelis-
Menten :

y = A(u− Fy)

y =
A

1 + AF
u, or simply y = Gu

• with G: Closed-loop amplification factor.

5Feedback loops were first introduced for amplifiers. Feedback loops in biology
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• But:

G =
A

1 + AF
< A

Thus, why negative feedback ?

Four reasons

(i) Control of amplification by feedback

For

loop-gain AF � 1 =⇒ G ≈ A

AF
=

1

F

=⇒ Feedback determines amplifier properties

A might be complicated, F can be simple

(ii) Robust against variations of amplifier

How do changes of the amplifier effect closed-loop amplification factor G ?

∂G

∂A
=

∂

∂A

A

1 + AF
=

1

(1 + AF )2

=⇒ Sensitivity decreases with increasing loop-gain

In relative units
A

G

∂G

∂A
=

1

1 + AF

Thus:
∆G

G
=

1

1 + AF

∆A

A

(iii) Linearisation of the system

Consider non-linear amplifier A(u):

G(u) = y = A(e), e = u− Fy = u− FG(u)

yields:

G(u) = A(u− FG(u))
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Differentiate

G′(u) = A′(u− FG(u))(1− FG′(u))

Solve for G′

G′ =
A′

1 + A′F

For A′F � 1 follows:

G′(u) ≈ 1

F

=⇒ The amplifier becomes linear

(iv) Robust against disturbances of the output

Now, switch on disturbances of the output, i.e. d 6= 0

y = Ae− d
e = u− Fy

Elimination of e yields:

y =
Au− d
1 + AF

Sensitivity against disturbances of the output

∂y

∂d
= − 1

1 + AF

=⇒ Eduction/further processing of the output does not disturb the system for
large loop-gain

Negative feedback leads to modularisation

This can not be overestimated. Only therfor we can talk about subsystems
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– Subsystem is first order

– Interaction with other subsystems is 2. order

Comparison to brain research, especially frontal brain, place of the higher brain
functions

– Interaction seems to be the leading term

– Breakdown in moduls not possible

– One has to deal with whole complexity in first place

For all of this holds:

• Robust yet fragile

• Shift of control from A to F

• Consider airplanes

– Airplanes of brothers Wright was not robust against crosswind, but robust
againt breakdown of the electronics (since not present)

– Airbus is robust against crosswind, but not against breakdown of elec-
tronics

Consequences for drug development:

• Never target inside a negative feedback loop !
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Figure 10.4: Never target inside a negative feedback loop !

Amplification is not always the goal, see Chap. 13.1 Chemotaxis

Proportional negative feedback does not allow for perfect tracking [4]

y∞ =
A

1 + AF
u∞, y∞ < u∞ for large loop-gain AF

So far static, now consider dynamics:

• Negative Feedback can lead to overshoot oscillations

Example:

Temperature of the water while taking a shower

• Simple example:

ẋ = −ax− by
ẏ = cx− dy
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Interpretation:

– y is positively regulated by x

– x is negatively regulated by y

– Both are negatively auto-regulated

Linear system:

– Tr = −a− d determines auto-regulation

– Det = ad+ bc determines feedback-regulation

Oscillation if Tr2 < 4Det: Strong negative feedback can cause oscillations
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Figure 10.5: Oscillations in negative feedbacks

• For wings of airplanes this can be catastrophic
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Integral negative feedback

Figure 10.6: Integral negative feedback [121]

• Heater: Temperature is integral over applied energy (in 1. order)

• Serves for perfectes tracking.

ẏ(t) = −1

τ
y(t) +

Ki

τ 2

∫ t

−∞
[u∞ − y(t′)]dt′

Differentiate:

ÿ(t) = −1

τ
ẏ(t) +

Ki

τ 2
[u∞ − y(t′)]

Stationary solution: y∞ = u∞

• see Chap. 13.1 Chemotaxis

In summary PID negative feedback

• P: proportional: Considers current deviation

• I: integral: Forms a memory of past deviations

• D: differential: Looks at rate of change, predicts future behavior
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Negative feedback can accelerate signal transduction [90]

Positive Feedback-Loops

Literature: [109, 25, 24, 120]

Simple example, roughly here, have fun in the exercise

• Protein 1 inhibits protein 2

• Protein 2 inhibits protein 1

• − ×− = +

• Both proteins with synthesis and degradation

Figure 10.7: Two mutually inhibiting proteins

• Let protein 2 be ”stronger”

• Stably protein 2 high, protein 1 low

• Increase synthesis of protein 1, until it overwhelms protein 2

• Now, stably protein 2 low, protein 1 high

• Decrease synthesis rate again

• Result: Hysteresis, a memory
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Figure 10.8: Hysteresis in a positive feedback

Effects of negative and positive feedbacks loops in signalling pathways
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Figure 10.9: Negative and positive feedbacks, dashed lines if feedback is active

8/19
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10.2 Feed-forward Loops

Also important in gene regulatory networks

Literature: [99, 66, 70]
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Figure 10.10: Feedback and feed-forward loops

Discrimination: coherent and incoherent feed-forward loops

Figure 10.11: The FFL loops

Possible action on the target: logical AND or OR

Coherent Feed-forward Loops

Consider type 1 coherent feed-forward loop with logical AND
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Figure 10.12: Biological realisation of type 1 FFL with logical AND
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Figure 10.13: Biological realisations

Figure 10.14: Delay in activation

Delay in activation
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Figure 10.15: No delay in deactivation

No delay in deactivation

Figure 10.16: Elevator door effect, light barrier
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Sign-dependent delay element, Elevator door effect

Robust aganist fluctuations in inactive state

Consider type-1 coherent feed-forward with logical OR

Figure 10.17: Type-1 coherent feed-forward with logical OR

Robust against fluctuations in active state

Incoherent Feed-forward Loops

Consider type-1 incoherent feed-forward loop with logical AND

Figure 10.18: Type-1 incoherent FFL logical AND
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Figure 10.19: Puls generator

• Pulse generator

• Several of them with different times for maxima regulate just in time gene
expression [50]

To extend:

• Logarithmic Weber-Fechtner law by feedforward-loop

10.3 Zero-order ultrasensitivity

Remark on sniffers slide

Reversible modifications of proteins T are ubiquitous regulatory mechanism
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Figure 10.20: Reversible phosphorylation

Simplest case [31, 32]

• Enzymes that modify (M) and demodify (D) the protein

• Phosphorylation by kinases

• Dephosphorylisation by phosphatases

Ṫ ∗ = v1 − v2

v1 =
k1M T

K1 + T

v2 =
k2DT ∗

K2 + T ∗

With

T + T ∗ = Ttot

v1 =
k1M (Ttot − T ∗)
K1 + (Ttot − T ∗)

follows:
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v1 =
k1M (1− T ∗/Ttot)

K1/Ttot + (1− T ∗/Ttot)

v2 =
k2D (T ∗/Ttot)

K2/Ttot + (T ∗/Ttot)

Both only depend on T ∗.

Steady state is given by intersection.

Figure 10.21: Zero-order ultrasensitivity

• Enzymes work in saturation, ”zero order” reactions

• ”Zero order ultrasensitivity” = Threshold behavior, robustness against noise
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• Critical discussion [9]

10M/20

10.4 Phosphorylation Cascades

The most famous one: MAP Kinase cascade

Literature: MAP Kinase [23, 45, 56, 7, 8]

• MAP Kinase cascade: Mitogen activated protein kinase cascade

• Kinase: Phosphorylates a protein

• Mitogen: induces mitosis, mitosis: cell division

Figure 10.22: The complex picture
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Figure 10.23: A simplifed scheme

Static Situation [23]

• Three times Michaelis-Menten gives sigmoidal

• As ultrasensitivity for cooperativity, robust against fluctuations in input if not
close to the threshold

Dynamic situation [35]
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Figure 10.24: A very simplified MAP kinase scheme, we already know what the
feedback does

Note: Substrates become enzymes (kinases)

Notation:

• x̃i: non-phosphorylated (inactive) kinase

• xi: phosphorylated (active) kinase, xi = 0 for t < 0

• ci = x̃i + xi: total

• R(t): Receptor activation

Assumptions:

• Concentration of substrates smaller than Michaelis-Menten constants

=⇒ Mass action kinetics

188



• Phosphatases are constant

=⇒ Dephosphorylisation proportional to xi

• Receptor activiation R(t) = 0 for t < 0 and

R(t) = R exp(−λt) for t > 0

WS 19
The dynamics

• First reaction:

ẋ1 = ã1R(t)x̃1 − b1x1

downstream:
ẋi = ãixi−1x̃i − bixi

• With ci = x̃i + xi und ai = ciãi

ẋ1 = a1R(t)

(
1− x1

c1

)
− b1x1 (47)

for downstream reactions

ẋi = aixi−1

(
1− xi

ci

)
− bixi (48)

Note: xi(0) = xi(∞) = 0

Characteristic quantities:

• Signaling time:

τi =
Ti
Ii
, with Ii =

∫ ∞
0

xi(t) dt, Ti =

∫ ∞
0

txi(t) dt

• Signal duration:

ϑi =

√
Qi

Ii
− τ 2

i , mit Qi =

∫ ∞
0

t2xi(t) dt
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• Signal amplitude:

Si =
Ii

2ϑi

Figure 10.25: The characteristic quantities: Time τi, duration ϑi, and amplitude
Si

Consider: Weakly activited pathway: xi � ci

Eqs. (47, 48) become

ẋ1 = a1R(t)− b1x1

ẋi = aixi−1 − bixi (49)

The quantities τi, ϑi, Si can be calculated analytically

• Signaling time τi

– From receptor activation R(t) = R exp(−λt) follows:

∗ I0 = R/λ

∗ T0 = R/λ2

∗ τ0 = 1/λ
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– Eq. (49) yields:

Ii =
ai
bi
Ii−1 (50)

since

Ii =

∫ ∞
0

xi(t) dt =
ai
bi

∫ ∞
0

xi−1 dt−
1

bi

∫ ∞
0

ẋi dt︸ ︷︷ ︸
=0

=
ai
bi
Ii−1

Thus:

In =
R

λ

n∏
i=1

ai
bi

– Multiply eq. (49) by t and integrate over t yields∫ ∞
0

t ẋi dt = ai

∫ ∞
0

t xi−1(t) dt− bi
∫ ∞

0

t xi(t) dt

LHS: Partial integration:∫ ∞
0

t ẋi dt = [t xi]
∞
0 −

∫
xi dt = −Ii

Results in:
Ii = −aiTi−1 + biTi (51)

– Divide eq. (51) by Ii and complement 1

1 = −ai
Ti−1Ii−1

Ii−1Ii
+ bi

Ti
Ii

Remember definition τi = Ti
Ii

and eq. (50)

– Yields:

1 = −aiτi−1
bi
ai

+ biτi

Recursion equation for τi

τi = τi−1 +
1

bi
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– Thus:

τn =
1

λ
+

n∑
i=1

1

bi

Signalling time depends only on pari passu phosphatases.

• Signaling duration ϑi

– Multiply eq. (49) by t2

– Integration yields:
2Ti = −aiQi−1 + biQi

– Leads to

ϑ2
i = ϑ2

i−1 +
1

b2
i

and finally to

ϑn =

√√√√ 1

λ2
+

n∑
i=1

1

b2
i

Signalling duration depends on pari passu phosphatases.

• Analogously signaling amplitude Si

Sn =
R
2

∏n
i=1

ai
bi√

1 + λ2
∑n

i=1
1
b2i

=
R
2

∏n
i=1

ai
bi

λϑn
(52)

Interpretation:

• Kinases have no influence on signalling time und duration

• High amplitudes by fast kinases and slow phosphatases

Kinases have larger effect on amplitudes as phosphatases, since the latter are
in denominator and in the nominator

• Phosphatases have negative effect on all quantities

Ergo: High amplitudes only to the expence of high signalling time and duration
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• It holds τi+1 > τi, ϑi+1 > ϑi

• Relation between Si+1 and Si: Anything goes

• Experimentally validated [43], see also [42]

Figure 10.26: Experimental validation

Amplification6 :
From eq. (52), Si+1 > Si, if

bi < ai

√
1− 1

a2
iϑ

2
i−1

6Remember: Amplification is not necessarily the goal of signalling, but MAP kinase cascade is
typically amplifying
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• Phosphatases must be slower than kinases, makes sense

• If duration of the previous step long: phosphatases can be a little bit faster

Since signalling duration ϑi increases with i: Amplification better late in cas-
cade

Figure 10.27: Parameters fixed, longer cascade

Counter-acting effects:
Longer cascades ...

• ... cause higher signalling time and duration

• ... allow for distribution of amplification with faster phosphatases in the single
steps
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Figure 10.28: Signalduration in dependence on length of cascade and amplification
factor

Figure 10.29: Effect of longer cascades

• Longer cascades enable sharper and faster signals.
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• Explanation for biological fact of cascade with multiple (three) steps

Big Picture:

• Systems Biology: Use modules to understand biological systems

• Synthetic Biology: Use modules to design artificial biological systems

WS 20
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10/1711 Parameter Estimation in Dynamical Systems

• In general, parameters are unknown and can not be measured directly

• Idea: Estimate parameters from time resolved data

Needs three ingredients

• Parameter estimation theory

What is a ”good” estimator ?

• Optimization algorithms

Non-linear problem

=⇒ Estimation has to be done numerically

• Statistics

How well are parameters determined by the data, confidence intervals ?

In our case

• Dynamics:
~̇x = ~f(~x, ~p, ~u), ~x ∈ Rn

+, ~u external stimuli

• Observations

– Typically not all components can be measured

– Or, only combinations of them

– Measurements often on relative scale

– Measurements are noisy
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Thus, observations:

~y(ti) = ~g(~x(ti), ~p) + ~ε(ti), ~ε(ti) ∼ N(0,Σi), ~y ∈ Rm
+

with m < n

• Parameter estimation in nonlinear, partially observed, noisy, non-autonomous,
stiff, sparse dynamical systems

11.1 Parameter Estimation Theory

Two fundamentally different approaches

• Frequentists’ approach

There are true parameters. With increasing number of data there is a chance
to determine them more and more exactly

• Bayesian approach

Parameters are random variables. They have a distribution

Prior knowledge can be incorporated

Maximum likelihood estimation

Assume the probability distribution of possible data x given parameter a is given by
p(x, a)

• a is known and fixed

• For all possible x, p(x, a) determines their probability of occurence

• It holds ∫ ∞
−∞

p(x, a) dx = 1

For parameter estimation, data xi, i = 1, . . . , N is given, a is unknown

• Data xi are known and fixed

• a is unknown

• Idea: Read p(xi, a) in dependence on a
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• It holds ∫ ∞
−∞

p(x, a) da 6= 1

p(x, a) in dependence on a is not a probalility.

• It is called likelihood L(a)

• Choose a such that the probability for the observed data, the likelihood, is
maximum

=⇒ Maximum likelihood estimation

• For a single given data point x

L(a) = p(x, a)

For N data points

L(a) =
N∏
i=1

p(xi, a)

• Maximizing products (numerically) is no fun

• Good news: The value of a that maximizes L(a) stays the same if one maximizes
twice the logarithm of L(a), the log-likelihood LL(a)

LL(a) =
N∑
i=1

log p(xi, a)

• Typically minus the log-likehood is considered and minimized and ...

• ... to maximize confusion again called the likelihood

Towards our setting

• Special case:

For independent Gaussian distributed data, a: the mean µ. σ2 assumed to be
known
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p(xi, µ) =
1√
2πσ

e−
(xi−µ)

2

2σ2

Likelihood:

L(µ) =
N∏
i=1

1√
2πσ

e−
(xi−µ)

2

2σ2

• Minus twice the log-likelihood

−2LL(µ) = const. +
N∑
i=1

(xi − µ)2

σ2

Here, −2LL(µ) is called χ2(µ) since it is χ2-distributed for the true µ

′′χ2
r =

r∑
i=1

N(0, 1)2′′

• For Gaussian distributed errors minimising weighted least squares is the max-
imum likelihood estimator

• Otherway around: If you use weighed least squares you have (implicitely) as-
sumed Gaussian errors

• In general

χ2(p) =
N∑
i=1

(xi −model (p))2

σ2

• Summary

Dynamics:
~̇x = ~f(~x, ~p, ~u), ~x ∈ Rn

+

Observations:

~y(ti) = ~g(~x(ti), ~p) + ~ε(ti), ~ε(ti) ∼ N(0,Σi), ~y ∈ Rm
+

Minus twice the log-likelihood, χ2

χ2(~p, ~x(t0)) =
N∑
i=1

M∑
j=1

(
(yDj (ti)− gj(~x(ti; ~p, ~x(t0))

σi j

)2

(53)
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11.2 Optimization algorithms

The bible for numerics: The Numerical Recipes [81]

• Optimization problem eq. (53) can not be solved analytically, but need to be
solved numerically

• Optimization problem is non-linear

=⇒ There will be local optima

Two general classes of optimizers

• Deterministic ’local’ optimisers

– Take an initial parameter guess and run down the hill

– Apply gradient and curvature information, see below

– Use several different initial parameter guesses to find the global optimum

• Stochastic ’global’ optimisers

– Take an initial parameter guess and apply heuristic search strategy

– Central: Allow with a certain probability to run up the hill to escape local
optima

– Simulated annealing, genetic algorithm

– Problem: Magic parameters that correspond to gradient an curvature

9/19
How to determine a good optimizer [87]

• Start the optimizer multiple time with different initial guesses

• Sort the final results by their likelihood

• Since one can in general only expect convergence to a local optimum, at least
steps in the sorted likelihood should appear.
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Figure 11.1: Likelihood landscape of the Himmelblau function

Figure 11.2: Sorted -log-likelihood values

Deterministic optimisation/minimisation algorithms

Simplest version: Steepest descent

• Follow the negative gradient

pi+1 = pi − λ∇χ2(pi) (54)
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• Choice of λ unclear

• Line search algorithm

arg min
λ
χ2(pi − λ∇χ2(pi))

Observation:

• If one is close to the optimum, χ2 is a parabola, ∆p = pi+1 − pi

χ2(pi + ∆p) ≈ χ2(pi) +∇χ2(pi)∆p+
1

2
∆pTH(pi)∆p (55)

with Hessian

H(p) =
∂2χ2(p)

∂pi∂pj

Minimum of RHS of eq. (55), derivative with respect to ∆p equals 0

0 = ∇χ2(pi) +H(pi)∆p =⇒ ∆p = −H−1(pi)∇χ2(pi)

• Minimum can be reach in a single Newton-step by

pmin = pi −H−1(pi)∇χ2(pi) (56)

A zoo of optimization algorithms

• Steepest descent, line search

• Conjugate gradients

Choose iteratively orthogonal gradients with respect to the metric induced by
the Hessian

• Quasi-Newton method

Calculating of Hessian is expensive: Approximates Hessian iteratively based
on gradients

• Trust-region method

Checks, for which region the quadratic approximation is good
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• Levenberg-Marquard method for least squares problems y = y(xi, p)

χ2(p) =
∑
i

(yi − y(xi, p))
2

σ2
i

– Do a mixture of a steepest descent and approximative Newton step.

Gradient:
∂χ2

∂pk
= −2

N∑
i=1

yi − y(xi, p)

σ2
i

∂y(xi, p)

∂pk

Hessian:

∂2χ2

∂pk∂pl
= 2

N∑
i=1

1

σ2
i

(
∂y(xi, p)

∂pk

∂y(xi, p)

∂pl
− (yi − y(xi, p))

∂2y(xi, p)

∂pk∂pl

)
If model is correct, the second term should be small. Neglect it.

Convention :

βk = −1

2

∂χ2(p)

∂pk
, αkl =

1

2

∂2χ2(p)

∂pk∂pl

– With δpl = (pi+1 − pi)l, eq. (56) becomes

M∑
l=1

αklδpl = βk (57)

– Note : Steepest Descent given by:

δpl = const βl (58)

– Idea Levenberg-Marquardt algorithm:

∗ Far away from optimum, Newton-step eq. (57) might be bad.

∗ Take gradient-step Gl. (54). How to choose ”const” ?

∗ χ2(p) dimension-less, dimension [βl] = dimension [1/δpl], consider
eq. (57) =⇒
1/αll is candidat for scaling.
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∗ To be on the save side, step not too large, choose λ� 1

δpl =
1

λαll
βl or λαllδpl = βl (59)

– Combine gradient step Gl. (59) and Newton-step Gl. (57) by

α′jj = αjj (1 + λ)

α′jk = αjk, für j 6= k

yields:

M∑
l=1

α′klδpl = βk (60)

Interpretation:

∗ If λ large =⇒ α′kl diagonal-dominated =⇒ small gradient step

∗ For λ→ 0, Newton-step

Procedere:

1. Choose initial choice for p, Calculate χ2(p)

2. Choose small λ, e.g. λ = 0.001. Expresses hope

3. Solve eq. (60) and calculate χ2(p+ δp)

4. If χ2(p+ δp) ≥ χ2(p), reject δp, choose λ = 10λ, go to 3

5. If χ2(p+ δp) < χ2(p), accept δp, choose λ = 0.1λ, go to 3.

6. At optimum, χ2(p+ ∆p) = χ2(p), λ will increase

7. Terminate optimisation if λ > 106

Interpretation:

If Newton step

– successful, more of it

– not successful, choose (save) gradient step

• If χ2 does not decrease for a proposed δp give more weight to a smaller steepest
descent step
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• If χ2 decreases, give more weight to the approximative Newton step

Deterministic ’local’ optimisers in our case y = g(x, p) require derivatives

dg

dp
=
∂g

∂x

∂x

∂p
+
∂g

∂p
,

∂g

∂x
,
∂g

∂p
no problem

• Finite difference

∂x(t, p)

∂pi
≈ x(t, p)− x(t, p+ hei)

h
,

Two error sources:

– Discretisation error h

– Different step size controls for integrating x(t, p) and x(t, p+ hei)

– Uncontrollable

• Sensitivity equations

d

dt

∂x

∂p
=
∂ẋ

∂p
=
∂f(x, p)

∂p
=
∂f

∂x

∂x

∂p
+
∂f

∂p

Can be integrated in parallel with the dynamics

Figure 11.3: Finite differences vs. sensitivity equations

WS 21

10.5/17

11M/20
205



11.3 Statistics

Optimisation algorthms deliver a point estimate, a number

• What is the uncertainty of that number ?

Random variable

• Something that has a distribution p(x)

• Expectation value of random variable

〈x〉 =

∫
dx p(x)x

Expectation value is a number.

Examples

• Gaussian, normal distribution: N(µ, σ2)

pN(x) =
1√
2πσ

e−
(x−µ)2

2σ2

• Cauchy distribution, see Sec. 3.3.2 Spatial effects in SIR models

pCauchy(x, a, γ) =
1

π

γ2

(x− a)2 + γ2

Cauchy-distribution (red) compared to normal distribution (blue)
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• Poisson-distribution

P (k, λ) =
e−λλk

k!
, k ∈ N0

– Probability for k events in a time interval

– λ: Average number of event in time interval

– Important for point processes with constant rate, think of photon counting
processes, e-mails per hour, fireing neurons.

Poisson-distribution for different λ

It holds
µ = σ2 = λ

• χ2
r distribution with r degrees of freedom

χ2
r is sum of r independent squared standard Gaussian random variables

′′χ2
r =

r∑
i=1

(Ni(0, 1)2)′′
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χ2
r-distribution with r = 1, 2, 3, 4, 5 degrees of freedom

• Multivariate Gaussian distribution

p(~x) =
1

(2π)d/2
√
|Σ|

exp

(
−1

2
(~x− ~µ)TΣ−1(~x− ~µ)

)
, d = dim(~x)

with covariance matrix Σ

Σ = 〈(~x− ~µ)(~x− ~µ)T 〉

Describes correlations between the components
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2d-normally distributed random numbers with

Σ1 =

(
0.7 0
0 0.7

)
, Σ2 =

(
0.7 0.4
0.4 0.7

)
, Σ3 =

(
0.7 −0.4
−0.4 0.7

)
• Many more

Note: An estimator is a random variable

• Whenever one estimates a parameter from new data, the point estimate will
be different since the noise realisation will be different

Definitions

• True parameter : p0

• Estimator for parameter : p̂

• Bias of estimator: 〈p̂〉 − p0, how wrong in the mean

• Variance of estimator : 〈(p̂− 〈p̂〉)2〉, how variable
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• Mean square error : 〈(p̂− p0)2〉 = bias2 + variance of estimator

• Confidence interval: Region around p̂, in which true value p0 lies with a certain
probability

Example:

• Estimate the mean µ of a Gaussian N(µ, σ2) from N data xi, σ
2 assumed to

be known

•
pN(x) =

1√
2πσ2

e−
(x−µ)2

2σ2

Log-likelihood L(µ), neglect constant terms:

L(µ) = −
N∑
i=1

(xi − µ)2

2σ2

• Taking derivative, setting it to zero:

dL(µ)

d µ
=

N∑
i=1

(xi − µ)

σ2

!
= 0

• MLE:

µ̂ =
1

N

N∑
i=1

xi

• µ̂ is unbiased

< µ̂ >=
1

N

N∑
i=1

< xi >=< x >= µ

• Variance of µ̂

V ar(µ̂) =
1

N2

N∑
i=1

V ar(xi) =
1

N
V ar(x) =

1

N
σ2
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• Standard error of the mean

σ(µ̂) =

√
1

N
σ

• Confidence interval [
µ̂−

√
1

N
σ, µ̂+

√
1

N
σ

]
Variance:

–

pN(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

– Assume µ is known

Log-likelihood

L(σ2) = −N
2

log(2πσ2)− 1

2σ2

∑
i

(xi − µ)2

– Take derivative, set it to zero and solve

σ̂2 =
1

N

∑
i

(xi − µ)2

– If µ is also estimated, plug in µ̂

– Estimator is biased

– Un-biased estimator

σ̂2 =
1

N − 1

∑
i

(xi − µ̂)2

One degree of freedom is ”burned” for estimating µ

What is the distribution of the maximum likelihood estimator ?

• Central limit theorem:

The sum of random variables with finite moments converges to a Gaussian
distribution
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• Assumption: True parameter not at the boundary of parameter space

Asymptotically, MLE is Gaussian distributed as

√
N(p̂− p0) ∼ N (0,Σ) Statisticians

(p̂− p0) ∼ N (0,
Σ

N
) Physicists

with

Σ = −N
(
∂2L(p̂)

∂pi∂pj

)−1

(61)

Proof: Estimation is always some kind of averaging

• Discuss true parameter at the boundary of parameter space

• Result does not depend on the distribution of the noise, e.g. also holds for
Cauchy distributed random variables.

• Right hand side of eq. (61) is called Cramér-Rao bound or
Fisher Information Matrix

Figure 11.4: Confidence intervals based on Fisher Information Matrix
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• MLE is most efficient, all other estimator have larger variance, and, thus con-
fidence intervals. They do not reach Cramér-Rao bound

MLE makes most out of the data

For mean:

dL(µ)

d µ
=

N∑
i=1

(xi − µ)

σ2

d2L(µ)

dµ2
= −N 1

σ2

Σ = −N
(
∂2L(p̂)

∂pi∂pj

)−1

= σ2 (62)

As above, Standard error of the mean

σ(µ̂) =

√
1

N
σ

Model selection

• Typically, true model structure is not known

• Nested models: model 1 is simplifcation of model 2

Example:

– One parameter fixed to a certain value

• Non-nested models: model 1 and model 2 are just different

Example: Two different mechanisms to describe the system

Newton vs. Einstein

Likelihood ratio test

• Assume the model is true, r parameters
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• Then, the (log-)likelihood ratio is distributed as

2 [L(p̂)− L(p0)] ∼ χ2
r . (63)

Difference of log-likelihoods is log-ratio of the likelihoods

Meaning: The fit will always be better than the truth, over-fitting

• Proof

L(p0) = L(p̂) +
∂L(p̂)

∂ pi
(p0 − p̂) +

1

2
(p0 − p̂)T

∂2L(p̂)

∂pi∂pj
(p0 − p̂) +O(|p0 − p̂|3) .

– 2. term RHS = 0 since MLE.

– Neglect terms of higher order

– Σ−1 rotates out the correlations of p̂, normalises to unit variance

– 3. term of RHS is χ2
r

– Solve for 2(L(p̂)− L(p0))
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Consider two nested models

• Assumption, null hypothesis: The smaller model 1 with r1 parameters is a
justified simplification of the larger model 2 with r2 parameters

• Occam’s razor: Take the smaller one

• Same idea of calculation, but more complicated leads to

2 [L(p̂2)− L(p̂1)] ∼ χ2
r2−r1 . (64)

Interpretation

• Larger model has more degrees of freedom

• Will slightly over-fit the data

• Eq. (64) says, how much over-fitting is fine

• If assumption not true, likelihood ratio will be larger as allow by eq. (64)
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• Basis for a statistical test to reject the null hypothesis

Profile likelihood

• Strong asymptotic assumptions for the Fisher Information Matrix based con-
fidence intervals: Quadratic approximation based on point estimate and its
curvature must hold

• For linear regression models approximation holds globally

• For non-linear, it depends

• Note: In our setting

ẋ = f(x, p)

y(ti) = g(x(ti), p) + ε(ti)

solution only linear in the parameters if f(x, p) = const.

Even for linear dynamics the solution, exponential, is non-linear in the param-
eters.

• If asymptotics hold, two possibilities

– Quadratic: Finite confidence intervals

– Flat: Parameter can not be determined: Structural non-identifiable

∗ Parameter can not be determined because of model structure

∗ (Trivial) example
y = (ab)x

∗ (Highly) non-trivial examples for partially observed differential equa-
tion

• Not invariant under reparametrisation

Transformation of parameters, e.g. taking logarithm

=⇒ Confidence intervals does not change according to transformation

Alternative:
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• Profile Likelihood

PL(pi) = max
pj 6=i

L(p)

Scan each parameter, reoptimise the others

• For χ2 fitting

PL(pi) = min
pj 6=i

χ2(p)

• Confidence intervals given by

2(L(p̂)− PL(pi)) ≤ χ2
(1−α,1)

Since this a likelihood ratio test with one degree of freedom !

• For χ2 fitting

PL(pi)− χ2(p̂) ≤ χ2
(1−α,1)

Figure 11.5: Profile Likelihood, typical behaviours
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Properties:

• Much weaker asymptotic assumptions than Fisher Information Matrix based
confidence intervals.

Convexity of likelihood sufficient.

• Invariant under reparametrisation

• Allows for insights when quadratic approximation does not hold

Figure 11.6: Lower or upper bound, can not be treated by Fisher Information
matrix, see exercise

• Allows for definition of practical non-identifiability [85]:

– Profile likelihood not flat, but no bounded confidence intervals

– A problem that can often be solved with more data

• Formal definition of structural non-identifiability

– For two parameter sets ~p1 and ~p2 it holds ~g(~x, ~p1) = ~g(~x, ~p2)

– Or positivily. Structural identifiable if for ~p1 6= ~p2 it holds ~g(~x, ~p1) 6=
~g(~x, ~p2)

– Cure: Reduce dimension of ~f and/or increase dimension of ~g

• The basis for experimental design [84, 86] and/or model reduction [64]

If parameters are not well determined, in turn, model predictions will not be well
determined.

Goal: Tailor the model complexity to the information content of the data 10/19
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11.4 General Considerations

G.E.P. Box: ”All models are wrong but some are useful” [11]

• What is a useful model ?

First, what is a good model ?

• too simple model

can not fit the data

• too large model

overfits the data, parameters and predictions not well determined

• good model

fits the data, parameters and predictions well determined

A good model has the chance to become a useful model

A useful model

• captures the main effects, neglects the rest

• makes testable predictions

• delivers insights

Important:

• The goal of modelling can not be to get a ”copy” the biological system

• Goethe: If I draw my dog exactly as he is, I have a second dog, but not a piece
of art.

• The same holds for modelling in cell biology
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Lessons learned:

• Maximum likelihood estimation with Gaussian distributed errors is equivalent
to weighted least squares minimisation and vice versa

• Parameter estimation in nonlinear, partially observed, noisy, non-autonomous,
stiff, sparse dynamical systems

• MLE is asymptotically Gaussian distributed no matter how the data are dis-
tributed

• Profile likelihood highy informative alternative to asymptotic confidence in-
tervals

• All models are wrong, but some are useful

11/17
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12 Genetic networks

Nice review [102, 17]

• Number of genes: typically 2

• number of mRNA: O(100)

• number of proteins up to O(106)

• For proteins, notion of ”concentration” makes sense, deterministic continuous
ordinary differential equations make sense

• For mRNA, deterministic description by ODE questionable [61]

• For genes, it surely does not make any sense

• In general for ”population dynamics” with few players, discreteness and
stochasticity has to be taken into account
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Figure 12.1: Discrete and stochastic dynamics with few players

Questions:

• How to simulate a discrete states system ?

• What is the substitute for rate constants ?

The answer: The Gillespie-algorithm

• Takes into account the stochastic nature of the reactions

• Simulation of single trajectories that are valid realisations of the underlying
stochastic process

12.1 Gillespie-Algorithm

Literature:

• Original paper 1976 [30]

• Further developments : [28, 67, 82]

• Critical discussion of assumptions and interpretation [119]
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Let S be a species and

Pn(t) = Prob(#S = n at t)

Consider:

• Propensity a(.): Probability per time unit for change of state

• Influx to Pn(t)

n− νµ
aµ(n− νµ)
−→ n

with aµ(n− νµ) the rate for a change by νµ, given the state was in n− νµ

• Efflux from Pn(t)

n
aµ(n)
−→ n+ νµ

with aµ(n) the rate for a change by νµ, given state was in n

With this, the Chemical Master Equation follows:

Ṗn =
∞∑
µ=1

aµ(n− νµ)Pn−νµ − aµ(n)Pn

In general

• More than one species: P (S1, S2, . . . , SK)

• Many possible reactions R1, R2, . . . , RM

• No analytical solution

Gillespie-Algorithm: Instead of analytical solution

• Simulate many trajectories

• Obtain results by averaging

• One can show: Gillespie algorithm produces the correct distributions Pn(t)

Strategy of Gillespie-algorithm

• When will a next reaction take place ?
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• Which reaction is the next one ?

Central quantity: Reaction-probability function P (i, τ)

P (i, τ)dτ : Probability for reaction Ri in time interval (t+τ, t+τ +dτ), given system
is in state S(t) for (t, t+ τ)

P (i, τ)dτ = P0(τ)Pi(dτ) (65)

with

• Pi(dτ) = aidτ : Probability that reaction Ri takes place in time interval (t +
τ, t+ τ + dτ).

• P0(τ): Probability that given state S(t) no reaction takes place in interval
(t, t+ τ)

Probability that some reaction takes place in interval dτ :

M∑
i=1

aidτ

Define:

a∗ =
M∑
i=1

ai

• Probability for no reaction in interval dτ : 1− a∗dτ
Thus

P0(τ + dτ) = P0(τ)(1− a∗dτ) = P0(τ)− a∗P0(τ)dτ

• Yields differential equation

Ṗ0 = −a∗P0

with solution
P0(τ) = e−a

∗τ

In summary, with eq. (65):

P (i, τ) = aie
−a∗τ
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When will a next reaction take place and which ?

• When ?

Sum over all reactions

P̄ (τ) =
M∑
i=1

P (i, τ) = a∗e−a
∗τ

yields with P̄ (τ)dτ probability for a next reaction in interval (t+ τ, t+ τ + dτ)

• Which ?

Given a reaction happens in the interval, the conditional probability

P̃ (i|τ) =
P (i, τ)

P̄ (τ)
=
aie
−a∗τ

a∗e−a∗τ
=
ai
a∗

gives the probability that is reaction i.

On the way to the algorithm

• When ?

– The cumulative distribution F (t) for P̄ (τ) reads:

F (t) =

∫ t

0

P̄ (τ) dτ = a∗
∫ t

0

e−a
∗τdτ = 1− e−a∗t

– Let r1 be uniformly distributed random number in interval [0, 1]

– If one chooses t, such that F (t) = r1, the probability density of t is the
one of P̄ (τ)
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Uniformly distributed random variables fed into the inverse of the
cumulative distribution follow the originally probability distribution.

– Thus t is given by

t = F−1(r1) =
1

a∗
ln

(
1

1− r1

)
– Since r1 is uniformly distributed as 1 − r1 is, for the random variable of

the time t of the next reaction holds

t = F−1(r1) =
1

a∗
ln

(
1

r1

)
= − 1

a∗
ln r1

• Which reaction

– Let r2 be a uniformly distributed random number in [0, 1]

– Which reaction j happens is determined by

j−1∑
i=1

ai
a∗
≤ r2 <

j∑
i=1

ai
a∗

The larger ai, the larger the probability to be chosen for the next
reaction
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Determination of the propensities ai

• ci dt: Probability that a certain single reaction Ri takes place in next time step
dt

• hi: Number of combinations of reactants

• aidt = hici dt: Probability of reaction Ri in next time step

• Determine ci and hi such that stochastic and determinsistic dynamics coincide
for #Si →∞

• Examples:

Reaction Ri ci hi

S1
k→ . . . k #S1

S1 + S2
k→ . . . k/V #S1 ·#S2

2S1
k→ . . . 2k/V 1

2
#S1 · (#S1 − 1) =

(
#S1

2

)
The algorithm:

1. Initialisation

• Set t = 0

• Choose number of molecules #Si

2. Calculate propensities

• ai = hici

• Calculate a∗ =
∑N

i=1 ai

3. Draw two uniformly distributed random numbers r1, r2

• Determine τ = −1/a∗ ln r1

• Determine j such that

j−1∑
i=0

ai
a∗
≤ r2 <

j∑
i=1

ai
a∗

with a0 = 0
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4. Update

• Update the number of molecules according to the reaction scheme

• Set t = t+ τ

• Go to 2

A little mystery:

Remember relation between quantum mechanics and classical mechanics:

• Quantum mechanics is (believed to be) fundamental, classical mechanics is a
limit case

• But in practise:

• Formulate classical theory, Hamilton function ...

• Replace x, p, E, . . . by operators, Poisson brackets by commutators

• There is no ”in first place” quantum mechanics

Here the same

• Stochastic process is fundamental, deterministic dynamics a limit case

• But: No first-principle derivation of propensity ai possible

• ”Backwards” from deterministic rate ki to stochastic ai such that they coincide
for large N

10.5/19

11.5/17

12F/2013 Worked examples

13.1 Chemotaxis

Talk: Chemotaxis

13.2 JAK-STAT Signalling

Talk: JAK-STAT signalling
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13.3 Towards Medical Applications

Talk: Towards medical applications

Question time

12/17
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